test_prophet.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554
  1. # Copyright (c) 2017-present, Facebook, Inc.
  2. # All rights reserved.
  3. #
  4. # This source code is licensed under the BSD-style license found in the
  5. # LICENSE file in the root directory of this source tree. An additional grant
  6. # of patent rights can be found in the PATENTS file in the same directory.
  7. from __future__ import absolute_import
  8. from __future__ import division
  9. from __future__ import print_function
  10. from __future__ import unicode_literals
  11. import numpy as np
  12. import pandas as pd
  13. # fb-block 1 start
  14. import os
  15. import itertools
  16. from unittest import TestCase
  17. from fbprophet import Prophet
  18. DATA = pd.read_csv(
  19. os.path.join(os.path.dirname(__file__), 'data.csv'),
  20. parse_dates=['ds'],
  21. )
  22. DATA2 = pd.read_csv(
  23. os.path.join(os.path.dirname(__file__), 'data2.csv'),
  24. parse_dates=['ds'],
  25. )
  26. # fb-block 1 end
  27. # fb-block 2
  28. class TestProphet(TestCase):
  29. def test_fit_predict(self):
  30. N = DATA.shape[0]
  31. train = DATA.head(N // 2)
  32. future = DATA.tail(N // 2)
  33. forecaster = Prophet()
  34. forecaster.fit(train)
  35. forecaster.predict(future)
  36. def test_fit_predict_no_seasons(self):
  37. N = DATA.shape[0]
  38. train = DATA.head(N // 2)
  39. future = DATA.tail(N // 2)
  40. forecaster = Prophet(weekly_seasonality=False, yearly_seasonality=False)
  41. forecaster.fit(train)
  42. forecaster.predict(future)
  43. def test_fit_predict_no_changepoints(self):
  44. N = DATA.shape[0]
  45. train = DATA.head(N // 2)
  46. future = DATA.tail(N // 2)
  47. forecaster = Prophet(n_changepoints=0)
  48. forecaster.fit(train)
  49. forecaster.predict(future)
  50. def test_fit_changepoint_not_in_history(self):
  51. train = DATA[(DATA['ds'] < '2013-01-01') | (DATA['ds'] > '2014-01-01')]
  52. train[(train['ds'] > '2014-01-01')] += 20
  53. future = pd.DataFrame({'ds': DATA['ds']})
  54. forecaster = Prophet(changepoints=['2013-06-06'])
  55. forecaster.fit(train)
  56. forecaster.predict(future)
  57. def test_fit_predict_duplicates(self):
  58. N = DATA.shape[0]
  59. train1 = DATA.head(N // 2).copy()
  60. train2 = DATA.head(N // 2).copy()
  61. train2['y'] += 10
  62. train = train1.append(train2)
  63. future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
  64. forecaster = Prophet()
  65. forecaster.fit(train)
  66. forecaster.predict(future)
  67. def test_fit_predict_constant_history(self):
  68. N = DATA.shape[0]
  69. train = DATA.head(N // 2).copy()
  70. train['y'] = 20
  71. future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
  72. m = Prophet()
  73. m.fit(train)
  74. fcst = m.predict(future)
  75. self.assertEqual(fcst['yhat'].values[-1], 20)
  76. train['y'] = 0
  77. future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
  78. m = Prophet()
  79. m.fit(train)
  80. fcst = m.predict(future)
  81. self.assertEqual(fcst['yhat'].values[-1], 0)
  82. def test_setup_dataframe(self):
  83. m = Prophet()
  84. N = DATA.shape[0]
  85. history = DATA.head(N // 2).copy()
  86. history = m.setup_dataframe(history, initialize_scales=True)
  87. self.assertTrue('t' in history)
  88. self.assertEqual(history['t'].min(), 0.0)
  89. self.assertEqual(history['t'].max(), 1.0)
