test_prophet.py 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703
  1. # Copyright (c) 2017-present, Facebook, Inc.
  2. # All rights reserved.
  3. #
  4. # This source code is licensed under the BSD-style license found in the
  5. # LICENSE file in the root directory of this source tree. An additional grant
  6. # of patent rights can be found in the PATENTS file in the same directory.
  7. from __future__ import absolute_import
  8. from __future__ import division
  9. from __future__ import print_function
  10. from __future__ import unicode_literals
  11. import numpy as np
  12. import pandas as pd
  13. # fb-block 1 start
  14. import os
  15. from unittest import TestCase
  16. from fbprophet import Prophet
  17. DATA = pd.read_csv(
  18. os.path.join(os.path.dirname(__file__), 'data.csv'),
  19. parse_dates=['ds'],
  20. )
  21. DATA2 = pd.read_csv(
  22. os.path.join(os.path.dirname(__file__), 'data2.csv'),
  23. parse_dates=['ds'],
  24. )
  25. # fb-block 1 end
  26. # fb-block 2
  27. class TestProphet(TestCase):
  28. def test_fit_predict(self):
  29. N = DATA.shape[0]
  30. train = DATA.head(N // 2)
  31. future = DATA.tail(N // 2)
  32. forecaster = Prophet()
  33. forecaster.fit(train)
  34. forecaster.predict(future)
  35. def test_fit_predict_no_seasons(self):
  36. N = DATA.shape[0]
  37. train = DATA.head(N // 2)
  38. future = DATA.tail(N // 2)
  39. forecaster = Prophet(weekly_seasonality=False, yearly_seasonality=False)
  40. forecaster.fit(train)
  41. forecaster.predict(future)
  42. def test_fit_predict_no_changepoints(self):
  43. N = DATA.shape[0]
  44. train = DATA.head(N // 2)
  45. future = DATA.tail(N // 2)
  46. forecaster = Prophet(n_changepoints=0)
  47. forecaster.fit(train)
  48. forecaster.predict(future)
  49. def test_fit_changepoint_not_in_history(self):
  50. train = DATA[(DATA['ds'] < '2013-01-01') | (DATA['ds'] > '2014-01-01')]
  51. future = pd.DataFrame({'ds': DATA['ds']})
  52. forecaster = Prophet(changepoints=['2013-06-06'])
  53. forecaster.fit(train)
  54. forecaster.predict(future)
  55. def test_fit_predict_duplicates(self):
  56. N = DATA.shape[0]
  57. train1 = DATA.head(N // 2).copy()
  58. train2 = DATA.head(N // 2).copy()
  59. train2['y'] += 10
  60. train = train1.append(train2)
  61. future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
  62. forecaster = Prophet()
  63. forecaster.fit(train)
  64. forecaster.predict(future)
  65. def test_fit_predict_constant_history(self):
  66. N = DATA.shape[0]
  67. train = DATA.head(N // 2).copy()
  68. train['y'] = 20
  69. future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
  70. m = Prophet()
  71. m.fit(train)
  72. fcst = m.predict(future)
  73. self.assertEqual(fcst['yhat'].values[-1], 20)
  74. train['y'] = 0
  75. future = pd.DataFrame({'ds': DATA['ds'].tail(N // 2)})
  76. m = Prophet()
  77. m.fit(train)
  78. fcst = m.predict(future)
  79. self.assertEqual(fcst['yhat'].values[-1], 0)
  80. def test_setup_dataframe(self):
  81. m = Prophet()
  82. N = DATA.shape[0]
  83. history = DATA.head(N // 2).copy()
  84. history = m.setup_dataframe(history, initialize_scales=True)
  85. self.assertTrue('t' in history)
  86. self.assertEqual(history['t'].min(), 0.0)
  87. self.assertEqual(history['t'].max(), 1.0)
  88. self.assertTrue('y_scaled' in history)
  89. self.assertEqual(history['y_scaled'].max(), 1.0)
  90. def test_logistic_floor(self):
  91. m = Prophet(growth='logistic')
  92. N = DATA.shape[0]
  93. history = DATA.head(N // 2).copy()
  94. history['floor'] = 10.
  95. history['cap'] = 80.
