test_samsum_datasets.py 1.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. import pytest
  4. from functools import partial
  5. from unittest.mock import patch
  6. @pytest.mark.skip_missing_tokenizer
  7. @patch('llama_recipes.finetuning.train')
  8. @patch('llama_recipes.finetuning.AutoTokenizer')
  9. @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
  10. @patch('llama_recipes.finetuning.optim.AdamW')
  11. @patch('llama_recipes.finetuning.StepLR')
  12. def test_samsum_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker, setup_tokenizer, llama_version):
  13. from llama_recipes.finetuning import main
  14. setup_tokenizer(tokenizer)
  15. get_model.return_value.get_input_embeddings.return_value.weight.shape = [32000 if "Llama-2" in llama_version else 128256]
  16. BATCH_SIZE = 8
  17. kwargs = {
  18. "model_name": llama_version,
  19. "batch_size_training": BATCH_SIZE,
  20. "val_batch_size": 1,
  21. "use_peft": False,
  22. "dataset": "samsum_dataset",
  23. "batching_strategy": "padding",
  24. }
  25. main(**kwargs)
  26. assert train.call_count == 1
  27. args, kwargs = train.call_args
  28. train_dataloader = args[1]
  29. eval_dataloader = args[2]
  30. token = args[3]
  31. VAL_SAMPLES = 818
  32. TRAIN_SAMPLES = 14732
  33. assert len(train_dataloader) == TRAIN_SAMPLES // BATCH_SIZE
  34. assert len(eval_dataloader) == VAL_SAMPLES
  35. batch = next(iter(train_dataloader))
  36. assert "labels" in batch.keys()
  37. assert "input_ids" in batch.keys()
  38. assert "attention_mask" in batch.keys()
  39. assert batch["input_ids"][0][0] == token.bos_token_id
  40. assert batch["labels"][0][-1] == token.eos_token_id
  41. assert batch["input_ids"][0][-1] == token.eos_token_id