test_prophet.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471
  1. # Copyright (c) 2017-present, Facebook, Inc.
  2. # All rights reserved.
  3. #
  4. # This source code is licensed under the BSD-style license found in the
  5. # LICENSE file in the root directory of this source tree. An additional grant
  6. # of patent rights can be found in the PATENTS file in the same directory.
  7. from __future__ import absolute_import
  8. from __future__ import division
  9. from __future__ import print_function
  10. from __future__ import unicode_literals
  11. import numpy as np
  12. import pandas as pd
  13. # fb-block 1 start
  14. import os
  15. import itertools
  16. from unittest import TestCase
  17. from fbprophet import Prophet
  18. DATA = pd.read_csv(
  19. os.path.join(os.path.dirname(__file__), 'data.csv'),
  20. parse_dates=['ds'],
  21. )
  22. DATA2 = pd.read_csv(
  23. os.path.join(os.path.dirname(__file__), 'data2.csv'),
  24. parse_dates=['ds'],
  25. )
  26. # fb-block 1 end
  27. # fb-block 2
  28. class TestProphet(TestCase):
  29. def test_fit_predict(self):
  30. N = DATA.shape[0]
  31. train = DATA.head(N // 2)
  32. future = DATA.tail(N // 2)
  33. forecaster = Prophet()
  34. forecaster.fit(train)
  35. forecaster.predict(future)
  36. def test_fit_predict_no_seasons(self):
  37. N = DATA.shape[0]
  38. train = DATA.head(N // 2)
  39. future = DATA.tail(N // 2)
  40. forecaster = Prophet(weekly_seasonality=False, yearly_seasonality=False)
  41. forecaster.fit(train)
  42. forecaster.predict(future)
  43. def test_fit_predict_no_changepoints(self):
  44. N = DATA.shape[0]
  45. train = DATA.head(N // 2)
  46. future = DATA.tail(N // 2)
  47. forecaster = Prophet(n_changepoints=0)
  48. forecaster.fit(train)
  49. forecaster.predict(future)
  50. def test_fit_changepoint_not_in_history(self):
  51. train = DATA[(DATA['ds'] < '2013-01-01') | (DATA['ds'] > '2014-01-01')]
  52. train[(train['ds'] > '2014-01-01')] += 20
  53. future = pd.DataFrame({'ds': DATA['ds']})
  54. forecaster = Prophet(changepoints=['2013-06-06'])
  55. forecaster.fit(train)
  56. forecaster.predict(future)
  57. def test_fit_predict_duplicates(self):
  58. N = DATA.shape[0]
  59. train1 = DATA.head(N // 2).copy()
  60. train2 = DATA.head(N // 2).copy()
  61. train2['y'] += 10
  62. train = train1.append(train2)
  63. future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
  64. forecaster = Prophet()
  65. forecaster.fit(train)
  66. forecaster.predict(future)
  67. def test_setup_dataframe(self):
  68. m = Prophet()
  69. N = DATA.shape[0]
  70. history = DATA.head(N // 2).copy()
  71. history = m.setup_dataframe(history, initialize_scales=True)
  72. self.assertTrue('t' in history)
  73. self.assertEqual(history['t'].min(), 0.0)
  74. self.assertEqual(history['t'].max(), 1.0)
  75. self.assertTrue('y_scaled' in history)
  76. self.assertEqual(history['y_scaled'].max(), 1.0)
  77. def test_get_changepoints(self):
  78. m = Prophet()
  79. N = DATA.shape[0]
  80. history = DATA.head(N // 2).copy()
  81. history = m.setup_dataframe(history, initialize_scales=True)
  82. m.history = history
  83. m.set_changepoints()
  84. cp = m.changepoints_t
  85. self.assertEqual(cp.shape[0], m.n_changepoints)
  86. self.assertEqual(len(cp.shape), 1)
  87. self.assertTrue(cp.min() > 0)
  88. self.assertTrue(cp.max() < N)
  89. mat = m.get_changepoint_matrix()
  90. self.assertEqual(mat.shape[0], N // 2)
  91. self.assertEqual(mat.shape[1], m.n_changepoints)
  92. def test_get_zero_changepoints(self):
  93. m = Prophet(n_changepoints=0)
  94. N = DATA.shape[0]
  95. history = DATA.head(N // 2).copy()
  96. history = m.setup_dataframe(history, initialize_scales=True)
  97. m.history = history
  98. m.set_changepoints()
  99. cp = m.changepoints_t
  100. self.assertEqual(cp.shape[0], 1)
  101. self.assertEqual(cp[0], 0)
  102. mat = m.get_changepoint_matrix()
  103. self.assertEqual(mat.shape[0], N // 2)
  104. self.assertEqual(mat.shape[1], 1)
  105. def test_fourier_series_weekly(self):
  106. mat = Prophet.fourier_series(DATA['ds'], 7, 3)
  107. # These are from the R forecast package directly.
