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On-line Recognition of Handwritten Mathematical
Symbols

Martin Thoma

Abstract—Writing mathematical formulas with LATEX is easy as soon
as one is used to commands like \alpha and \propto. However, for
people who have never used LATEX or who don’t know the English
name of the command, it can be difficult to find the right command.
Hence the automatic recognition of handwritten mathematical symbols
is desirable. This paper presents a system which uses the pen trajectory
to classify handwritten symbols. Five preprocessing steps, one data
multiplication algorithm, five features and five variants for multilayer
Perceptron training were evaluated using 166 898 recordings which were
collected with two crowdsourcing projects. The evaluation results of these
21 experiments were used to create an optimized recognizer which has a
TOP-1 error of less than 17.5% and a TOP-3 error of 4.0%. This is a
relative improvement of 18.5% for the TOP-1 error and 29.7% for the
TOP-3 error compared to the baseline system.

I. INTRODUCTION

On-line recognition makes use of the pen trajectory. This means the
data is given as groups of sequences of tuples (x, y, t) ∈ R3, where
each group represents a stroke, (x, y) is the position of the pen on
a canvas and t is the time. One handwritten symbol in the described
format is called a recording. One approach to classify recordings into
symbol classes assigns a probability to each class given the data. The
classifier can be evaluated by using recordings which were classified
by humans and were not used to train the classifier. The set of those
recordings is called test set. The TOP-n error is defined as the fraction
of the symbols where the correct class was not within the top n
classes of the highest probability.

Various systems for mathematical symbol recognition with on-line
data have been described so far [KR98], [MVGZ+13], but most
of them have neither published their source code nor their data
which makes it impossible to re-run experiments to compare different
systems. This is unfortunate as the choice of symbols is crucial for the
TOP-n error and all systems used different symbol sets. For example,
the symbols o, O, ◦ and 0 are very similar and systems which know
all those classes will certainly have a higher TOP-n error than systems
which only accept one of them.

Daniel Kirsch describes in [Kir10] a system called Detexify which
uses time warping to classify on-line handwritten symbols and claims
to achieve a TOP-3 error of less than 10% for a set of 100 symbols.
He also published his data on https://github.com/kirel/detexify-data,
which was collected by a crowd-sourcing approach via http://detexify.
kirelabs.org. Those recordings as well as some recordings which were
collected by a similar approach via http://write-math.com were used
to train and evaluated different classifiers. A complete description of
all involved software, data and experiments is given in [Tho14].

II. STEPS IN HANDWRITING RECOGNITION

The following steps are used in all classifiers which are described in
the following:

1) Preprocessing: Recorded data is never perfect. Devices have
errors and people make mistakes while using devices. To tackle
these problems there are preprocessing algorithms to clean the
data. The preprocessing algorithms can also remove unneces-
sary variations of the data that do not help in the classification

process, but hide what is important. Having slightly different
sizes of the same symbol is an example of such a variation. Four
preprocessing algorithms that clean or normalize recordings are
explained in section III-A.

2) Data multiplication: Learning algorithms need lots of data to
learn internal parameters. If there is not enough data available,
domain knowledge can be considered to create new artificial
data from the original data. In the domain of on-line hand-
writing recognition, data can be multiplied by adding rotated
variants.

3) Segmentation: The task of formula recognition can eventually
be reduced to the task of symbol recognition combined with
symbol placement. Before symbol recognition can be done, the
formula has to be segmented. As this paper is only about single-
symbol recognition, this step will not be further discussed.

4) Feature computation: A feature is high-level information
derived from the raw data after preprocessing. Some systems
like Detexify simply take the result of the preprocessing step,
but many compute new features. This might have the advantage
that less training data is needed since the developer can use
knowledge about handwriting to compute highly discriminative
features. Various features are explained in section III-B.

5) Feature enhancement: Applying PCA, LDA, or feature stan-
dardization might change the features in ways that could
improve the performance of learning algorithms.

After these steps, we are faced with a classification learning task
which consists of two parts:

1) Learning parameters for a given classifier. This process is also
called training.

2) Classifying new recordings, sometimes called evaluation. This
should not be confused with the evaluation of the classification
performance which is done for multiple topologies, preprocess-
ing queues, and features in Section IV.

