inference.py 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. import os
  4. import sys
  5. import time
  6. import fire
  7. import gradio as gr
  8. import torch
  9. from accelerate.utils import is_xpu_available
  10. from llama_recipes.inference.model_utils import load_model, load_peft_model
  11. from llama_recipes.inference.safety_utils import AgentType, get_safety_checker
  12. from transformers import AutoTokenizer
  13. def main(
  14. model_name,
  15. peft_model: str = None,
  16. quantization: str = None, # Options: 4bit, 8bit
  17. max_new_tokens=100, # The maximum numbers of tokens to generate
  18. prompt_file: str = None,
  19. seed: int = 42, # seed value for reproducibility
  20. do_sample: bool = True, # Whether or not to use sampling ; use greedy decoding otherwise.
  21. min_length: int = None, # The minimum length of the sequence to be generated, input prompt + min_new_tokens
  22. use_cache: bool = True, # [optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
  23. top_p: float = 1.0, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
  24. temperature: float = 1.0, # [optional] The value used to modulate the next token probabilities.
  25. top_k: int = 50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
  26. repetition_penalty: float = 1.0, # The parameter for repetition penalty. 1.0 means no penalty.
  27. length_penalty: int = 1, # [optional] Exponential penalty to the length that is used with beam-based generation.
  28. enable_azure_content_safety: bool = False, # Enable safety check with Azure content safety api
  29. enable_sensitive_topics: bool = False, # Enable check for sensitive topics using AuditNLG APIs
  30. enable_salesforce_content_safety: bool = True, # Enable safety check with Salesforce safety flan t5
  31. enable_llamaguard_content_safety: bool = False,
  32. enable_promptguard_safety: bool = False,
  33. max_padding_length: int = None, # the max padding length to be used with tokenizer padding the prompts.
  34. use_fast_kernels: bool = False, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
  35. share_gradio: bool = False, # Enable endpoint creation for gradio.live
  36. **kwargs,
  37. ):
  38. # Set the seeds for reproducibility
  39. if is_xpu_available():
  40. torch.xpu.manual_seed(seed)
  41. else:
  42. torch.cuda.manual_seed(seed)
  43. torch.manual_seed(seed)
  44. model = load_model(model_name, quantization, use_fast_kernels, **kwargs)
  45. if peft_model:
  46. model = load_peft_model(model, peft_model)
  47. model.eval()
  48. tokenizer = AutoTokenizer.from_pretrained(model_name)
  49. tokenizer.pad_token = tokenizer.eos_token
  50. def inference(
  51. user_prompt,
  52. temperature,
  53. top_p,
  54. top_k,
  55. max_new_tokens,
  56. **kwargs,
  57. ):
  58. safety_checker = get_safety_checker(
  59. enable_azure_content_safety,
  60. enable_sensitive_topics,
  61. enable_salesforce_content_safety,
  62. enable_llamaguard_content_safety,
  63. enable_promptguard_safety,
  64. )
  65. # Safety check of the user prompt
  66. safety_results = [check(user_prompt) for check in safety_checker]
  67. are_safe = all([r[1] for r in safety_results])
  68. if are_safe:
  69. print("User prompt deemed safe.")
  70. print(f"User prompt:\n{user_prompt}")
  71. else:
  72. print("User prompt deemed unsafe.")
  73. for method, is_safe, report in safety_results:
  74. if not is_safe:
  75. print(method)
  76. print(report)
  77. print("Skipping the inference as the prompt is not safe.")
  78. return # Exit the program with an error status
  79. batch = tokenizer(
  80. user_prompt,
  81. truncation=True,
  82. max_length=max_padding_length,
  83. return_tensors="pt",
  84. )
  85. if is_xpu_available():
  86. batch = {k: v.to("xpu") for k, v in batch.items()}
  87. else:
  88. batch = {k: v.to("cuda") for k, v in batch.items()}
  89. start = time.perf_counter()
  90. with torch.no_grad():
  91. outputs = model.generate(
  92. **batch,
  93. max_new_tokens=max_new_tokens,
  94. do_sample=do_sample,
  95. top_p=top_p,
  96. temperature=temperature,
  97. min_length=min_length,
  98. use_cache=use_cache,
  99. top_k=top_k,
  100. repetition_penalty=repetition_penalty,
  101. length_penalty=length_penalty,
  102. **kwargs,
  103. )
  104. e2e_inference_time = (time.perf_counter() - start) * 1000
  105. print(f"the inference time is {e2e_inference_time} ms")
  106. output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
  107. # Safety check of the model output
  108. safety_results = [
  109. check(output_text, agent_type=AgentType.AGENT, user_prompt=user_prompt) for check in safety_checker
  110. ]
  111. print(safety_results)
  112. are_safe = all([r[1] for r in safety_results])
  113. if are_safe:
  114. print("User input and model output deemed safe.")
  115. print(f"Model output:\n{output_text}")
  116. return output_text
  117. else:
  118. print("Model output deemed unsafe.")
  119. for method, is_safe, report in safety_results:
  120. if not is_safe:
  121. print(method)
  122. print(report)
  123. return None
  124. if prompt_file is not None:
  125. assert os.path.exists(
  126. prompt_file
  127. ), f"Provided Prompt file does not exist {prompt_file}"
  128. with open(prompt_file, "r") as f:
  129. user_prompt = "\n".join(f.readlines())
  130. inference(user_prompt, temperature, top_p, top_k, max_new_tokens)
  131. elif not sys.stdin.isatty():
  132. user_prompt = "\n".join(sys.stdin.readlines())
  133. inference(user_prompt, temperature, top_p, top_k, max_new_tokens)
  134. else:
  135. gr.Interface(
  136. fn=inference,
  137. inputs=[
  138. gr.components.Textbox(
  139. lines=9,
  140. label="User Prompt",
  141. placeholder="none",
  142. ),
  143. gr.components.Slider(
  144. minimum=0, maximum=1, value=1.0, label="Temperature"
  145. ),
  146. gr.components.Slider(minimum=0, maximum=1, value=1.0, label="Top p"),
  147. gr.components.Slider(
  148. minimum=0, maximum=100, step=1, value=50, label="Top k"
  149. ),
  150. gr.components.Slider(
  151. minimum=1, maximum=2000, step=1, value=200, label="Max tokens"
  152. ),
  153. ],
  154. outputs=[
  155. gr.components.Textbox(
  156. lines=5,
  157. label="Output",
  158. )
  159. ],
  160. title="Meta Llama3 Playground",
  161. description="https://github.com/meta-llama/llama-recipes",
  162. ).queue().launch(server_name="0.0.0.0", share=share_gradio)
  163. if __name__ == "__main__":
  164. fire.Fire(main)