pandas_joiningData.py 843 B

123456789101112131415161718192021222324252627282930313233343536373839404142
  1. import pickle
  2. import pandas as pd
  3. import quandl
  4. import matplotlib.pyplot as plt
  5. from matplotlib import style
  6. style.use("seaborn")
  7. quandl.ApiConfig.api_key = "rFsSehe51RLzREtYhLfo"
  8. def mortgage_30yr():
  9. df = quandl.get("FMAC/MORTG")
  10. df = df[df.index > "1974-12-01"]
  11. df = (df["Value"] - df["Value"][0]) / df["Value"][0] * 100
  12. df = df.resample("M").mean()
  13. return df
  14. ax1 = plt.subplot(2, 1, 1)
  15. ax2 = plt.subplot(2, 1, 2, sharex=ax1)
  16. # initial_state_data()
  17. pickle_in = open("fifty_states_pct.pickle", "rb")
  18. HPI_data = pickle.load(pickle_in)
  19. # HPI_Benchmark()
  20. pickle_in = open("us_pct.pickle", "rb")
  21. benchmark = pickle.load(pickle_in)
  22. m30 = mortgage_30yr()
  23. HPI_Bench = benchmark
  24. state_HPI_M30 = HPI_data.join(m30)
  25. state_HPI_M30.rename({"Value": "M30"}, inplace=True)
  26. print(state_HPI_M30.corr().describe()["Value"])