  90. self.assertTrue('y_scaled' in history)
  91. self.assertEqual(history['y_scaled'].max(), 1.0)
  92. def test_get_changepoints(self):
  93. m = Prophet()
  94. N = DATA.shape[0]
  95. history = DATA.head(N // 2).copy()
  96. history = m.setup_dataframe(history, initialize_scales=True)
  97. m.history = history
  98. m.set_changepoints()
  99. cp = m.changepoints_t
  100. self.assertEqual(cp.shape[0], m.n_changepoints)
  101. self.assertEqual(len(cp.shape), 1)
  102. self.assertTrue(cp.min() > 0)
  103. self.assertTrue(cp.max() < N)
  104. mat = m.get_changepoint_matrix()
  105. self.assertEqual(mat.shape[0], N // 2)
  106. self.assertEqual(mat.shape[1], m.n_changepoints)
  107. def test_get_zero_changepoints(self):
  108. m = Prophet(n_changepoints=0)
  109. N = DATA.shape[0]
  110. history = DATA.head(N // 2).copy()
  111. history = m.setup_dataframe(history, initialize_scales=True)
  112. m.history = history
  113. m.set_changepoints()
  114. cp = m.changepoints_t
  115. self.assertEqual(cp.shape[0], 1)
  116. self.assertEqual(cp[0], 0)
  117. mat = m.get_changepoint_matrix()
  118. self.assertEqual(mat.shape[0], N // 2)
  119. self.assertEqual(mat.shape[1], 1)
  120. def test_override_n_changepoints(self):
  121. m = Prophet()
  122. history = DATA.head(20).copy()
  123. history = m.setup_dataframe(history, initialize_scales=True)
  124. m.history = history
  125. m.set_changepoints()
  126. self.assertEqual(m.n_changepoints, 15)
  127. cp = m.changepoints_t
  128. self.assertEqual(cp.shape[0], 15)
  129. def test_fourier_series_weekly(self):
  130. mat = Prophet.fourier_series(DATA['ds'], 7, 3)
  131. # These are from the R forecast package directly.
  132. true_values = np.array([
  133. 0.7818315, 0.6234898, 0.9749279, -0.2225209, 0.4338837, -0.9009689,
  134. ])
  135. self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0)
  136. def test_fourier_series_yearly(self):
  137. mat = Prophet.fourier_series(DATA['ds'], 365.25, 3)
  138. # These are from the R forecast package directly.
  139. true_values = np.array([
  140. 0.7006152, -0.7135393, -0.9998330, 0.01827656, 0.7262249, 0.6874572,
  141. ])
  142. self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0)
  143. def test_growth_init(self):
  144. model = Prophet(growth='logistic')
  145. history = DATA.iloc[:468].copy()
  146. history['cap'] = history['y'].max()
  147. history = model.setup_dataframe(history, initialize_scales=True)
  148. k, m = model.linear_growth_init(history)
  149. self.assertAlmostEqual(k, 0.3055671)
  150. self.assertAlmostEqual(m, 0.5307511)
  151. k, m = model.logistic_growth_init(history)
  152. self.assertAlmostEqual(k, 1.507925, places=4)
  153. self.assertAlmostEqual(m, -0.08167497, places=4)
  154. def test_piecewise_linear(self):
  155. model = Prophet()
  156. t = np.arange(11.)
  157. m = 0
  158. k = 1.0
  159. deltas = np.array([0.5])
  160. changepoint_ts = np.array([5])
  161. y = model.piecewise_linear(t, deltas, k, m, changepoint_ts)
  162. y_true = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0,
  163. 6.5, 8.0, 9.5, 11.0, 12.5])
  164. self.assertEqual((y - y_true).sum(), 0.0)
  165. t = t[8:]
  166. y_true = y_true[8:]
  167. y = model.piecewise_linear(t, deltas, k, m, changepoint_ts)
  168. self.assertEqual((y - y_true).sum(), 0.0)
  169. def test_piecewise_logistic(self):
  170. model = Prophet()
  171. t = np.arange(11.)