The classification learning task can be solved with multilayer percep-
trons (MLPs) if the number of input features is the same for every
recording. There are many ways how to adjust MLPs and how to
adjust their training. Some of them are described in section III-C.

III. ALGORITHMS

A. Preprocessing

Preprocessing in symbol recognition is done to improve the quality
and expressive power of the data. It should make follow-up tasks like
segmentation and feature extraction easier, more effective or faster.
It does so by resolving errors in the input data, reducing duplicate
information and removing irrelevant information.

Preprocessing algorithms fall in two groups: Normalization and noise
reduction algorithms.

A very important normalization algorithm in single-symbol recog-
nition is scale-and-shift [Tho14]. It scales the recording so that its
bounding box fits into a unit square. As the aspect ratio of a recording
is almost never 1:1, only one dimension will fit exactly in the unit
square. There are multiple ways how to shift the recording. For this
paper, it was chosen to shift the bigger dimension to fit into the
[0, 1]× [0, 1] unit square whereas the smaller dimension is centered
in the [−1, 1]× [−1, 1] square.

Another normalization preprocessing algorithm is resampling. As the
data points on the pen trajectory are generated asynchronously and
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with different time-resolutions depending on the used hardware and
software, it is desirable to resample the recordings to have points
spread equally in time for every recording. This was done with linear
interpolation of the (x, t) and (y, t) sequences and getting a fixed
number of equally spaced points per stroke.

Connect strokes is a noise reduction algorithm. It happens sometimes
that the hardware detects that the user lifted the pen where the
user certainly didn’t do so. This can be detected by measuring the
euclidean distance between the end of one stroke and the beginning
of the next stroke. If this distance is below a threshold, then the
strokes are connected.

Due to a limited resolution of the recording device and due to erratic
handwriting, the pen trajectory might not be smooth. One way to
smooth is calculating a weighted average and replacing points by the
weighted average of their coordinate and their neighbors coordinates.
Another way to do smoothing would be to reduce the number of
points with the Douglas-Peucker algorithm to the most relevant ones
and then interpolate the stroke between those points. The Douglas-
Peucker stroke simplification algorithm is usually used in cartography
to simplify the shape of roads. It works recursively to find a subset
of points of a stroke that is simpler and still similar to the original
shape. The algorithm adds the first and the last point p1 and pn of
a stroke to the simplified set of points S. Then it searches the point
pi in between that has maximum distance from the line p1pn. If this
distance is above a threshold ε, the point pi is added to S. Then the
algorithm gets applied to p1pi and pipn recursively. It is described
as “Algorithm 1” in [VW90].

B. Features

Features can be global, that means calculated for the complete
recording or complete strokes. Other features are calculated for single
points on the pen trajectory and are called local.

Global features are the number of strokes in a recording, the aspect
ratio of a recordings bounding box or the ink being used for a
recording. The ink feature gets calculated by measuring the length
of all strokes combined. The re-curvature, which was introduced
in [HK06], is defined as

re-curvature(stroke) :=
height(stroke)
length(stroke)

and a stroke-global feature.

The simplest local feature is the coordinate of the point itself. Speed,
curvature and a local small-resolution bitmap around the point, which
was introduced by Manke, Finke and Waibel in [MFW94], are other
local features.

C. Multilayer Perceptrons

MLPs are explained in detail in [Mit97]. They can have different
numbers of hidden layers, the number of neurons per layer and
the activation functions can be varied. The learning algorithm is
parameterized by the learning rate η ∈ (0,∞), the momentum
α ∈ [0,∞) and the number of epochs.

The topology of MLPs will be denoted in the following by sepa-
rating the number of neurons per layer with colons. For example,
the notation 160:500:500:500:369 means that the input layer gets
160 features, there are three hidden layers with 500 neurons per layer
and one output layer with 369 neurons.

MLPs training can be executed in various different ways, for example
with supervised layer-wise pretraining (SLP). In case of a MLP with
the topology 160:500:500:500:369, SLP works as follows: At first
a MLP with one hidden layer (160:500:369) is trained. Then the
output layer is discarded, a new hidden layer and a new output layer
is added and it is trained again, resulting in a 160:500:500:369 MLP.
The output layer is discarded again, a new hidden layer is added and
a new output layer is added and the training is executed again.