  96. future = DATA.tail(N // 2).copy()
  97. future['cap'] = 80.
  98. future['floor'] = 10.
  99. m.fit(history, algorithm='Newton')
  100. self.assertTrue(m.logistic_floor)
  101. self.assertTrue('floor' in m.history)
  102. self.assertAlmostEqual(m.history['y_scaled'][0], 1.)
  103. fcst1 = m.predict(future)
  104. m2 = Prophet(growth='logistic')
  105. history2 = history.copy()
  106. history2['y'] += 10.
  107. history2['floor'] += 10.
  108. history2['cap'] += 10.
  109. future['cap'] += 10.
  110. future['floor'] += 10.
  111. m2.fit(history2, algorithm='Newton')
  112. self.assertAlmostEqual(m2.history['y_scaled'][0], 1.)
  113. fcst2 = m2.predict(future)
  114. fcst2['yhat'] -= 10.
  115. # Check for approximate shift invariance
  116. self.assertTrue((np.abs(fcst1['yhat'] - fcst2['yhat']) < 1).all())
  117. def test_get_changepoints(self):
  118. m = Prophet()
  119. N = DATA.shape[0]
  120. history = DATA.head(N // 2).copy()
  121. history = m.setup_dataframe(history, initialize_scales=True)
  122. m.history = history
  123. m.set_changepoints()
  124. cp = m.changepoints_t
  125. self.assertEqual(cp.shape[0], m.n_changepoints)
  126. self.assertEqual(len(cp.shape), 1)
  127. self.assertTrue(cp.min() > 0)
  128. cp_indx = int(np.ceil(0.8 * history.shape[0]))
  129. self.assertTrue(cp.max() <= history['t'].values[cp_indx])
  130. def test_set_changepoint_range(self):
  131. m = Prophet(changepoint_range=0.4)
  132. N = DATA.shape[0]
  133. history = DATA.head(N // 2).copy()
  134. history = m.setup_dataframe(history, initialize_scales=True)
  135. m.history = history
  136. m.set_changepoints()
  137. cp = m.changepoints_t
  138. self.assertEqual(cp.shape[0], m.n_changepoints)
  139. self.assertEqual(len(cp.shape), 1)
  140. self.assertTrue(cp.min() > 0)
  141. cp_indx = int(np.ceil(0.4 * history.shape[0]))
  142. self.assertTrue(cp.max() <= history['t'].values[cp_indx])
  143. def test_get_zero_changepoints(self):
  144. m = Prophet(n_changepoints=0)
  145. N = DATA.shape[0]
  146. history = DATA.head(N // 2).copy()
  147. history = m.setup_dataframe(history, initialize_scales=True)
  148. m.history = history
  149. m.set_changepoints()
  150. cp = m.changepoints_t
  151. self.assertEqual(cp.shape[0], 1)
  152. self.assertEqual(cp[0], 0)
  153. def test_override_n_changepoints(self):
  154. m = Prophet()
  155. history = DATA.head(20).copy()
  156. history = m.setup_dataframe(history, initialize_scales=True)
  157. m.history = history
  158. m.set_changepoints()
  159. self.assertEqual(m.n_changepoints, 15)
  160. cp = m.changepoints_t
  161. self.assertEqual(cp.shape[0], 15)
  162. def test_fourier_series_weekly(self):
  163. mat = Prophet.fourier_series(DATA['ds'], 7, 3)
  164. # These are from the R forecast package directly.
  165. true_values = np.array([
  166. 0.7818315, 0.6234898, 0.9749279, -0.2225209, 0.4338837, -0.9009689,
  167. ])
  168. self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0)
  169. def test_fourier_series_yearly(self):
  170. mat = Prophet.fourier_series(DATA['ds'], 365.25, 3)
  171. # These are from the R forecast package directly.