  172. cap = np.ones(11) * 10
  173. m = 0
  174. k = 1.0
  175. deltas = np.array([0.5])
  176. changepoint_ts = np.array([5])
  177. y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
  178. y_true = np.array([5.000000, 7.310586, 8.807971, 9.525741, 9.820138,
  179. 9.933071, 9.984988, 9.996646, 9.999252, 9.999833,
  180. 9.999963])
  181. self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5)
  182. t = t[8:]
  183. y_true = y_true[8:]
  184. cap = cap[8:]
  185. y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
  186. self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5)
  187. def test_holidays(self):
  188. holidays = pd.DataFrame({
  189. 'ds': pd.to_datetime(['2016-12-25']),
  190. 'holiday': ['xmas'],
  191. 'lower_window': [-1],
  192. 'upper_window': [0],
  193. })
  194. model = Prophet(holidays=holidays)
  195. df = pd.DataFrame({
  196. 'ds': pd.date_range('2016-12-20', '2016-12-31')
  197. })
  198. feats, priors = model.make_holiday_features(df['ds'])
  199. # 11 columns generated even though only 8 overlap
  200. self.assertEqual(feats.shape, (df.shape[0], 2))
  201. self.assertEqual((feats.sum(0) - np.array([1.0, 1.0])).sum(), 0)
  202. self.assertEqual(priors, [10., 10.]) # Default prior
  203. holidays = pd.DataFrame({
  204. 'ds': pd.to_datetime(['2016-12-25']),
  205. 'holiday': ['xmas'],
  206. 'lower_window': [-1],
  207. 'upper_window': [10],
  208. })
  209. feats, priors = Prophet(holidays=holidays).make_holiday_features(df['ds'])
  210. # 12 columns generated even though only 8 overlap
  211. self.assertEqual(feats.shape, (df.shape[0], 12))
  212. self.assertEqual(priors, list(10. * np.ones(12)))
  213. # Check prior specifications
  214. holidays = pd.DataFrame({
  215. 'ds': pd.to_datetime(['2016-12-25', '2017-12-25']),
  216. 'holiday': ['xmas', 'xmas'],
  217. 'lower_window': [-1, -1],
  218. 'upper_window': [0, 0],
  219. 'prior_scale': [5., 5.],
  220. })
  221. feats, priors = Prophet(holidays=holidays).make_holiday_features(df['ds'])
  222. self.assertEqual(priors, [5., 5.])
  223. # 2 different priors
  224. holidays2 = pd.DataFrame({
  225. 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
  226. 'holiday': ['seans-bday'] * 2,
  227. 'lower_window': [0] * 2,
  228. 'upper_window': [1] * 2,
  229. 'prior_scale': [8] * 2,
  230. })
  231. holidays2 = pd.concat((holidays, holidays2))
  232. feats, priors = Prophet(holidays=holidays2).make_holiday_features(df['ds'])
  233. self.assertEqual(priors, [8., 8., 5., 5.])
  234. # Check incompatible priors
  235. holidays = pd.DataFrame({
  236. 'ds': pd.to_datetime(['2016-12-25', '2017-12-25']),
  237. 'holiday': ['xmas', 'xmas'],
  238. 'lower_window': [-1, -1],
  239. 'upper_window': [0, 0],
  240. 'prior_scale': [5., 6.],
  241. })
  242. with self.assertRaises(ValueError):
  243. Prophet(holidays=holidays).make_holiday_features(df['ds'])
  244. def test_fit_with_holidays(self):
  245. holidays = pd.DataFrame({
  246. 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
  247. 'holiday': ['seans-bday'] * 2,
  248. 'lower_window': [0] * 2,
  249. 'upper_window': [1] * 2,
  250. })
  251. model = Prophet(holidays=holidays, uncertainty_samples=0)
  252. model.fit(DATA).predict()
  253. def test_make_future_dataframe(self):
  254. N = 468