Denoising auto-encoders are another way of pretraining. An auto-
encoder is a neural network that is trained to restore its input. This
means the number of input neurons is equal to the number of output
neurons. The weights define an encoding of the input that allows
restoring the input. As the neural network finds the encoding by itself,
it is called auto-encoder. If the hidden layer is smaller than the input
layer, it can be used for dimensionality reduction [Hin89]. If only one
hidden layer with linear activation functions is used, then the hidden
layer contains the principal components after training [DHS01].

Denoising auto-encoders are a variant introduced in [VLBM08] that
is more robust to partial corruption of the input features. It is trained
to get robust by adding noise to the input features.

There are multiple ways how noise can be added. Gaussian noise and
randomly masking elements with zero are two possibilities. [Deea]
describes how such a denoising auto-encoder with masking noise can
be implemented. The corruption is the probability of a feature
being masked.

IV. EVALUATION

In order to evaluate the effect of different preprocessing algorithms,
features and adjustments in the MLP training and topology, the
following baseline system was used:

Scale the recording to fit into a unit square while keeping the aspect
ratio, shift it into [−1, 1] × [−1, 1] as described in section III-A,
resample it with linear interpolation to get 20 points per stroke, spaced
evenly in time. Take the first 4 strokes with 20 points per stroke and
2 coordinates per point as features, resulting in 160 features which
is equal to the number of input neurons. If a recording has less than
4 strokes, the remaining features were filled with zeroes.

All experiments were evaluated with four baseline systems Bi, i ∈
{ 1, 2, 3, 4 }, where i is the number of hidden layers as different
topologies could have a severe influence on the effect of new features
or preprocessing steps. Each hidden layer in all evaluated systems has
500 neurons.

Each MLP was trained with a learning rate of η = 0.1 and a
momentum of α = 0.1. The activation function of every neuron in a
hidden layer is the sigmoid function sig(x) := 1

1+e−x . The neurons
in the output layer use the softmax function. For every experiment,
exactly one part of the baseline systems was changed.

A. Random Weight Initialization

The neural networks in all experiments got initialized with a small
random weight

wi,j ∼ U(−4 ·
√

6

nl + nl+1
, 4 ·

√
6

nl + nl+1
)
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where wi,j is the weight between the neurons i and j, l is the layer
of neuron i, and ni is the number of neurons in layer i. This random
initialization was suggested on [deeb] and is done to break symmetry.

This might lead to different error rates for the same systems just
because the initialization was different.

In order to get an impression of the magnitude of the influence on the
different topologies and error rates the baseline models were trained
5 times with random initializations. Table I shows a summary of the
results. The more hidden layers are used, the more do the results vary
between different random weight initializations.

System
Classification error

TOP-1 TOP-3
min max range min max range

B1 23.08% 23.44% 0.36% 6.67% 6.80% 0.13%
B2 21.45% 21.83% 0.38% 5.68% 5.75% 0.07%
B3 21.54% 22.28% 0.74% 5.50% 5.82% 0.32%
B4 23.19% 24.84% 1.65% 5.98% 6.44% 0.46%

TABLE I
THE SYSTEMS B1 – B4 WERE RANDOMLY INITIALIZED, TRAINED AND

EVALUATED 5 TIMES TO ESTIMATE THE INFLUENCE OF RANDOM WEIGHT
INITIALIZATION.

B. Connect strokes

In order to solve the problem of interrupted strokes, pairs of strokes
can be connected with stroke connect algorithm. The idea is that for a
pair of consecutively drawn strokes si, si+1 the last point si is close
to the first point of si+1 if a stroke was accidentally split into two
strokes.

59% of all stroke pair distances in the collected data are between
30 px and 150 px. Hence the stroke connect algorithm was tried
with 5 px, 10 px and 20 px. All models TOP-3 error improved with
a threshold of θ = 10px by at least 0.17%, except B4 which
improved only by 0.01% which could be a result of random weight
initialization.

C. Douglas-Peucker Smoothing

The Douglas-Peucker algorithm can be used to find points that are
more relevant for the overall shape of a recording. After that, an
interpolation can be done. If the interpolation is a cubic spline
interpolation, this makes the recording smooth.

