chat_completion.py 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. # from accelerate import init_empty_weights, load_checkpoint_and_dispatch
  4. import fire
  5. import json
  6. import os
  7. import sys
  8. import torch
  9. from transformers import AutoTokenizer
  10. from llama_recipes.inference.chat_utils import read_dialogs_from_file
  11. from llama_recipes.inference.model_utils import load_model, load_peft_model
  12. from llama_recipes.inference.safety_utils import get_safety_checker
  13. from accelerate.utils import is_xpu_available
  14. def main(
  15. model_name,
  16. peft_model: str=None,
  17. quantization: str = None, # Options: 4bit, 8bit
  18. max_new_tokens =256, #The maximum numbers of tokens to generate
  19. min_new_tokens:int=0, #The minimum numbers of tokens to generate
  20. prompt_file: str=None,
  21. seed: int=42, #seed value for reproducibility
  22. safety_score_threshold: float=0.5,
  23. do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.
  24. use_cache: bool=True, #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
  25. top_p: float=1.0, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
  26. temperature: float=1.0, # [optional] The value used to modulate the next token probabilities.
  27. top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
  28. repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.
  29. length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.
  30. enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
  31. enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
  32. enable_saleforce_content_safety: bool=True, # Enable safety check woth Saleforce safety flan t5
  33. use_fast_kernels: bool = False, # Enable using SDPA from PyTorch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
  34. enable_llamaguard_content_safety: bool = False,
  35. enable_promptguard_safety: bool = False,
  36. **kwargs
  37. ):
  38. if prompt_file is not None:
  39. assert os.path.exists(
  40. prompt_file
  41. ), f"Provided Prompt file does not exist {prompt_file}"
  42. dialogs= read_dialogs_from_file(prompt_file)
  43. elif not sys.stdin.isatty():
  44. dialogs = "\n".join(sys.stdin.readlines())
  45. try:
  46. dialogs = json.loads(dialogs)
  47. except:
  48. print("Could not parse json from stdin. Please provide a json file with the user prompts. Exiting.")
  49. sys.exit(1)
  50. else:
  51. print("No user prompt provided. Exiting.")
  52. sys.exit(1)
  53. print(f"User dialogs:\n{dialogs}")
  54. print("\n==================================\n")
  55. # Set the seeds for reproducibility
  56. if is_xpu_available():
  57. torch.xpu.manual_seed(seed)
  58. else:
  59. torch.cuda.manual_seed(seed)
  60. torch.manual_seed(seed)
  61. model = load_model(model_name, quantization, use_fast_kernels, **kwargs)
  62. if peft_model:
  63. model = load_peft_model(model, peft_model)
  64. tokenizer = AutoTokenizer.from_pretrained(model_name)
  65. chats = [tokenizer.apply_chat_template(dialog) for dialog in dialogs]
  66. with torch.no_grad():
  67. for idx, chat in enumerate(chats):
  68. safety_checker = get_safety_checker(enable_azure_content_safety,
  69. enable_sensitive_topics,
  70. enable_saleforce_content_safety,
  71. enable_llamaguard_content_safety,
  72. enable_promptguard_safety
  73. )
  74. # Safety check of the user prompt
  75. safety_results = [check(dialogs[idx][0]["content"]) for check in safety_checker]
  76. are_safe = all([r[1] for r in safety_results])
  77. if are_safe:
  78. print(f"User prompt deemed safe.")
  79. print("User prompt:\n", dialogs[idx][0]["content"])
  80. print("\n==================================\n")
  81. else:
  82. print("User prompt deemed unsafe.")
  83. for method, is_safe, report in safety_results:
  84. if not is_safe:
  85. print(method)
  86. print(report)
  87. print("Skipping the inferece as the prompt is not safe.")
  88. sys.exit(1) # Exit the program with an error status
  89. tokens= torch.tensor(chat).long()
  90. tokens= tokens.unsqueeze(0)
  91. attention_mask = torch.ones_like(tokens)
  92. if is_xpu_available():
  93. tokens= tokens.to("xpu:0")
  94. else:
  95. tokens= tokens.to("cuda:0")
  96. outputs = model.generate(
  97. input_ids=tokens,
  98. attention_mask=attention_mask,
  99. max_new_tokens=max_new_tokens,
  100. do_sample=do_sample,
  101. top_p=top_p,
  102. temperature=temperature,
  103. use_cache=use_cache,
  104. top_k=top_k,
  105. repetition_penalty=repetition_penalty,
  106. length_penalty=length_penalty,
  107. **kwargs
  108. )
  109. output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
  110. # Safety check of the model output
  111. safety_results = [check(output_text) for check in safety_checker]
  112. are_safe = all([r[1] for r in safety_results])
  113. if are_safe:
  114. print("User input and model output deemed safe.")
  115. print(f"Model output:\n{output_text}")
  116. print("\n==================================\n")
  117. else:
  118. print("Model output deemed unsafe.")
  119. for method, is_safe, report in safety_results:
  120. if not is_safe:
  121. print(method)
  122. print(report)
  123. if __name__ == "__main__":
  124. fire.Fire(main)