  255. train = DATA.head(N // 2)
  256. forecaster = Prophet()
  257. forecaster.fit(train)
  258. future = forecaster.make_future_dataframe(periods=3, freq='D',
  259. include_history=False)
  260. correct = pd.DatetimeIndex(['2013-04-26', '2013-04-27', '2013-04-28'])
  261. self.assertEqual(len(future), 3)
  262. for i in range(3):
  263. self.assertEqual(future.iloc[i]['ds'], correct[i])
  264. future = forecaster.make_future_dataframe(periods=3, freq='M',
  265. include_history=False)
  266. correct = pd.DatetimeIndex(['2013-04-30', '2013-05-31', '2013-06-30'])
  267. self.assertEqual(len(future), 3)
  268. for i in range(3):
  269. self.assertEqual(future.iloc[i]['ds'], correct[i])
  270. def test_auto_weekly_seasonality(self):
  271. # Should be enabled
  272. N = 15
  273. train = DATA.head(N)
  274. m = Prophet()
  275. self.assertEqual(m.weekly_seasonality, 'auto')
  276. m.fit(train)
  277. self.assertIn('weekly', m.seasonalities)
  278. self.assertEqual(m.seasonalities['weekly'],
  279. {'period': 7, 'fourier_order': 3, 'prior_scale': 10.})
  280. # Should be disabled due to too short history
  281. N = 9
  282. train = DATA.head(N)
  283. m = Prophet()
  284. m.fit(train)
  285. self.assertNotIn('weekly', m.seasonalities)
  286. m = Prophet(weekly_seasonality=True)
  287. m.fit(train)
  288. self.assertIn('weekly', m.seasonalities)
  289. # Should be False due to weekly spacing
  290. train = DATA.iloc[::7, :]
  291. m = Prophet()
  292. m.fit(train)
  293. self.assertNotIn('weekly', m.seasonalities)
  294. m = Prophet(weekly_seasonality=2, seasonality_prior_scale=3.)
  295. m.fit(DATA)
  296. self.assertEqual(m.seasonalities['weekly'],
  297. {'period': 7, 'fourier_order': 2, 'prior_scale': 3.})
  298. def test_auto_yearly_seasonality(self):
  299. # Should be enabled
  300. m = Prophet()
  301. self.assertEqual(m.yearly_seasonality, 'auto')
  302. m.fit(DATA)
  303. self.assertIn('yearly', m.seasonalities)
  304. self.assertEqual(
  305. m.seasonalities['yearly'],
  306. {'period': 365.25, 'fourier_order': 10, 'prior_scale': 10.},
  307. )
  308. # Should be disabled due to too short history
  309. N = 240
  310. train = DATA.head(N)
  311. m = Prophet()
  312. m.fit(train)
  313. self.assertNotIn('yearly', m.seasonalities)
  314. m = Prophet(yearly_seasonality=True)
  315. m.fit(train)
  316. self.assertIn('yearly', m.seasonalities)
  317. m = Prophet(yearly_seasonality=7, seasonality_prior_scale=3.)
  318. m.fit(DATA)
  319. self.assertEqual(
  320. m.seasonalities['yearly'],
  321. {'period': 365.25, 'fourier_order': 7, 'prior_scale': 3.},
  322. )
  323. def test_auto_daily_seasonality(self):
  324. # Should be enabled
  325. m = Prophet()
  326. self.assertEqual(m.daily_seasonality, 'auto')
  327. m.fit(DATA2)
  328. self.assertIn('daily', m.seasonalities)
  329. self.assertEqual(m.seasonalities['daily'],
  330. {'period': 1, 'fourier_order': 4, 'prior_scale': 10.})
  331. # Should be disabled due to too short history
  332. N = 430
  333. train = DATA2.head(N)
  334. m = Prophet()
  335. m.fit(train)
  336. self.assertNotIn('daily', m.seasonalities)
  337. m = Prophet(daily_seasonality=True)
  338. m.fit(train)
  339. self.assertIn('daily', m.seasonalities)
  340. m = Prophet(daily_seasonality=7, seasonality_prior_scale=3.)