The Douglas-Peucker algorithm was applied with a threshold of
ε = 0.05, ε = 0.1 and ε = 0.2 after scaling and shifting, but
before resampling. The interpolation in the resampling step was done
linearly and with cubic splines in two experiments. The recording was
scaled and shifted again after the interpolation because the bounding
box might have changed.

The result of the application of the Douglas-Peucker smoothing with
ε > 0.05 was a high rise of the TOP-1 and TOP-3 error for all
models Bi. This means that the simplification process removes some
relevant information and does not — as it was expected — remove
only noise. For ε = 0.05 with linear interpolation some models TOP-
1 error improved, but the changes were small. It could be an effect
of random weight initialization. However, cubic spline interpolation
made all systems perform more than 1.7% worse for TOP-1 and
TOP-3 error.

System Classification error

TOP-1 change TOP-3 change

B1,p 23.75% 0.41% 7.19% 0.39%
B2,p 22.76% 1.25% 6.38% 0.63%
B3,p 23.10% 1.17% 6.14% 0.40%
B4,p 25.59% 1.71% 6.99% 0.87%

TABLE II
SYSTEMS WITH DENOISING AUTO-ENCODER PRETRAINING COMPARED TO

PURE GRADIENT DESCENT. THE PRETRAINED SYSTEMS CLEARLY
PERFORMED WORSE.

The lower the value of ε, the less does the recording change after
this preprocessing step. As it was applied after scaling the recording
such that the biggest dimension of the recording (width or height) is
1, a value of ε = 0.05 means that a point has to move at least 5%
of the biggest dimension.

D. Global Features

Single global features were added one at a time to the baseline
systems. Those features were re-curvature re-curvature(stroke) =
height(stroke)
length(stroke) as described in [HK06], the ink feature which is the
summed length of all strokes, the stroke count, the aspect ratio and
the stroke center points for the first four strokes. The stroke center
point feature improved the system B1 by 0.27% for the TOP-3 error
and system B3 for the TOP-1 error by 0.74%, but all other systems
and error measures either got worse or did not improve much.

The other global features did improve the systems B1 − −B3, but
not B4. The highest improvement was achieved with the re-curvature
feature. It improved the systems B1−−B4 by more than 0.6% TOP-
1 error.

E. Data Multiplication

Data multiplication can be used to make the model invariant to
transformations. However, this idea seems not to work well in the
domain of on-line handwritten mathematical symbols. It was tried to
triple the data by adding a rotated version that is rotated 3 degrees to
the left and another one that is rotated 3 degrees to the right around
the center of mass. This data multiplication made all classifiers for
most error measures perform worse by more than 2% for the TOP-1
error.

F. Pretraining

Pretraining is a technique used to improve the training of MLPs with
multiple hidden layers.

Figure 1 shows the evolution of the TOP-1 error over 1000 epochs
with supervised layer-wise pretraining and without pretraining. It
clearly shows that this kind of pretraining improves the classification
performance by 1.6% for the TOP-1 error and 1.0% for the TOP-3
error.

Pretraining with denoising auto-encoder lead to the much worse
results listed in table II. The first layer used a tanh activation
function. Every layer was trained for 1000 epochs and the mean
squared error (MSE) loss function. A learning-rate of η = 0.001, a
corruption of 0.3 and a L2 regularization of λ = 10−4 were chosen.
This pretraining setup made all systems with all error measures
perform much worse.
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Fig. 1. Training- and test error by number of trained epochs for different
topologies with SLP. The plot shows that all pretrained systems performed
much better than the systems without pretraining. All plotted systems did not
improve with more epochs of training.

G. Optimized Recognizer

All preprocessing steps and features that were useful were combined
to create a recognizer that should perform best.

All models were much better than everything that was tried before.
The results of this experiment show that single-symbol recognition
with 369 classes and usual touch devices and the mouse can be done
with a TOP1 error rate of 18.56% and a TOP3 error of 4.11%. This
was achieved by a MLP with a 167:500:500:369 topology.

It used an algorithm to connect strokes of which the ends were less
than 10 px away, scaled each recording to a unit square and shifted
this unit square to (0, 0). After that, a linear resampling step was
applied to the first 4 strokes to resample them to 20 points each. All
other strokes were discarded.

