|
@@ -14,7 +14,7 @@ class VLLMInferenceRequest(TypedDict):
|
|
|
"""Type definition for VLLM inference request format."""
|
|
|
|
|
|
messages: List[List[Dict[str, Any]]]
|
|
|
- sampling_params: Union[SamplingParams, List[SamplingParams]]
|
|
|
+ sampling_params: Union[SamplingParams, List[SamplingParams]]
|
|
|
|
|
|
|
|
|
class VLLMClient:
|
|
@@ -68,4 +68,51 @@ class VLLMClient:
|
|
|
return response.json()
|
|
|
except requests.exceptions.RequestException as e:
|
|
|
self.logger.error(f"Error sending request to vLLM server: {e}")
|
|
|
- raise
|
|
|
+ raise
|
|
|
+
|
|
|
+def run_inference_on_eval_data(
|
|
|
+ eval_data_path: str,
|
|
|
+ server_url: str = "http://localhost:8000/v1",
|
|
|
+ is_local: bool = False,
|
|
|
+ temperature: float = 0.0,
|
|
|
+ top_p: float = 1.0,
|
|
|
+ max_tokens: int = 100,
|
|
|
+ seed: Optional[int] = None,
|
|
|
+ dataset_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
+ column_mapping: Optional[Dict[str, str]] = None,
|
|
|
+) -> List[Dict[str, Any]]:
|
|
|
+ """
|
|
|
+ Run inference on evaluation data using a vLLM server.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ eval_data_path: Path to the evaluation data
|
|
|
+ server_url: URL of the vLLM server
|
|
|
+ is_local: Whether the data is stored locally
|
|
|
+ temperature: Temperature for sampling
|
|
|
+ top_p: Top-p for sampling
|
|
|
+ max_tokens: Maximum number of tokens to generate
|
|
|
+ seed: Random seed for reproducibility
|
|
|
+ dataset_kwargs: Additional arguments to pass to the load_dataset function
|
|
|
+ column_mapping: Mapping of column names
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ List of responses from the vLLM server
|
|
|
+ """
|
|
|
+ # Initialize the vLLM client
|
|
|
+ client = VLLMClient(server_url)
|
|
|
+
|
|
|
+ # Load the evaluation data
|
|
|
+ if dataset_kwargs is None:
|
|
|
+ dataset_kwargs = {}
|
|
|
+
|
|
|
+ eval_data = load_data(eval_data_path, is_local, **dataset_kwargs)
|
|
|
+
|
|
|
+ # Convert the data to conversations
|
|
|
+ conversations = convert_to_conversations(eval_data, column_mapping)
|
|
|
+
|
|
|
+ # Convert the conversations to vLLM format
|
|
|
+ vllm_formatter = get_formatter("vllm")
|
|
|
+ formatted_data = vllm_formatter.format_data(conversations)
|
|
|
+
|
|
|
+ # Run inference on the formatted data
|
|
|
+ #pass
|