  108. true_values = np.array([
  109. 0.7818315, 0.6234898, 0.9749279, -0.2225209, 0.4338837, -0.9009689,
  110. ])
  111. self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0)
  112. def test_fourier_series_yearly(self):
  113. mat = Prophet.fourier_series(DATA['ds'], 365.25, 3)
  114. # These are from the R forecast package directly.
  115. true_values = np.array([
  116. 0.7006152, -0.7135393, -0.9998330, 0.01827656, 0.7262249, 0.6874572,
  117. ])
  118. self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0)
  119. def test_growth_init(self):
  120. model = Prophet(growth='logistic')
  121. history = DATA.iloc[:468].copy()
  122. history['cap'] = history['y'].max()
  123. history = model.setup_dataframe(history, initialize_scales=True)
  124. k, m = model.linear_growth_init(history)
  125. self.assertAlmostEqual(k, 0.3055671)
  126. self.assertAlmostEqual(m, 0.5307511)
  127. k, m = model.logistic_growth_init(history)
  128. self.assertAlmostEqual(k, 1.507925, places=4)
  129. self.assertAlmostEqual(m, -0.08167497, places=4)
  130. def test_piecewise_linear(self):
  131. model = Prophet()
  132. t = np.arange(11.)
  133. m = 0
  134. k = 1.0
  135. deltas = np.array([0.5])
  136. changepoint_ts = np.array([5])
  137. y = model.piecewise_linear(t, deltas, k, m, changepoint_ts)
  138. y_true = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0,
  139. 6.5, 8.0, 9.5, 11.0, 12.5])
  140. self.assertEqual((y - y_true).sum(), 0.0)
  141. t = t[8:]
  142. y_true = y_true[8:]
  143. y = model.piecewise_linear(t, deltas, k, m, changepoint_ts)
  144. self.assertEqual((y - y_true).sum(), 0.0)
  145. def test_piecewise_logistic(self):
  146. model = Prophet()
  147. t = np.arange(11.)
