|
@@ -0,0 +1,170 @@
|
|
|
|
+{
|
|
|
|
+ "cells": [
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "markdown",
|
|
|
|
+ "metadata": {},
|
|
|
|
+ "source": [
|
|
|
|
+ "# Introduction\n",
|
|
|
|
+ "State notebook purpose here"
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "markdown",
|
|
|
|
+ "metadata": {},
|
|
|
|
+ "source": [
|
|
|
|
+ "### Imports\n",
|
|
|
|
+ "Import libraries and write settings here."
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "code",
|
|
|
|
+ "execution_count": 1,
|
|
|
|
+ "metadata": {
|
|
|
|
+ "ExecuteTime": {
|
|
|
|
+ "end_time": "2019-03-01T01:26:49.331846Z",
|
|
|
|
+ "start_time": "2019-03-01T01:26:31.496218Z"
|
|
|
|
+ }
|
|
|
|
+ },
|
|
|
|
+ "outputs": [
|
|
|
|
+ {
|
|
|
|
+ "data": {
|
|
|
|
+ "text/html": [
|
|
|
|
+ "<script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script><script>requirejs.config({paths: { 'plotly': ['https://cdn.plot.ly/plotly-latest.min']},});if(!window._Plotly) {require(['plotly'],function(plotly) {window._Plotly=plotly;});}</script>"
|
|
|
|
+ ],
|
|
|
|
+ "text/vnd.plotly.v1+html": [
|
|
|
|
+ "<script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script><script>requirejs.config({paths: { 'plotly': ['https://cdn.plot.ly/plotly-latest.min']},});if(!window._Plotly) {require(['plotly'],function(plotly) {window._Plotly=plotly;});}</script>"
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ "metadata": {},
|
|
|
|
+ "output_type": "display_data"
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ "data": {
|
|
|
|
+ "text/html": [
|
|
|
|
+ "<script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script><script>requirejs.config({paths: { 'plotly': ['https://cdn.plot.ly/plotly-latest.min']},});if(!window._Plotly) {require(['plotly'],function(plotly) {window._Plotly=plotly;});}</script>"
|
|
|
|
+ ],
|
|
|
|
+ "text/vnd.plotly.v1+html": [
|
|
|
|
+ "<script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script><script>requirejs.config({paths: { 'plotly': ['https://cdn.plot.ly/plotly-latest.min']},});if(!window._Plotly) {require(['plotly'],function(plotly) {window._Plotly=plotly;});}</script>"
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ "metadata": {},
|
|
|
|
+ "output_type": "display_data"
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "source": [
|
|
|
|
+ "# Data manipulation\n",
|
|
|
|
+ "import pandas as pd\n",
|
|
|
|
+ "import numpy as np\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# Options for pandas\n",
|
|
|
|
+ "pd.options.display.max_columns = 50\n",
|
|
|
|
+ "pd.options.display.max_rows = 30\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# Display all cell outputs\n",
|
|
|
|
+ "from IPython.core.interactiveshell import InteractiveShell\n",
|
|
|
|
+ "InteractiveShell.ast_node_interactivity = 'all'\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "from IPython import get_ipython\n",
|
|
|
|
+ "ipython = get_ipython()\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# autoreload extension\n",
|
|
|
|
+ "if 'autoreload' not in ipython.extension_manager.loaded:\n",
|
|
|
|
+ " %load_ext autoreload\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "%autoreload 2\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# Visualizations\n",
|
|
|
|
+ "import plotly.plotly as py\n",
|
|
|
|
+ "import plotly.graph_objs as go\n",
|
|
|
|
+ "from plotly.offline import iplot, init_notebook_mode\n",
|
|
|
|
+ "init_notebook_mode(connected=True)\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "import cufflinks as cf\n",
|
|
|
|
+ "cf.go_offline(connected=True)\n",
|
|
|
|
+ "cf.set_config_file(theme='white')"
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "markdown",
|
|
|
|
+ "metadata": {},
|
|
|
|
+ "source": [
|
|
|
|
+ "# Analysis/Modeling\n",
|
|
|
|
+ "Do work here"
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "markdown",
|
|
|
|
+ "metadata": {},
|
|
|
|
+ "source": [
|
|
|
|
+ "# Results\n",
|
|
|
|
+ "Show graphs and stats here"
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "markdown",
|
|
|
|
+ "metadata": {},
|
|
|
|
+ "source": [
|
|
|
|
+ "# Conclusion\n",
|
|
|
|
+ "Summarize findings here"
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "code",
|
|
|
|
+ "execution_count": null,
|
|
|
|
+ "metadata": {},
|
|
|
|
+ "outputs": [],
|
|
|
|
+ "source": []
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "metadata": {
|
|
|
|
+ "kernelspec": {
|
|
|
|
+ "display_name": "Python 3",
|
|
|
|
+ "language": "python",
|
|
|
|
+ "name": "python3"
|
|
|
|
+ },
|
|
|
|
+ "toc": {
|
|
|
|
+ "base_numbering": 1,
|
|
|
|
+ "nav_menu": {},
|
|
|
|
+ "number_sections": true,
|
|
|
|
+ "sideBar": true,
|
|
|
|
+ "skip_h1_title": false,
|
|
|
|
+ "title_cell": "Table of Contents",
|
|
|
|
+ "title_sidebar": "Contents",
|
|
|
|
+ "toc_cell": false,
|
|
|
|
+ "toc_position": {},
|
|
|
|
+ "toc_section_display": true,
|
|
|
|
+ "toc_window_display": false
|
|
|
|
+ },
|
|
|
|
+ "varInspector": {
|
|
|
|
+ "cols": {
|
|
|
|
+ "lenName": 16,
|
|
|
|
+ "lenType": 16,
|
|
|
|
+ "lenVar": 40
|
|
|
|
+ },
|
|
|
|
+ "kernels_config": {
|
|
|
|
+ "python": {
|
|
|
|
+ "delete_cmd_postfix": "",
|
|
|
|
+ "delete_cmd_prefix": "del ",
|
|
|
|
+ "library": "var_list.py",
|
|
|
|
+ "varRefreshCmd": "print(var_dic_list())"
|
|
|
|
+ },
|
|
|
|
+ "r": {
|
|
|
|
+ "delete_cmd_postfix": ") ",
|
|
|
|
+ "delete_cmd_prefix": "rm(",
|
|
|
|
+ "library": "var_list.r",
|
|
|
|
+ "varRefreshCmd": "cat(var_dic_list()) "
|
|
|
|
+ }
|
|
|
|
+ },
|
|
|
|
+ "types_to_exclude": [
|
|
|
|
+ "module",
|
|
|
|
+ "function",
|
|
|
|
+ "builtin_function_or_method",
|
|
|
|
+ "instance",
|
|
|
|
+ "_Feature"
|
|
|
|
+ ],
|
|
|
|
+ "window_display": false
|
|
|
|
+ }
|
|
|
|
+ },
|
|
|
|
+ "nbformat": 4,
|
|
|
|
+ "nbformat_minor": 2
|
|
|
|
+}
|