  341. m.fit(DATA2)
  342. self.assertEqual(m.seasonalities['daily'],
  343. {'period': 1, 'fourier_order': 7, 'prior_scale': 3.})
  344. m = Prophet()
  345. m.fit(DATA)
  346. self.assertNotIn('daily', m.seasonalities)
  347. def test_subdaily_holidays(self):
  348. holidays = pd.DataFrame({
  349. 'ds': pd.to_datetime(['2017-01-02']),
  350. 'holiday': ['special_day'],
  351. })
  352. m = Prophet(holidays=holidays)
  353. m.fit(DATA2)
  354. fcst = m.predict()
  355. self.assertEqual(sum(fcst['special_day'] == 0), 575)
  356. def test_custom_seasonality(self):
  357. holidays = pd.DataFrame({
  358. 'ds': pd.to_datetime(['2017-01-02']),
  359. 'holiday': ['special_day'],
  360. 'prior_scale': [4.],
  361. })
  362. m = Prophet(holidays=holidays)
  363. m.add_seasonality(name='monthly', period=30, fourier_order=5,
  364. prior_scale=2.)
  365. self.assertEqual(m.seasonalities['monthly'],
  366. {'period': 30, 'fourier_order': 5, 'prior_scale': 2.})
  367. with self.assertRaises(ValueError):
  368. m.add_seasonality(name='special_day', period=30, fourier_order=5)
  369. with self.assertRaises(ValueError):
  370. m.add_seasonality(name='trend', period=30, fourier_order=5)
  371. m.add_seasonality(name='weekly', period=30, fourier_order=5)
  372. # Test priors
  373. m = Prophet(holidays=holidays, yearly_seasonality=False)
  374. m.add_seasonality(name='monthly', period=30, fourier_order=5,
  375. prior_scale=2.)
  376. m.fit(DATA.copy())
  377. seasonal_features, prior_scales = m.make_all_seasonality_features(
  378. m.history)
  379. self.assertEqual(prior_scales, [2.] * 10 + [10.] * 6 + [4.])
  380. def test_added_regressors(self):
  381. m = Prophet()
  382. m.add_regressor('binary_feature', prior_scale=0.2)
  383. m.add_regressor('numeric_feature', prior_scale=0.5)
  384. m.add_regressor('binary_feature2', standardize=True)
  385. df = DATA.copy()
  386. df['binary_feature'] = [0] * 255 + [1] * 255
  387. df['numeric_feature'] = range(510)
  388. with self.assertRaises(ValueError):
  389. # Require all regressors in df
  390. m.fit(df)
  391. df['binary_feature2'] = [1] * 100 + [0] * 410
  392. m.fit(df)
  393. # Check that standardizations are correctly set
  394. self.assertEqual(
  395. m.extra_regressors['binary_feature'],
  396. {'prior_scale': 0.2, 'mu': 0, 'std': 1, 'standardize': 'auto'},
  397. )
  398. self.assertEqual(
  399. m.extra_regressors['numeric_feature']['prior_scale'], 0.5)
  400. self.assertEqual(
  401. m.extra_regressors['numeric_feature']['mu'], 254.5)
  402. self.assertAlmostEqual(
  403. m.extra_regressors['numeric_feature']['std'], 147.368585, places=5)
  404. self.assertEqual(
  405. m.extra_regressors['binary_feature2']['prior_scale'], 10.)
  406. self.assertAlmostEqual(
  407. m.extra_regressors['binary_feature2']['mu'], 0.1960784, places=5)
  408. self.assertAlmostEqual(
  409. m.extra_regressors['binary_feature2']['std'], 0.3974183, places=5)
  410. # Check that standardization is done correctly
  411. df2 = m.setup_dataframe(df.copy())
  412. self.assertEqual(df2['binary_feature'][0], 0)
  413. self.assertAlmostEqual(df2['numeric_feature'][0], -1.726962, places=4)
  414. self.assertAlmostEqual(df2['binary_feature2'][0], 2.022859, places=4)
  415. # Check that feature matrix and prior scales are correctly constructed
  416. seasonal_features, prior_scales = m.make_all_seasonality_features(df2)
  417. self.assertIn('binary_feature', seasonal_features)
  418. self.assertIn('numeric_feature', seasonal_features)
  419. self.assertIn('binary_feature2', seasonal_features)
  420. self.assertEqual(seasonal_features.shape[1], 29)
  421. self.assertEqual(set(prior_scales[26:]), set([0.2, 0.5, 10.]))
