# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. from dataclasses import dataclass from functools import partial from unittest.mock import patch import pytest from datasets import load_dataset @dataclass class Config: model_type: str = "llama" try: load_dataset("knkarthick/samsum") SAMSUM_UNAVAILABLE = False except ValueError: SAMSUM_UNAVAILABLE = True @pytest.mark.skipif(SAMSUM_UNAVAILABLE, reason="Samsum dataset is unavailable") @pytest.mark.skip_missing_tokenizer @patch("llama_cookbook.finetuning.train") @patch("llama_cookbook.finetuning.AutoTokenizer") @patch("llama_cookbook.finetuning.AutoConfig.from_pretrained") @patch("llama_cookbook.finetuning.AutoProcessor") @patch("llama_cookbook.finetuning.MllamaForConditionalGeneration.from_pretrained") @patch("llama_cookbook.finetuning.LlamaForCausalLM.from_pretrained") @patch("llama_cookbook.finetuning.optim.AdamW") @patch("llama_cookbook.finetuning.StepLR") def test_samsum_dataset( step_lr, optimizer, get_model, get_mmodel, processor, get_config, tokenizer, train, mocker, setup_tokenizer, llama_version, ): from llama_cookbook.finetuning import main setup_tokenizer(tokenizer) get_model.return_value.get_input_embeddings.return_value.weight.shape = [ 32000 if "Llama-2" in llama_version else 128256 ] get_mmodel.return_value.get_input_embeddings.return_value.weight.shape = [0] get_config.return_value = Config() BATCH_SIZE = 8 kwargs = { "model_name": llama_version, "batch_size_training": BATCH_SIZE, "val_batch_size": 1, "use_peft": False, "dataset": "samsum_dataset", "batching_strategy": "padding", } main(**kwargs) assert train.call_count == 1 args, kwargs = train.call_args train_dataloader = args[1] eval_dataloader = args[2] token = args[3] VAL_SAMPLES = 818 TRAIN_SAMPLES = 14732 assert len(train_dataloader) == TRAIN_SAMPLES // BATCH_SIZE assert len(eval_dataloader) == VAL_SAMPLES batch = next(iter(train_dataloader)) assert "labels" in batch.keys() assert "input_ids" in batch.keys() assert "attention_mask" in batch.keys() assert batch["input_ids"][0][0] == token.bos_token_id assert batch["labels"][0][-1] == token.eos_token_id assert batch["input_ids"][0][-1] == token.eos_token_id