library(prophet) context("Prophet tests") DATA <- read.csv('data.csv') N <- nrow(DATA) train <- DATA[1:floor(N / 2), ] future <- DATA[(ceiling(N/2) + 1):N, ] DATA2 <- read.csv('data2.csv') DATA$ds <- prophet:::set_date(DATA$ds) DATA2$ds <- prophet:::set_date(DATA2$ds) test_that("fit_predict", { skip_if_not(Sys.getenv('R_ARCH') != '/i386') m <- prophet(train) expect_error(predict(m, future), NA) }) test_that("fit_predict_no_seasons", { skip_if_not(Sys.getenv('R_ARCH') != '/i386') m <- prophet(train, weekly.seasonality = FALSE, yearly.seasonality = FALSE) expect_error(predict(m, future), NA) }) test_that("fit_predict_no_changepoints", { skip_if_not(Sys.getenv('R_ARCH') != '/i386') m <- prophet(train, n.changepoints = 0) expect_error(predict(m, future), NA) }) test_that("fit_predict_changepoint_not_in_history", { skip_if_not(Sys.getenv('R_ARCH') != '/i386') train_t <- dplyr::mutate(DATA, ds=prophet:::set_date(ds)) train_t <- dplyr::filter(train_t, (ds < prophet:::set_date('2013-01-01')) | (ds > prophet:::set_date('2014-01-01'))) future <- data.frame(ds=DATA$ds) m <- prophet(train_t, changepoints=c('2013-06-06')) expect_error(predict(m, future), NA) }) test_that("fit_predict_duplicates", { skip_if_not(Sys.getenv('R_ARCH') != '/i386') train2 <- train train2$y <- train2$y + 10 train_t <- rbind(train, train2) m <- prophet(train_t) expect_error(predict(m, future), NA) }) test_that("fit_predict_constant_history", { skip_if_not(Sys.getenv('R_ARCH') != '/i386') train2 <- train train2$y <- 20 m <- prophet(train2) fcst <- predict(m, future) expect_equal(tail(fcst$yhat, 1), 20) train2$y <- 0 m <- prophet(train2) fcst <- predict(m, future) expect_equal(tail(fcst$yhat, 1), 0) }) test_that("setup_dataframe", { history <- train m <- prophet(history, fit = FALSE) out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE) history <- out$df expect_true('t' %in% colnames(history)) expect_equal(min(history$t), 0) expect_equal(max(history$t), 1) expect_true('y_scaled' %in% colnames(history)) expect_equal(max(history$y_scaled), 1) }) test_that("logistic_floor", { skip_if_not(Sys.getenv('R_ARCH') != '/i386') m <- prophet(growth = 'logistic') history <- train history$floor <- 10. history$cap <- 80. future1 <- future future1$cap <- 80. future1$floor <- 10. m <- fit.prophet(m, history, algorithm = 'Newton') expect_true(m$logistic.floor) expect_true('floor' %in% colnames(m$history)) expect_equal(m$history$y_scaled[1], 1., tolerance = 1e-6) fcst1 <- predict(m, future1) m2 <- prophet(growth = 'logistic') history2 <- history history2$y <- history2$y + 10. history2$floor <- history2$floor + 10. history2$cap <- history2$cap + 10. future1$cap <- future1$cap + 10. future1$floor <- future1$floor + 10. m2 <- fit.prophet(m2, history2, algorithm = 'Newton') expect_equal(m2$history$y_scaled[1], 1., tolerance = 1e-6) fcst2 <- predict(m, future1) fcst2$yhat <- fcst2$yhat - 10. # Check for approximate shift invariance expect_true(all(abs(fcst1$yhat - fcst2$yhat) < 1)) }) test_that("get_changepoints", { history <- train m <- prophet(history, fit = FALSE) out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE) history <- out$df m <- out$m m$history <- history m <- prophet:::set_changepoints(m) cp <- m$changepoints.t expect_equal(length(cp), m$n.changepoints) expect_true(min(cp) > 0) expect_true(max(cp) < N) mat <- prophet:::get_changepoint_matrix(m) expect_equal(nrow(mat), floor(N / 2)) expect_equal(ncol(mat), m$n.changepoints) }) test_that("get_zero_changepoints", { history <- train m <- prophet(history, n.changepoints = 0, fit = FALSE) out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE) m <- out$m history <- out$df m$history <- history m <- prophet:::set_changepoints(m) cp <- m$changepoints.t expect_equal(length(cp), 1) expect_equal(cp[1], 0) mat <- prophet:::get_changepoint_matrix(m) expect_equal(nrow(mat), floor(N / 2)) expect_equal(ncol(mat), 1) }) test_that("override_n_changepoints", { history <- train[1:20,] m <- prophet(history, fit = FALSE) out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE) m <- out$m history <- out$df m$history <- history m <- prophet:::set_changepoints(m) expect_equal(m$n.changepoints, 15) cp <- m$changepoints.t expect_equal(length(cp), 15) }) test_that("fourier_series_weekly", { true.values <- c(0.7818315, 0.6234898, 0.9749279, -0.2225209, 0.4338837, -0.9009689) mat <- prophet:::fourier_series(DATA$ds, 7, 3) expect_equal(true.values, mat[1, ], tolerance = 1e-6) }) test_that("fourier_series_yearly", { true.values <- c(0.7006152, -0.7135393, -0.9998330, 0.01827656, 0.7262249, 0.6874572) mat <- prophet:::fourier_series(DATA$ds, 365.25, 3) expect_equal(true.values, mat[1, ], tolerance = 1e-6) }) test_that("growth_init", { history <- DATA[1:468, ] history$cap <- max(history$y) m <- prophet(history, growth = 'logistic', fit = FALSE) out <- prophet:::setup_dataframe(m, history, initialize_scales = TRUE) m <- out$m history <- out$df params <- prophet:::linear_growth_init(history) expect_equal(params[1], 0.3055671, tolerance = 1e-6) expect_equal(params[2], 0.5307511, tolerance = 1e-6) params <- prophet:::logistic_growth_init(history) expect_equal(params[1], 1.507925, tolerance = 1e-6) expect_equal(params[2], -0.08167497, tolerance = 1e-6) }) test_that("piecewise_linear", { t <- seq(0, 10) m <- 0 k <- 1.0 deltas <- c(0.5) changepoint.ts <- c(5) y <- prophet:::piecewise_linear(t, deltas, k, m, changepoint.ts) y.true <- c(0, 1, 2, 3, 4, 5, 6.5, 8, 9.5, 11, 12.5) expect_equal(y, y.true) t <- t[8:length(t)] y.true <- y.true[8:length(y.true)] y <- prophet:::piecewise_linear(t, deltas, k, m, changepoint.ts) expect_equal(y, y.true) }) test_that("piecewise_logistic", { t <- seq(0, 10) cap <- rep(10, 11) m <- 0 k <- 1.0 deltas <- c(0.5) changepoint.ts <- c(5) y <- prophet:::piecewise_logistic(t, cap, deltas, k, m, changepoint.ts) y.true <- c(5.000000, 7.310586, 8.807971, 9.525741, 9.820138, 9.933071, 9.984988, 9.996646, 9.999252, 9.999833, 9.999963) expect_equal(y, y.true, tolerance = 1e-6) t <- t[8:length(t)] y.true <- y.true[8:length(y.true)] cap <- cap[8:length(cap)] y <- prophet:::piecewise_logistic(t, cap, deltas, k, m, changepoint.ts) expect_equal(y, y.true, tolerance = 1e-6) }) test_that("holidays", { holidays = data.frame(ds = c('2016-12-25'), holiday = c('xmas'), lower_window = c(-1), upper_window = c(0)) df <- data.frame( ds = seq(prophet:::set_date('2016-12-20'), prophet:::set_date('2016-12-31'), by='d')) m <- prophet(train, holidays = holidays, fit = FALSE) out <- prophet:::make_holiday_features(m, df$ds) feats <- out$holiday.features priors <- out$prior.scales expect_equal(nrow(feats), nrow(df)) expect_equal(ncol(feats), 2) expect_equal(sum(colSums(feats) - c(1, 1)), 0) expect_true(all(priors == c(10., 10.))) holidays = data.frame(ds = c('2016-12-25'), holiday = c('xmas'), lower_window = c(-1), upper_window = c(10)) m <- prophet(train, holidays = holidays, fit = FALSE) out <- prophet:::make_holiday_features(m, df$ds) feats <- out$holiday.features priors <- out$prior.scales expect_equal(nrow(feats), nrow(df)) expect_equal(ncol(feats), 12) expect_true(all(priors == rep(10, 12))) # Check prior specifications holidays <- data.frame( ds = prophet:::set_date(c('2016-12-25', '2017-12-25')), holiday = c('xmas', 'xmas'), lower_window = c(-1, -1), upper_window = c(0, 0), prior_scale = c(5., 5.) ) m <- prophet(holidays = holidays, fit = FALSE) out <- prophet:::make_holiday_features(m, df$ds) priors <- out$prior.scales expect_true(all(priors == c(5., 5.))) # 2 different priors holidays2 <- data.frame( ds = prophet:::set_date(c('2012-06-06', '2013-06-06')), holiday = c('seans-bday', 'seans-bday'), lower_window = c(0, 0), upper_window = c(1, 1), prior_scale = c(8, 8) ) holidays2 <- rbind(holidays, holidays2) m <- prophet(holidays = holidays2, fit = FALSE) out <- prophet:::make_holiday_features(m, df$ds) priors <- out$prior.scales expect_true(all(priors == c(8, 8, 5, 5))) holidays2 <- data.frame( ds = prophet:::set_date(c('2012-06-06', '2013-06-06')), holiday = c('seans-bday', 'seans-bday'), lower_window = c(0, 0), upper_window = c(1, 1) ) holidays2 <- dplyr::bind_rows(holidays, holidays2) m <- prophet(holidays = holidays2, fit = FALSE, holidays.prior.scale = 4) out <- prophet:::make_holiday_features(m, df$ds) priors <- out$prior.scales expect_true(all(priors == c(4, 4, 5, 5))) # Check incompatible priors holidays <- data.frame( ds = prophet:::set_date(c('2016-12-25', '2016-12-27')), holiday = c('xmasish', 'xmasish'), lower_window = c(-1, -1), upper_window = c(0, 0), prior_scale = c(5., 6.) ) m <- prophet(holidays = holidays, fit = FALSE) expect_error(prophet:::make_holiday_features(m, df$ds)) }) test_that("fit_with_holidays", { skip_if_not(Sys.getenv('R_ARCH') != '/i386') holidays <- data.frame(ds = c('2012-06-06', '2013-06-06'), holiday = c('seans-bday', 'seans-bday'), lower_window = c(0, 0), upper_window = c(1, 1)) m <- prophet(DATA, holidays = holidays, uncertainty.samples = 0) expect_error(predict(m), NA) }) test_that("make_future_dataframe", { skip_if_not(Sys.getenv('R_ARCH') != '/i386') train.t <- DATA[1:234, ] m <- prophet(train.t) future <- make_future_dataframe(m, periods = 3, freq = 'day', include_history = FALSE) correct <- prophet:::set_date(c('2013-04-26', '2013-04-27', '2013-04-28')) expect_equal(future$ds, correct) future <- make_future_dataframe(m, periods = 3, freq = 'month', include_history = FALSE) correct <- prophet:::set_date(c('2013-05-25', '2013-06-25', '2013-07-25')) expect_equal(future$ds, correct) }) test_that("auto_weekly_seasonality", { skip_if_not(Sys.getenv('R_ARCH') != '/i386') # Should be enabled N.w <- 15 train.w <- DATA[1:N.w, ] m <- prophet(train.w, fit = FALSE) expect_equal(m$weekly.seasonality, 'auto') m <- fit.prophet(m, train.w) expect_true('weekly' %in% names(m$seasonalities)) true <- list(period = 7, fourier.order = 3, prior.scale = 10) for (name in names(true)) { expect_equal(m$seasonalities$weekly[[name]], true[[name]]) } # Should be disabled due to too short history N.w <- 9 train.w <- DATA[1:N.w, ] m <- prophet(train.w) expect_false('weekly' %in% names(m$seasonalities)) m <- prophet(train.w, weekly.seasonality = TRUE) expect_true('weekly' %in% names(m$seasonalities)) # Should be False due to weekly spacing train.w <- DATA[seq(1, nrow(DATA), 7), ] m <- prophet(train.w) expect_false('weekly' %in% names(m$seasonalities)) m <- prophet(DATA, weekly.seasonality = 2, seasonality.prior.scale = 3) true <- list(period = 7, fourier.order = 2, prior.scale = 3) for (name in names(true)) { expect_equal(m$seasonalities$weekly[[name]], true[[name]]) } }) test_that("auto_yearly_seasonality", { skip_if_not(Sys.getenv('R_ARCH') != '/i386') # Should be enabled m <- prophet(DATA, fit = FALSE) expect_equal(m$yearly.seasonality, 'auto') m <- fit.prophet(m, DATA) expect_true('yearly' %in% names(m$seasonalities)) true <- list(period = 365.25, fourier.order = 10, prior.scale = 10) for (name in names(true)) { expect_equal(m$seasonalities$yearly[[name]], true[[name]]) } # Should be disabled due to too short history N.w <- 240 train.y <- DATA[1:N.w, ] m <- prophet(train.y) expect_false('yearly' %in% names(m$seasonalities)) m <- prophet(train.y, yearly.seasonality = TRUE) expect_true('yearly' %in% names(m$seasonalities)) m <- prophet(DATA, yearly.seasonality = 7, seasonality.prior.scale = 3) true <- list(period = 365.25, fourier.order = 7, prior.scale = 3) for (name in names(true)) { expect_equal(m$seasonalities$yearly[[name]], true[[name]]) } }) test_that("auto_daily_seasonality", { skip_if_not(Sys.getenv('R_ARCH') != '/i386') # Should be enabled m <- prophet(DATA2, fit = FALSE) expect_equal(m$daily.seasonality, 'auto') m <- fit.prophet(m, DATA2) expect_true('daily' %in% names(m$seasonalities)) true <- list(period = 1, fourier.order = 4, prior.scale = 10) for (name in names(true)) { expect_equal(m$seasonalities$daily[[name]], true[[name]]) } # Should be disabled due to too short history N.d <- 430 train.y <- DATA2[1:N.d, ] m <- prophet(train.y) expect_false('daily' %in% names(m$seasonalities)) m <- prophet(train.y, daily.seasonality = TRUE) expect_true('daily' %in% names(m$seasonalities)) m <- prophet(DATA2, daily.seasonality = 7, seasonality.prior.scale = 3) true <- list(period = 1, fourier.order = 7, prior.scale = 3) for (name in names(true)) { expect_equal(m$seasonalities$daily[[name]], true[[name]]) } m <- prophet(DATA) expect_false('daily' %in% names(m$seasonalities)) }) test_that("test_subdaily_holidays", { skip_if_not(Sys.getenv('R_ARCH') != '/i386') holidays <- data.frame(ds = c('2017-01-02'), holiday = c('special_day')) m <- prophet(DATA2, holidays=holidays) fcst <- predict(m) expect_equal(sum(fcst$special_day == 0), 575) }) test_that("custom_seasonality", { skip_if_not(Sys.getenv('R_ARCH') != '/i386') holidays <- data.frame(ds = c('2017-01-02'), holiday = c('special_day'), prior_scale = c(4)) m <- prophet(holidays=holidays) m <- add_seasonality(m, name='monthly', period=30, fourier.order=5) true <- list(period = 30, fourier.order = 5, prior.scale = 10) for (name in names(true)) { expect_equal(m$seasonalities$monthly[[name]], true[[name]]) } expect_error( add_seasonality(m, name='special_day', period=30, fourier_order=5) ) expect_error( add_seasonality(m, name='trend', period=30, fourier_order=5) ) m <- add_seasonality(m, name='weekly', period=30, fourier.order=5) # Test priors m <- prophet(holidays = holidays, yearly.seasonality = FALSE) m <- add_seasonality( m, name='monthly', period=30, fourier.order=5, prior.scale = 2) m <- fit.prophet(m, DATA) prior.scales <- prophet:::make_all_seasonality_features( m, m$history)$prior.scales expect_true(all(prior.scales == c(rep(2, 10), rep(10, 6), 4))) }) test_that("added_regressors", { skip_if_not(Sys.getenv('R_ARCH') != '/i386') m <- prophet() m <- add_regressor(m, 'binary_feature', prior.scale=0.2) m <- add_regressor(m, 'numeric_feature', prior.scale=0.5) m <- add_regressor(m, 'binary_feature2', standardize=TRUE) df <- DATA df$binary_feature <- c(rep(0, 255), rep(1, 255)) df$numeric_feature <- 0:509 # Require all regressors in df expect_error( fit.prophet(m, df) ) df$binary_feature2 <- c(rep(1, 100), rep(0, 410)) m <- fit.prophet(m, df) # Check that standardizations are correctly set true <- list(prior.scale = 0.2, mu = 0, std = 1, standardize = 'auto') for (name in names(true)) { expect_equal(true[[name]], m$extra_regressors$binary_feature[[name]]) } true <- list(prior.scale = 0.5, mu = 254.5, std = 147.368585) for (name in names(true)) { expect_equal(true[[name]], m$extra_regressors$numeric_feature[[name]], tolerance = 1e-5) } true <- list(prior.scale = 10., mu = 0.1960784, std = 0.3974183) for (name in names(true)) { expect_equal(true[[name]], m$extra_regressors$binary_feature2[[name]], tolerance = 1e-5) } # Check that standardization is done correctly df2 <- prophet:::setup_dataframe(m, df)$df expect_equal(df2$binary_feature[1], 0) expect_equal(df2$numeric_feature[1], -1.726962, tolerance = 1e-4) expect_equal(df2$binary_feature2[1], 2.022859, tolerance = 1e-4) # Check that feature matrix and prior scales are correctly constructed out <- prophet:::make_all_seasonality_features(m, df2) seasonal.features <- out$seasonal.features prior.scales <- out$prior.scales expect_true('binary_feature' %in% colnames(seasonal.features)) expect_true('numeric_feature' %in% colnames(seasonal.features)) expect_true('binary_feature2' %in% colnames(seasonal.features)) expect_equal(ncol(seasonal.features), 29) expect_true(all(sort(prior.scales[27:29]) == c(0.2, 0.5, 10.))) # Check that forecast components are reasonable future <- data.frame( ds = c('2014-06-01'), binary_feature = c(0), numeric_feature = c(10)) expect_error(predict(m, future)) future$binary_feature2 <- 0. fcst <- predict(m, future) expect_equal(ncol(fcst), 31) expect_equal(fcst$binary_feature[1], 0) expect_equal(fcst$extra_regressors[1], fcst$numeric_feature[1] + fcst$binary_feature2[1]) expect_equal(fcst$seasonalities[1], fcst$yearly[1] + fcst$weekly[1]) expect_equal(fcst$seasonal[1], fcst$seasonalities[1] + fcst$extra_regressors[1]) expect_equal(fcst$yhat[1], fcst$trend[1] + fcst$seasonal[1]) }) test_that("copy", { skip_if_not(Sys.getenv('R_ARCH') != '/i386') inputs <- list( growth = c('linear', 'logistic'), changepoints = c(NULL, c('2016-12-25')), n.changepoints = c(3), yearly.seasonality = c(TRUE, FALSE), weekly.seasonality = c(TRUE, FALSE), daily.seasonality = c(TRUE, FALSE), holidays = c(NULL, 'insert_dataframe'), seasonality.prior.scale = c(1.1), holidays.prior.scale = c(1.1), changepoints.prior.scale = c(0.1), mcmc.samples = c(100), interval.width = c(0.9), uncertainty.samples = c(200) ) products <- expand.grid(inputs) for (i in 1:length(products)) { if (products$holidays[i] == 'insert_dataframe') { holidays <- data.frame(ds=c('2016-12-25'), holiday=c('x')) } else { holidays <- NULL } m1 <- prophet( growth = products$growth[i], changepoints = products$changepoints[i], n.changepoints = products$n.changepoints[i], yearly.seasonality = products$yearly.seasonality[i], weekly.seasonality = products$weekly.seasonality[i], daily.seasonality = products$daily.seasonality[i], holidays = holidays, seasonality.prior.scale = products$seasonality.prior.scale[i], holidays.prior.scale = products$holidays.prior.scale[i], changepoints.prior.scale = products$changepoints.prior.scale[i], mcmc.samples = products$mcmc.samples[i], interval.width = products$interval.width[i], uncertainty.samples = products$uncertainty.samples[i], fit = FALSE ) m2 <- prophet:::prophet_copy(m1) # Values should be copied correctly for (arg in names(inputs)) { expect_equal(m1[[arg]], m2[[arg]]) } } # Check for cutoff changepoints <- seq.Date(as.Date('2012-06-15'), as.Date('2012-09-15'), by='d') cutoff <- as.Date('2012-07-25') m1 <- prophet(DATA, changepoints = changepoints) m2 <- prophet:::prophet_copy(m1, cutoff) changepoints <- changepoints[changepoints <= cutoff] expect_equal(prophet:::set_date(changepoints), m2$changepoints) })