  148. cap = np.ones(11) * 10
  149. m = 0
  150. k = 1.0
  151. deltas = np.array([0.5])
  152. changepoint_ts = np.array([5])
  153. y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
  154. y_true = np.array([5.000000, 7.310586, 8.807971, 9.525741, 9.820138,
  155. 9.933071, 9.984988, 9.996646, 9.999252, 9.999833,
  156. 9.999963])
  157. self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5)
  158. t = t[8:]
  159. y_true = y_true[8:]
  160. cap = cap[8:]
  161. y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
  162. self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5)
  163. def test_holidays(self):
  164. holidays = pd.DataFrame({
  165. 'ds': pd.to_datetime(['2016-12-25']),
  166. 'holiday': ['xmas'],
  167. 'lower_window': [-1],
  168. 'upper_window': [0],
  169. })
  170. model = Prophet(holidays=holidays)
  171. df = pd.DataFrame({
  172. 'ds': pd.date_range('2016-12-20', '2016-12-31')
  173. })
  174. feats = model.make_holiday_features(df['ds'])
  175. # 11 columns generated even though only 8 overlap
  176. self.assertEqual(feats.shape, (df.shape[0], 2))
  177. self.assertEqual((feats.sum(0) - np.array([1.0, 1.0])).sum(), 0)
  178. holidays = pd.DataFrame({
  179. 'ds': pd.to_datetime(['2016-12-25']),
  180. 'holiday': ['xmas'],
  181. 'lower_window': [-1],
  182. 'upper_window': [10],
  183. })
  184. feats = Prophet(holidays=holidays).make_holiday_features(df['ds'])
  185. # 12 columns generated even though only 8 overlap
  186. self.assertEqual(feats.shape, (df.shape[0], 12))
  187. def test_fit_with_holidays(self):
  188. holidays = pd.DataFrame({
  189. 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
  190. 'holiday': ['seans-bday'] * 2,
  191. 'lower_window': [0] * 2,
  192. 'upper_window': [1] * 2,
  193. })
  194. model = Prophet(holidays=holidays, uncertainty_samples=0)
  195. model.fit(DATA).predict()
  196. def test_make_future_dataframe(self):
  197. N = 468
  198. train = DATA.head(N // 2)
  199. forecaster = Prophet()
  200. forecaster.fit(train)
  201. future = forecaster.make_future_dataframe(periods=3, freq='D',
  202. include_history=False)
  203. correct = pd.DatetimeIndex(['2013-04-26', '2013-04-27', '2013-04-28'])
  204. self.assertEqual(len(future), 3)
  205. for i in range(3):
  206. self.assertEqual(future.iloc[i]['ds'], correct[i])
  207. future = forecaster.make_future_dataframe(periods=3, freq='M',
  208. include_history=False)
  209. correct = pd.DatetimeIndex(['2013-04-30', '2013-05-31', '2013-06-30'])
  210. self.assertEqual(len(future), 3)
  211. for i in range(3):
  212. self.assertEqual(future.iloc[i]['ds'], correct[i])
  213. def test_auto_weekly_seasonality(self):
  214. # Should be enabled
  215. N = 15
  216. train = DATA.head(N)
  217. m = Prophet()
  218. self.assertEqual(m.weekly_seasonality, 'auto')
  219. m.fit(train)
  220. self.assertIn('weekly', m.seasonalities)
  221. self.assertEqual(m.seasonalities['weekly'], (7, 3))
  222. # Should be disabled due to too short history
  223. N = 9
  224. train = DATA.head(N)
  225. m = Prophet()
  226. m.fit(train)
  227. self.assertNotIn('weekly', m.seasonalities)
  228. m = Prophet(weekly_seasonality=True)
  229. m.fit(train)
  230. self.assertIn('weekly', m.seasonalities)
  231. # Should be False due to weekly spacing
  232. train = DATA.iloc[::7, :]
  233. m = Prophet()
  234. m.fit(train)
  235. self.assertNotIn('weekly', m.seasonalities)
  236. m = Prophet(weekly_seasonality=2)
  237. m.fit(DATA)
  238. self.assertEqual(m.seasonalities['weekly'], (7, 2))
  239. def test_auto_yearly_seasonality(self):
  240. # Should be enabled
  241. m = Prophet()
  242. self.assertEqual(m.yearly_seasonality, 'auto')
  243. m.fit(DATA)
  244. self.assertIn('yearly', m.seasonalities)
  245. self.assertEqual(m.seasonalities['yearly'], (365.25, 10))
  246. # Should be disabled due to too short history
  247. N = 240
  248. train = DATA.head(N)
  249. m = Prophet()
  250. m.fit(train)
  251. self.assertNotIn('yearly', m.seasonalities)
