import numpy as np from sklearn.ensemble import VotingClassifier from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline, make_union from sklearn.preprocessing import FunctionTransformer, MaxAbsScaler, MinMaxScaler # NOTE: Make sure that the class is labeled 'class' in the data file tpot_data = np.recfromcsv( "PATH/TO/DATA/FILE", delimiter="COLUMN_SEPARATOR", dtype=np.float64 ) features = np.delete( tpot_data.view(np.float64).reshape(tpot_data.size, -1), tpot_data.dtype.names.index("class"), axis=1, ) ( training_features, testing_features, training_classes, testing_classes, ) = train_test_split(features, tpot_data["class"], random_state=42) exported_pipeline = make_pipeline( MaxAbsScaler(), MinMaxScaler(), LogisticRegression(C=49.0, dual=True, penalty="l2") ) exported_pipeline.fit(training_features, training_classes) results = exported_pipeline.predict(testing_features)