  422. # Check that forecast components are reasonable
  423. future = pd.DataFrame({
  424. 'ds': ['2014-06-01'],
  425. 'binary_feature': [0],
  426. 'numeric_feature': [10],
  427. })
  428. with self.assertRaises(ValueError):
  429. m.predict(future)
  430. future['binary_feature2'] = 0
  431. fcst = m.predict(future)
  432. self.assertEqual(fcst.shape[1], 31)
  433. self.assertEqual(fcst['binary_feature'][0], 0)
  434. self.assertEqual(
  435. fcst['extra_regressors'][0],
  436. fcst['numeric_feature'][0] + fcst['binary_feature2'][0],
  437. )
  438. self.assertEqual(
  439. fcst['seasonalities'][0],
  440. fcst['yearly'][0] + fcst['weekly'][0],
  441. )
  442. self.assertEqual(
  443. fcst['seasonal'][0],
  444. fcst['seasonalities'][0] + fcst['extra_regressors'][0],
  445. )
  446. self.assertEqual(
  447. fcst['yhat'][0],
  448. fcst['trend'][0] + fcst['seasonal'][0],
  449. )
  450. def test_copy(self):
  451. # These values are created except for its default values
  452. products = itertools.product(
  453. ['linear', 'logistic'], # growth
  454. [None, pd.to_datetime(['2016-12-25'])], # changepoints
  455. [3], # n_changepoints
  456. [True, False], # yearly_seasonality
  457. [True, False], # weekly_seasonality
  458. [True, False], # daily_seasonality
  459. [None, pd.DataFrame({'ds': pd.to_datetime(['2016-12-25']), 'holiday': ['x']})], # holidays
  460. [1.1], # seasonality_prior_scale
  461. [1.1], # holidays_prior_scale
  462. [0.1], # changepoint_prior_scale
  463. [100], # mcmc_samples
  464. [0.9], # interval_width
  465. [200] # uncertainty_samples
  466. )
  467. # Values should be copied correctly
  468. for product in products:
  469. m1 = Prophet(*product)
  470. m2 = m1.copy()
  471. self.assertEqual(m1.growth, m2.growth)
  472. self.assertEqual(m1.n_changepoints, m2.n_changepoints)
  473. self.assertEqual(m1.changepoints, m2.changepoints)
  474. self.assertEqual(m1.yearly_seasonality, m2.yearly_seasonality)
  475. self.assertEqual(m1.weekly_seasonality, m2.weekly_seasonality)
  476. self.assertEqual(m1.daily_seasonality, m2.daily_seasonality)
  477. if m1.holidays is None:
  478. self.assertEqual(m1.holidays, m2.holidays)
  479. else:
  480. self.assertTrue((m1.holidays == m2.holidays).values.all())
  481. self.assertEqual(m1.seasonality_prior_scale, m2.seasonality_prior_scale)
  482. self.assertEqual(m1.changepoint_prior_scale, m2.changepoint_prior_scale)
  483. self.assertEqual(m1.holidays_prior_scale, m2.holidays_prior_scale)
  484. self.assertEqual(m1.mcmc_samples, m2.mcmc_samples)
  485. self.assertEqual(m1.interval_width, m2.interval_width)
  486. self.assertEqual(m1.uncertainty_samples, m2.uncertainty_samples)
  487. # Check for cutoff
  488. changepoints = pd.date_range('2012-06-15', '2012-09-15')
  489. cutoff = pd.Timestamp('2012-07-25')
  490. m1 = Prophet(changepoints=changepoints)
  491. m1.fit(DATA)
  492. m2 = m1.copy(cutoff=cutoff)
  493. changepoints = changepoints[changepoints <= cutoff]
  494. self.assertTrue((changepoints == m2.changepoints).all())