12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 |
- import pickle
- import pandas as pd
- import quandl
- import matplotlib.pyplot as plt
- from matplotlib import style
- style.use("seaborn")
- api_key = "rFsSehe51RLzREtYhLfo"
- def state_list():
- fifty_states = pd.read_html("https://simple.wikipedia.org/wiki/List_of_U.S._states")
- return fifty_states[0][0][1:]
- def initial_state_data():
- states = state_list()
- main_df = pd.DataFrame()
- for abbv in states:
- query = "FMAC/HPI_" + str(abbv)
- df = quandl.get(query, authtoken=api_key)
- df.columns = [str(abbv)]
- df[abbv] = (df[abbv] - df[abbv][0]) / df[abbv][0] * 100.0
- if main_df.empty:
- main_df = df
- else:
- main_df = main_df.join(df)
- print(main_df.head())
- pickle_out = open("fifty_states_pct.pickle", "wb")
- pickle.dump(main_df, pickle_out)
- pickle_out.close()
- def HPI_Benchmark():
- df = quandl.get("FMAC/HPI_USA", authtoken=api_key)
- df["United States"] = (df["Value"] - df["Value"][0]) / df["Value"][0] * 100.0
- pickle_out = open("us_pct.pickle", "wb")
- pickle.dump(df, pickle_out)
- pickle_out.close()
- fig = plt.figure()
- ax1 = plt.subplot2grid((1, 1), (0, 0))
- # initial_state_data()
- pickle_in = open("fifty_states_pct.pickle", "rb")
- HPI_data = pickle.load(pickle_in)
- # HPI_Benchmark()
- pickle_in = open("us_pct.pickle", "rb")
- benchmark = pickle.load(pickle_in)
- # HPI_data = HPI_data.pct_change()
- HPI_data.plot(ax=ax1)
- benchmark["United States"].plot(ax=ax1, color="k", linewidth=10)
- plt.legend().remove()
- HPI_State_Correlation = HPI_data.corr()
- print(HPI_State_Correlation)
- plt.show()
- # print(HPI_data[['IL','WI']].corr())
|