  172. true_values = np.array([
  173. 0.7006152, -0.7135393, -0.9998330, 0.01827656, 0.7262249, 0.6874572,
  174. ])
  175. self.assertAlmostEqual(np.sum((mat[0] - true_values)**2), 0.0)
  176. def test_growth_init(self):
  177. model = Prophet(growth='logistic')
  178. history = DATA.iloc[:468].copy()
  179. history['cap'] = history['y'].max()
  180. history = model.setup_dataframe(history, initialize_scales=True)
  181. k, m = model.linear_growth_init(history)
  182. self.assertAlmostEqual(k, 0.3055671)
  183. self.assertAlmostEqual(m, 0.5307511)
  184. k, m = model.logistic_growth_init(history)
  185. self.assertAlmostEqual(k, 1.507925, places=4)
  186. self.assertAlmostEqual(m, -0.08167497, places=4)
  187. def test_piecewise_linear(self):
  188. model = Prophet()
  189. t = np.arange(11.)
  190. m = 0
  191. k = 1.0
  192. deltas = np.array([0.5])
  193. changepoint_ts = np.array([5])
  194. y = model.piecewise_linear(t, deltas, k, m, changepoint_ts)
  195. y_true = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0,
  196. 6.5, 8.0, 9.5, 11.0, 12.5])
  197. self.assertEqual((y - y_true).sum(), 0.0)
  198. t = t[8:]
  199. y_true = y_true[8:]
  200. y = model.piecewise_linear(t, deltas, k, m, changepoint_ts)
  201. self.assertEqual((y - y_true).sum(), 0.0)
  202. def test_piecewise_logistic(self):
  203. model = Prophet()
  204. t = np.arange(11.)
  205. cap = np.ones(11) * 10
  206. m = 0
  207. k = 1.0
  208. deltas = np.array([0.5])
  209. changepoint_ts = np.array([5])
  210. y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
  211. y_true = np.array([5.000000, 7.310586, 8.807971, 9.525741, 9.820138,
  212. 9.933071, 9.984988, 9.996646, 9.999252, 9.999833,
  213. 9.999963])
  214. self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5)
  215. t = t[8:]
  216. y_true = y_true[8:]
  217. cap = cap[8:]
  218. y = model.piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
  219. self.assertAlmostEqual((y - y_true).sum(), 0.0, places=5)
  220. def test_holidays(self):
  221. holidays = pd.DataFrame({
  222. 'ds': pd.to_datetime(['2016-12-25']),
  223. 'holiday': ['xmas'],
  224. 'lower_window': [-1],
  225. 'upper_window': [0],
  226. })
  227. model = Prophet(holidays=holidays)
  228. df = pd.DataFrame({
  229. 'ds': pd.date_range('2016-12-20', '2016-12-31')
  230. })
  231. feats, priors, names = model.make_holiday_features(df['ds'])
  232. # 11 columns generated even though only 8 overlap
  233. self.assertEqual(feats.shape, (df.shape[0], 2))
  234. self.assertEqual((feats.sum(0) - np.array([1.0, 1.0])).sum(), 0)
  235. self.assertEqual(priors, [10., 10.]) # Default prior
  236. self.assertEqual(names, ['xmas'])
  237. holidays = pd.DataFrame({
  238. 'ds': pd.to_datetime(['2016-12-25']),
  239. 'holiday': ['xmas'],
  240. 'lower_window': [-1],
  241. 'upper_window': [10],
  242. })
  243. m = Prophet(holidays=holidays)
  244. feats, priors, names = m.make_holiday_features(df['ds'])
  245. # 12 columns generated even though only 8 overlap
  246. self.assertEqual(feats.shape, (df.shape[0], 12))
  247. self.assertEqual(priors, list(10. * np.ones(12)))
  248. self.assertEqual(names, ['xmas'])
  249. # Check prior specifications
  250. holidays = pd.DataFrame({
  251. 'ds': pd.to_datetime(['2016-12-25', '2017-12-25']),
  252. 'holiday': ['xmas', 'xmas'],
  253. 'lower_window': [-1, -1],
  254. 'upper_window': [0, 0],
  255. 'prior_scale': [5., 5.],
  256. })
  257. m = Prophet(holidays=holidays)
  258. feats, priors, names = m.make_holiday_features(df['ds'])
  259. self.assertEqual(priors, [5., 5.])
