import pickle import pandas as pd import quandl import matplotlib.pyplot as plt from matplotlib import style style.use("seaborn") bridge_height = { "meters": [10.26, 10.31, 10.27, 10.22, 10.23, 6212.42, 10.28, 10.25, 10.31] } df = pd.DataFrame(bridge_height) df["std"] = df["meters"].rolling(window=2).std() df_std = df.describe()["meters"]["std"] df_mean = df.describe()["meters"]["mean"] # df = df[df['std'] < df_std] # sentdex methods df = df[df["meters"] < (df_mean + df_std)] # my methods print(df) df["meters"].plot() plt.show() ax1 = plt.subplot(2, 1, 1) ax2 = plt.subplot(2, 1, 2, sharex=ax1) # initial_state_data() pickle_in = open("fifty_states_pct.pickle", "rb") HPI_data = pickle.load(pickle_in) # HPI_Benchmark() pickle_in = open("us_pct.pickle", "rb") benchmark = pickle.load(pickle_in) # rolling statistics HPI_data["TX12MA"] = HPI_data["TX"].rolling(window=12, center=False).mean() HPI_data["TX12STD"] = HPI_data["TX"].rolling(window=12, center=False).std() # standard deviation is a measure of the volatility of the price HPI_data.dropna(inplace=True) TK_AK_12corr = HPI_data["TX"].rolling(window=12).corr(HPI_data["AK"]) HPI_data["TX"].plot(ax=ax1, label="TX HPI") HPI_data["AK"].plot(ax=ax1, label="AK HPI") ax1.legend(loc=4) TK_AK_12corr.plot(ax=ax2, label="TK AK 12 month correlation") ax2.legend(loc=4) # HPI_data[['TX12MA','TX']].plot(ax=ax1) # HPI_data['TX12STD'].plot(ax=ax2) # plt.show()