The 167 features were

• the first 4 strokes with 20 points per stroke resulting in 160
features,

• the re-curvature for the first 4 strokes,
• the ink,
• the number of strokes and
• the aspect ratio

SLP was applied with 1000 epochs per layer, a learning rate of η =
0.1 and a momentum of α = 0.1. After that, the complete model
was trained again for 1000 epochs with standard mini-batch gradient
descent.

After the models B1,c – B4,c were trained the first 1000 epochs, they
were trained again for 1000 epochs with a learning rate of η = 0.05.
Table III shows that this improved the classifiers again.

V. CONCLUSION

Four baseline recognition systems were adjusted in many experiments
and their recognition capabilities were compared in order to build a
recognition system that can recognize 396 mathematical symbols with

System Classification error

TOP1 change TOP3 change

B1,c 20.96% −2.38% 5.24% −1.56%
B2,c 18.26% −3.25% 4.07% −1.68%
B3,c 18.19% −3.74% 4.06% −1.68%
B4,c 18.57% −5.31% 4.25% −1.87%

B′1,c 19.33% −1.63% 4.78% −0.46%
B′2,c 17.52% −0.74% 4.04% −0.03%
B′3,c 17.65% −0.54% 4.07% 0.01%
B′4,c 17.82% −0.75% 4.26% 0.01%

TABLE III
ERROR RATES OF THE OPTIMIZED RECOGNIZER SYSTEMS. THE SYSTEMS
B′i,c WERE TRAINED ANOTHER 1000 EPOCHS WITH A LEARNING RATE OF

η = 0.05. THE VALUE OF THE COLUMN “CHANGE” OF THE SYSTEMS B′i,c
IS RELATIVE TO Bi,c .

low error rates as well as to evaluate which preprocessing steps and
features help to improve the recognition rate.

All recognition systems were trained and evaluated with 166 898
recordings for 369 symbols. These recordings were collected by two
crowdsourcing projects (Detexify and write-math.com) and created
with various devices. While some recordings were created with
standard touch devices such as tablets and smartphones, others were
created with the mouse.

MLPs were used for the classification task. Four baseline systems
with different numbers of hidden layers were used, as the number of
hidden layer influences the capabilities and problems of MLPs.

All baseline systems used the same preprocessing queue. The record-
ings were scaled to fit into a unit square, shifted to (0, 0), resampled
with linear interpolation so that every stroke had exactly 20 points
which are spread equidistant in time. The 80 (x, y) coordinates of the
first 4 strokes were used to get exactly 160 input features for every
recording. The baseline system B2 has a TOP-3 error of 5.75%.

Adding two slightly rotated variants for each recording and hence
tripling the training set made the systems B3 and B4 perform much
worse, but improved the performance of the smaller systems.

The global features re-curvature, ink, stoke count and aspect ratio
improved the systems B1–B3, whereas the stroke center point feature
made B2 perform worse.

Denoising auto-encoders were evaluated as one way to use pretrain-
ing, but by this the error rate increased notably. However, supervised
layer-wise pretraining improved the performance decidedly.

The stroke connect algorithm was added to the preprocessing steps of
the baseline system as well as the re-curvature feature, the ink feature,
the number of strokes and the aspect ratio. The training setup of the
baseline system was changed to supervised layer-wise pretraining and
the resulting model was trained with a lower learning rate again. This
optimized recognizer B′2,c had a TOP-3 error of 4.04%. This means
that the TOP-3 error dropped by over 1.7% in comparison to the
baseline system B2.

A TOP-3 error of 4.04% makes the system usable for symbol lookup.
It could also be used as a starting point for the development of a
multiple-symbol classifier.

The aim of this work was to develop a symbol recognition system
which is easy to use, fast and has high recognition rates as well
as evaluating ideas for single symbol classifiers. Some of those
goals were reached. The recognition system B′2,c evaluates new

http://detexify.kirelabs.org/classify.html
write-math.com
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recordings in a fraction of a second and has acceptable recognition
rates. Many algorithms were evaluated. However, there are still many
other algorithms which could be evaluated and, at the time of this
work, the best classifier B′2,c is only available through the Python
package hwrt. It is planned to add an web version of that classifier
online.
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