  260. self.assertEqual(names, ['xmas'])
  261. # 2 different priors
  262. holidays2 = pd.DataFrame({
  263. 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
  264. 'holiday': ['seans-bday'] * 2,
  265. 'lower_window': [0] * 2,
  266. 'upper_window': [1] * 2,
  267. 'prior_scale': [8] * 2,
  268. })
  269. holidays2 = pd.concat((holidays, holidays2))
  270. m = Prophet(holidays=holidays2)
  271. feats, priors, names = m.make_holiday_features(df['ds'])
  272. self.assertEqual(priors, [8., 8., 5., 5.])
  273. self.assertEqual(set(names), {'xmas', 'seans-bday'})
  274. holidays2 = pd.DataFrame({
  275. 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
  276. 'holiday': ['seans-bday'] * 2,
  277. 'lower_window': [0] * 2,
  278. 'upper_window': [1] * 2,
  279. })
  280. holidays2 = pd.concat((holidays, holidays2))
  281. feats, priors, names = Prophet(
  282. holidays=holidays2, holidays_prior_scale=4
  283. ).make_holiday_features(df['ds'])
  284. self.assertEqual(priors, [4., 4., 5., 5.])
  285. # Check incompatible priors
  286. holidays = pd.DataFrame({
  287. 'ds': pd.to_datetime(['2016-12-25', '2016-12-27']),
  288. 'holiday': ['xmasish', 'xmasish'],
  289. 'lower_window': [-1, -1],
  290. 'upper_window': [0, 0],
  291. 'prior_scale': [5., 6.],
  292. })
  293. with self.assertRaises(ValueError):
  294. Prophet(holidays=holidays).make_holiday_features(df['ds'])
  295. def test_fit_with_holidays(self):
  296. holidays = pd.DataFrame({
  297. 'ds': pd.to_datetime(['2012-06-06', '2013-06-06']),
  298. 'holiday': ['seans-bday'] * 2,
  299. 'lower_window': [0] * 2,
  300. 'upper_window': [1] * 2,
  301. })
  302. model = Prophet(holidays=holidays, uncertainty_samples=0)
  303. model.fit(DATA).predict()
  304. def test_make_future_dataframe(self):
  305. N = 468
  306. train = DATA.head(N // 2)
  307. forecaster = Prophet()
  308. forecaster.fit(train)
  309. future = forecaster.make_future_dataframe(periods=3, freq='D',
  310. include_history=False)
  311. correct = pd.DatetimeIndex(['2013-04-26', '2013-04-27', '2013-04-28'])
  312. self.assertEqual(len(future), 3)
  313. for i in range(3):
  314. self.assertEqual(future.iloc[i]['ds'], correct[i])
  315. future = forecaster.make_future_dataframe(periods=3, freq='M',
  316. include_history=False)
  317. correct = pd.DatetimeIndex(['2013-04-30', '2013-05-31', '2013-06-30'])
  318. self.assertEqual(len(future), 3)
  319. for i in range(3):
  320. self.assertEqual(future.iloc[i]['ds'], correct[i])
  321. def test_auto_weekly_seasonality(self):
  322. # Should be enabled
  323. N = 15
  324. train = DATA.head(N)
  325. m = Prophet()
  326. self.assertEqual(m.weekly_seasonality, 'auto')
  327. m.fit(train)
  328. self.assertIn('weekly', m.seasonalities)
  329. self.assertEqual(
  330. m.seasonalities['weekly'],
  331. {
  332. 'period': 7,
  333. 'fourier_order': 3,
  334. 'prior_scale': 10.,
  335. 'mode': 'additive',
  336. },
  337. )
  338. # Should be disabled due to too short history
  339. N = 9
  340. train = DATA.head(N)
  341. m = Prophet()
  342. m.fit(train)
  343. self.assertNotIn('weekly', m.seasonalities)
  344. m = Prophet(weekly_seasonality=True)
  345. m.fit(train)
  346. self.assertIn('weekly', m.seasonalities)
  347. # Should be False due to weekly spacing
  348. train = DATA.iloc[::7, :]
  349. m = Prophet()
  350. m.fit(train)
  351. self.assertNotIn('weekly', m.seasonalities)
  352. m = Prophet(weekly_seasonality=2, seasonality_prior_scale=3.)