  252. m = Prophet(yearly_seasonality=True)
  253. m.fit(train)
  254. self.assertIn('yearly', m.seasonalities)
  255. m = Prophet(yearly_seasonality=7)
  256. m.fit(DATA)
  257. self.assertEqual(m.seasonalities['yearly'], (365.25, 7))
  258. def test_auto_daily_seasonality(self):
  259. # Should be enabled
  260. m = Prophet()
  261. self.assertEqual(m.daily_seasonality, 'auto')
  262. m.fit(DATA2)
  263. self.assertIn('daily', m.seasonalities)
  264. self.assertEqual(m.seasonalities['daily'], (1, 4))
  265. # Should be disabled due to too short history
  266. N = 430
  267. train = DATA2.head(N)
  268. m = Prophet()
  269. m.fit(train)
  270. self.assertNotIn('daily', m.seasonalities)
  271. m = Prophet(daily_seasonality=True)
  272. m.fit(train)
  273. self.assertIn('daily', m.seasonalities)
  274. m = Prophet(daily_seasonality=7)
  275. m.fit(DATA2)
  276. self.assertEqual(m.seasonalities['daily'], (1, 7))
  277. m = Prophet()
  278. m.fit(DATA)
  279. self.assertNotIn('daily', m.seasonalities)
  280. def test_subdaily_holidays(self):
  281. holidays = pd.DataFrame({
  282. 'ds': pd.to_datetime(['2017-01-02']),
  283. 'holiday': ['special_day'],
  284. })
  285. m = Prophet(holidays=holidays)
  286. m.fit(DATA2)
  287. fcst = m.predict()
  288. self.assertEqual(sum(fcst['special_day'] == 0), 575)
  289. def test_custom_seasonality(self):
  290. holidays = pd.DataFrame({
  291. 'ds': pd.to_datetime(['2017-01-02']),
  292. 'holiday': ['special_day'],
  293. })
  294. m = Prophet(holidays=holidays)
  295. m.add_seasonality(name='monthly', period=30, fourier_order=5)
  296. self.assertEqual(m.seasonalities['monthly'], (30, 5))
  297. with self.assertRaises(ValueError):
  298. m.add_seasonality(name='special_day', period=30, fourier_order=5)
  299. with self.assertRaises(ValueError):
  300. m.add_seasonality(name='trend', period=30, fourier_order=5)
  301. m.add_seasonality(name='weekly', period=30, fourier_order=5)
  302. def test_added_regressors(self):
  303. m = Prophet()
  304. m.add_regressor('binary_feature', prior_scale=0.2)
  305. m.add_regressor('numeric_feature', prior_scale=0.5)
  306. m.add_regressor('binary_feature2', standardize=True)
  307. df = DATA.copy()
  308. df['binary_feature'] = [0] * 255 + [1] * 255
  309. df['numeric_feature'] = range(510)
  310. with self.assertRaises(ValueError):
  311. # Require all regressors in df
  312. m.fit(df)
  313. df['binary_feature2'] = [1] * 100 + [0] * 410
  314. m.fit(df)
  315. # Check that standardizations are correctly set
  316. self.assertEqual(
  317. m.extra_regressors['binary_feature'],
  318. {'prior_scale': 0.2, 'mu': 0, 'std': 1, 'standardize': 'auto'},
  319. )
  320. self.assertEqual(
  321. m.extra_regressors['numeric_feature']['prior_scale'], 0.5)
  322. self.assertEqual(
  323. m.extra_regressors['numeric_feature']['mu'], 254.5)
  324. self.assertAlmostEqual(
  325. m.extra_regressors['numeric_feature']['std'], 147.368585, places=5)
  326. self.assertEqual(
  327. m.extra_regressors['binary_feature2']['prior_scale'], 10.)
  328. self.assertAlmostEqual(
  329. m.extra_regressors['binary_feature2']['mu'], 0.1960784, places=5)
  330. self.assertAlmostEqual(
  331. m.extra_regressors['binary_feature2']['std'], 0.3974183, places=5)
  332. # Check that standardization is done correctly
  333. df2 = m.setup_dataframe(df.copy())
  334. self.assertEqual(df2['binary_feature'][0], 0)
  335. self.assertAlmostEqual(df2['numeric_feature'][0], -1.726962, places=4)
  336. self.assertAlmostEqual(df2['binary_feature2'][0], 2.022859, places=4)
  337. # Check that feature matrix and prior scales are correctly constructed
  338. seasonal_features, prior_scales = m.make_all_seasonality_features(df2)
  339. self.assertIn('binary_feature', seasonal_features)
  340. self.assertIn('numeric_feature', seasonal_features)
  341. self.assertIn('binary_feature2', seasonal_features)
  342. self.assertEqual(seasonal_features.shape[1], 29)
  343. self.assertEqual(set(prior_scales[26:]), set([0.2, 0.5, 10.]))
