12345678910111213141516171819202122232425262728293031323334353637383940414243444546 |
- import pandas as pd
- import numpy as np
- from tpot import TPOTClassifier
- from sklearn.model_selection import train_test_split
- benchmark = pd.read_pickle(
- "us_pct.pickle"
- ) # us overall housing price index percentage change
- HPI = pd.read_pickle(
- "HPI_complete.pickle"
- ) # all of the state data, thirty year mortgage, unemployment rate, GDP, SP500
- HPI = HPI.join(benchmark["United States"])
- # all in percentage change since the start of the data (1975-01-01)
- HPI.dropna(inplace=True)
- housing_pct = HPI.pct_change()
- housing_pct.replace([np.inf, -np.inf], np.nan, inplace=True)
- housing_pct["US_HPI_future"] = housing_pct["United States"].shift(-1)
- housing_pct.dropna(inplace=True)
- def create_labels(cur_hpi, fut_hpi):
- if fut_hpi > cur_hpi:
- return 1
- else:
- return 0
- housing_pct["label"] = list(
- map(create_labels, housing_pct["United States"], housing_pct["US_HPI_future"])
- )
- # housing_pct['ma_apply_example'] = housing_pct['M30'].rolling(window=10).apply(moving_average)
- # print(housing_pct.tail())
- X = np.array(housing_pct.drop(["label", "US_HPI_future"], 1))
- y = np.array(housing_pct["label"])
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
- tpot = TPOTClassifier(generations=10, population_size=20, verbosity=2)
- tpot.fit(X_train, y_train)
- print(tpot.score(X_test, y_test))
- tpot.export("HPI_tpot_pipeline.py")
|