  353. m.fit(DATA)
  354. self.assertEqual(
  355. m.seasonalities['weekly'],
  356. {
  357. 'period': 7,
  358. 'fourier_order': 2,
  359. 'prior_scale': 3.,
  360. 'mode': 'additive',
  361. },
  362. )
  363. def test_auto_yearly_seasonality(self):
  364. # Should be enabled
  365. m = Prophet()
  366. self.assertEqual(m.yearly_seasonality, 'auto')
  367. m.fit(DATA)
  368. self.assertIn('yearly', m.seasonalities)
  369. self.assertEqual(
  370. m.seasonalities['yearly'],
  371. {
  372. 'period': 365.25,
  373. 'fourier_order': 10,
  374. 'prior_scale': 10.,
  375. 'mode': 'additive',
  376. },
  377. )
  378. # Should be disabled due to too short history
  379. N = 240
  380. train = DATA.head(N)
  381. m = Prophet()
  382. m.fit(train)
  383. self.assertNotIn('yearly', m.seasonalities)
  384. m = Prophet(yearly_seasonality=True)
  385. m.fit(train)
  386. self.assertIn('yearly', m.seasonalities)
  387. m = Prophet(yearly_seasonality=7, seasonality_prior_scale=3.)
  388. m.fit(DATA)
  389. self.assertEqual(
  390. m.seasonalities['yearly'],
  391. {
  392. 'period': 365.25,
  393. 'fourier_order': 7,
  394. 'prior_scale': 3.,
  395. 'mode': 'additive',
  396. },
  397. )
  398. def test_auto_daily_seasonality(self):
  399. # Should be enabled
  400. m = Prophet()
  401. self.assertEqual(m.daily_seasonality, 'auto')
  402. m.fit(DATA2)
  403. self.assertIn('daily', m.seasonalities)
  404. self.assertEqual(
  405. m.seasonalities['daily'],
  406. {
  407. 'period': 1,
  408. 'fourier_order': 4,
  409. 'prior_scale': 10.,
  410. 'mode': 'additive',
  411. },
  412. )
  413. # Should be disabled due to too short history
  414. N = 430
  415. train = DATA2.head(N)
  416. m = Prophet()
  417. m.fit(train)
  418. self.assertNotIn('daily', m.seasonalities)
  419. m = Prophet(daily_seasonality=True)
  420. m.fit(train)
  421. self.assertIn('daily', m.seasonalities)
  422. m = Prophet(daily_seasonality=7, seasonality_prior_scale=3.)
  423. m.fit(DATA2)
  424. self.assertEqual(
  425. m.seasonalities['daily'],
  426. {
  427. 'period': 1,
  428. 'fourier_order': 7,
  429. 'prior_scale': 3.,
  430. 'mode': 'additive',
  431. },
  432. )
  433. m = Prophet()
  434. m.fit(DATA)
  435. self.assertNotIn('daily', m.seasonalities)
  436. def test_subdaily_holidays(self):
  437. holidays = pd.DataFrame({
  438. 'ds': pd.to_datetime(['2017-01-02']),
  439. 'holiday': ['special_day'],
  440. })
  441. m = Prophet(holidays=holidays)
  442. m.fit(DATA2)
  443. fcst = m.predict()
  444. self.assertEqual(sum(fcst['special_day'] == 0), 575)
  445. def test_custom_seasonality(self):
  446. holidays = pd.DataFrame({
  447. 'ds': pd.to_datetime(['2017-01-02']),
  448. 'holiday': ['special_day'],
  449. 'prior_scale': [4.],
  450. })
  451. m = Prophet(holidays=holidays)
  452. m.add_seasonality(name='monthly', period=30, fourier_order=5,
  453. prior_scale=2.)