  344. # Check that forecast components are reasonable
  345. future = pd.DataFrame({
  346. 'ds': ['2014-06-01'],
  347. 'binary_feature': [0],
  348. 'numeric_feature': [10],
  349. })
  350. with self.assertRaises(ValueError):
  351. m.predict(future)
  352. future['binary_feature2'] = 0
  353. fcst = m.predict(future)
  354. self.assertEqual(fcst.shape[1], 31)
  355. self.assertEqual(fcst['binary_feature'][0], 0)
  356. self.assertEqual(
  357. fcst['extra_regressors'][0],
  358. fcst['numeric_feature'][0] + fcst['binary_feature2'][0],
  359. )
  360. self.assertEqual(
  361. fcst['seasonalities'][0],
  362. fcst['yearly'][0] + fcst['weekly'][0],
  363. )
  364. self.assertEqual(
  365. fcst['seasonal'][0],
  366. fcst['seasonalities'][0] + fcst['extra_regressors'][0],
  367. )
  368. self.assertEqual(
  369. fcst['yhat'][0],
  370. fcst['trend'][0] + fcst['seasonal'][0],
  371. )
  372. def test_copy(self):
  373. # These values are created except for its default values
  374. products = itertools.product(
  375. ['linear', 'logistic'], # growth
  376. [None, pd.to_datetime(['2016-12-25'])], # changepoints
  377. [3], # n_changepoints
  378. [True, False], # yearly_seasonality
  379. [True, False], # weekly_seasonality
  380. [True, False], # daily_seasonality
  381. [None, pd.DataFrame({'ds': pd.to_datetime(['2016-12-25']), 'holiday': ['x']})], # holidays
  382. [1.1], # seasonality_prior_scale
  383. [1.1], # holidays_prior_scale
  384. [0.1], # changepoint_prior_scale
  385. [100], # mcmc_samples
  386. [0.9], # interval_width
  387. [200] # uncertainty_samples
  388. )
  389. # Values should be copied correctly
  390. for product in products:
  391. m1 = Prophet(*product)
  392. m2 = m1.copy()
  393. self.assertEqual(m1.growth, m2.growth)
  394. self.assertEqual(m1.n_changepoints, m2.n_changepoints)
  395. self.assertEqual(m1.changepoints, m2.changepoints)
  396. self.assertEqual(m1.yearly_seasonality, m2.yearly_seasonality)
  397. self.assertEqual(m1.weekly_seasonality, m2.weekly_seasonality)
  398. self.assertEqual(m1.daily_seasonality, m2.daily_seasonality)
  399. if m1.holidays is None:
  400. self.assertEqual(m1.holidays, m2.holidays)
  401. else:
  402. self.assertTrue((m1.holidays == m2.holidays).values.all())
  403. self.assertEqual(m1.seasonality_prior_scale, m2.seasonality_prior_scale)
  404. self.assertEqual(m1.changepoint_prior_scale, m2.changepoint_prior_scale)
  405. self.assertEqual(m1.holidays_prior_scale, m2.holidays_prior_scale)
  406. self.assertEqual(m1.mcmc_samples, m2.mcmc_samples)
  407. self.assertEqual(m1.interval_width, m2.interval_width)
  408. self.assertEqual(m1.uncertainty_samples, m2.uncertainty_samples)
  409. # Check for cutoff
  410. changepoints = pd.date_range('2016-12-15', '2017-01-15')
  411. cutoff = pd.Timestamp('2016-12-25')
  412. m1 = Prophet(changepoints=changepoints)
  413. m2 = m1.copy(cutoff=cutoff)
  414. changepoints = changepoints[changepoints <= cutoff]
  415. self.assertTrue((changepoints == m2.changepoints).all())