  454. self.assertEqual(
  455. m.seasonalities['monthly'],
  456. {
  457. 'period': 30,
  458. 'fourier_order': 5,
  459. 'prior_scale': 2.,
  460. 'mode': 'additive',
  461. },
  462. )
  463. with self.assertRaises(ValueError):
  464. m.add_seasonality(name='special_day', period=30, fourier_order=5)
  465. with self.assertRaises(ValueError):
  466. m.add_seasonality(name='trend', period=30, fourier_order=5)
  467. m.add_seasonality(name='weekly', period=30, fourier_order=5)
  468. # Test priors
  469. m = Prophet(
  470. holidays=holidays, yearly_seasonality=False,
  471. seasonality_mode='multiplicative',
  472. )
  473. m.add_seasonality(name='monthly', period=30, fourier_order=5,
  474. prior_scale=2., mode='additive')
  475. m.fit(DATA.copy())
  476. self.assertEqual(m.seasonalities['monthly']['mode'], 'additive')
  477. self.assertEqual(m.seasonalities['weekly']['mode'], 'multiplicative')
  478. seasonal_features, prior_scales, component_cols, modes = (
  479. m.make_all_seasonality_features(m.history)
  480. )
  481. self.assertEqual(sum(component_cols['monthly']), 10)
  482. self.assertEqual(sum(component_cols['special_day']), 1)
  483. self.assertEqual(sum(component_cols['weekly']), 6)
  484. self.assertEqual(sum(component_cols['additive_terms']), 10)
  485. self.assertEqual(sum(component_cols['multiplicative_terms']), 7)
  486. if seasonal_features.columns[0] == 'monthly_delim_1':
  487. true = [2.] * 10 + [10.] * 6 + [4.]
  488. self.assertEqual(sum(component_cols['monthly'][:10]), 10)
  489. self.assertEqual(sum(component_cols['weekly'][10:16]), 6)
  490. else:
  491. true = [10.] * 6 + [2.] * 10 + [4.]
  492. self.assertEqual(sum(component_cols['weekly'][:6]), 6)
  493. self.assertEqual(sum(component_cols['monthly'][6:16]), 10)
  494. self.assertEqual(prior_scales, true)
  495. def test_added_regressors(self):
  496. m = Prophet()
  497. m.add_regressor('binary_feature', prior_scale=0.2)
  498. m.add_regressor('numeric_feature', prior_scale=0.5)
  499. m.add_regressor(
  500. 'numeric_feature2', prior_scale=0.5, mode='multiplicative'
  501. )
  502. m.add_regressor('binary_feature2', standardize=True)
  503. df = DATA.copy()
  504. df['binary_feature'] = [0] * 255 + [1] * 255
  505. df['numeric_feature'] = range(510)
  506. df['numeric_feature2'] = range(510)
  507. with self.assertRaises(ValueError):
  508. # Require all regressors in df
  509. m.fit(df)
  510. df['binary_feature2'] = [1] * 100 + [0] * 410
  511. m.fit(df)
  512. # Check that standardizations are correctly set
  513. self.assertEqual(
  514. m.extra_regressors['binary_feature'],
  515. {
  516. 'prior_scale': 0.2,
  517. 'mu': 0,
  518. 'std': 1,
  519. 'standardize': 'auto',
  520. 'mode': 'additive',
  521. },
  522. )
  523. self.assertEqual(
  524. m.extra_regressors['numeric_feature']['prior_scale'], 0.5)
  525. self.assertEqual(
  526. m.extra_regressors['numeric_feature']['mu'], 254.5)
  527. self.assertAlmostEqual(
  528. m.extra_regressors['numeric_feature']['std'], 147.368585, places=5)
  529. self.assertEqual(
  530. m.extra_regressors['numeric_feature2']['mode'], 'multiplicative')
  531. self.assertEqual(
  532. m.extra_regressors['binary_feature2']['prior_scale'], 10.)
  533. self.assertAlmostEqual(
  534. m.extra_regressors['binary_feature2']['mu'], 0.1960784, places=5)
  535. self.assertAlmostEqual(
  536. m.extra_regressors['binary_feature2']['std'], 0.3974183, places=5)
  537. # Check that standardization is done correctly
  538. df2 = m.setup_dataframe(df.copy())
  539. self.assertEqual(df2['binary_feature'][0], 0)
  540. self.assertAlmostEqual(df2['numeric_feature'][0], -1.726962, places=4)
  541. self.assertAlmostEqual(df2['binary_feature2'][0], 2.022859, places=4)
  542. # Check that feature matrix and prior scales are correctly constructed
  543. seasonal_features, prior_scales, component_cols, modes = (
  544. m.make_all_seasonality_features(df2)
  545. )
  546. self.assertEqual(seasonal_features.shape[1], 30)
  547. names = ['binary_feature', 'numeric_feature', 'binary_feature2']
  548. true_priors = [0.2, 0.5, 10.]
  549. for i, name in enumerate(names):
  550. self.assertIn(name, seasonal_features)
  551. self.assertEqual(sum(component_cols[name]), 1)
  552. self.assertEqual(
  553. sum(np.array(prior_scales) * component_cols[name]),
  554. true_priors[i],
  555. )
  556. # Check that forecast components are reasonable
  557. future = pd.DataFrame({
  558. 'ds': ['2014-06-01'],
  559. 'binary_feature': [0],
  560. 'numeric_feature': [10],
  561. 'numeric_feature2': [10],
  562. })
  563. with self.assertRaises(ValueError):
  564. m.predict(future)
  565. future['binary_feature2'] = 0
  566. fcst = m.predict(future)
  567. self.assertEqual(fcst.shape[1], 37)
  568. self.assertEqual(fcst['binary_feature'][0], 0)
  569. self.assertAlmostEqual(
  570. fcst['extra_regressors_additive'][0],
  571. fcst['numeric_feature'][0] + fcst['binary_feature2'][0],
  572. )
  573. self.assertAlmostEqual(
  574. fcst['extra_regressors_multiplicative'][0],
  575. fcst['numeric_feature2'][0],
  576. )
  577. self.assertAlmostEqual(
  578. fcst['additive_terms'][0],
  579. fcst['yearly'][0] + fcst['weekly'][0]
  580. + fcst['extra_regressors_additive'][0],
  581. )
  582. self.assertAlmostEqual(
  583. fcst['multiplicative_terms'][0],
  584. fcst['extra_regressors_multiplicative'][0],
  585. )
  586. self.assertAlmostEqual(
  587. fcst['yhat'][0],
  588. fcst['trend'][0] * (1 + fcst['multiplicative_terms'][0])
  589. + fcst['additive_terms'][0],
  590. )
  591. # Check fails if constant extra regressor
  592. df['constant_feature'] = 5
  593. m = Prophet()
  594. m.add_regressor('constant_feature')
  595. with self.assertRaises(ValueError):
  596. m.fit(df.copy())
  597. def test_set_seasonality_mode(self):
  598. # Setting attribute
  599. m = Prophet()
  600. self.assertEqual(m.seasonality_mode, 'additive')
  601. m = Prophet(seasonality_mode='multiplicative')
  602. self.assertEqual(m.seasonality_mode, 'multiplicative')
  603. with self.assertRaises(ValueError):
  604. Prophet(seasonality_mode='batman')
  605. def test_seasonality_modes(self):
  606. # Model with holidays, seasonalities, and extra regressors
  607. holidays = pd.DataFrame({
  608. 'ds': pd.to_datetime(['2016-12-25']),
  609. 'holiday': ['xmas'],
  610. 'lower_window': [-1],
  611. 'upper_window': [0],
  612. })
  613. m = Prophet(seasonality_mode='multiplicative', holidays=holidays)
  614. m.add_seasonality('monthly', period=30, mode='additive', fourier_order=3)
  615. m.add_regressor('binary_feature', mode='additive')
  616. m.add_regressor('numeric_feature')
  617. # Construct seasonal features
  618. df = DATA.copy()
  619. df['binary_feature'] = [0] * 255 + [1] * 255
  620. df['numeric_feature'] = range(510)
  621. df = m.setup_dataframe(df, initialize_scales=True)
  622. m.history = df.copy()
  623. m.set_auto_seasonalities()
  624. seasonal_features, prior_scales, component_cols, modes = (
  625. m.make_all_seasonality_features(df))
  626. self.assertEqual(sum(component_cols['additive_terms']), 7)
  627. self.assertEqual(sum(component_cols['multiplicative_terms']), 29)
  628. self.assertEqual(
  629. set(modes['additive']),
  630. {'monthly', 'binary_feature', 'additive_terms',
  631. 'extra_regressors_additive'},
  632. )
  633. self.assertEqual(
  634. set(modes['multiplicative']),
  635. {'weekly', 'yearly', 'xmas', 'numeric_feature',
  636. 'multiplicative_terms', 'extra_regressors_multiplicative',
  637. 'holidays',
  638. },
  639. )