
Programmierparadigmen

0. Auflage, 12. März 2014 Martin Thoma

Vorwort

Dieses Skript wird/wurde im Wintersemester 2013/2014 von Mar-
tin Thoma zur Vorlesung von Prof. Dr. Snelting und Jun.-Prof. Dr. Hum-
mel geschrieben. Dazu wurden die Folien von Prof. Dr. Snelting
und Jun.-Prof. Dr. Hummel benutzt, die Struktur sowie einige
Beispiele, Definitionen und Sätze übernommen.

Das Ziel dieses Skriptes ist vor allem in der Klausur als Nach-
schlagewerk zu dienen; es soll jedoch auch vorher schon für die
Vorbereitung genutzt werden können und nach der Klausur als
Nachschlagewerk dienen.

Ein Link auf das Skript ist unter
martin-thoma.com/programmierparadigmen
zu finden.

Anregungen, Verbesserungsvorschläge,
Ergänzungen

Noch ist das Skript im Aufbau. Es gibt viele Baustellen und es ist
fraglich, ob ich bis zur Klausur alles in guter Qualität bereitstellen
kann. Daher freue ich mich über jeden Verbesserungsvorschlag.

Anregungen, Verbesserungsvorschläge und Ergänzungen können
per Pull-Request gemacht werden oder mir per Email an info@martin-
thoma.de geschickt werden.

http://martin-thoma.com/programmierparadigmen/

iv

Erforderliche Vorkenntnisse

Grundlegende Kenntnisse vom Programmieren, insbesondere mit
Java, wie sie am KIT in „Programmieren“ vermittelt werden, wer-
den vorausgesetzt. Außerdem könnte ein grundlegendes Verständnis
für das O-Kalkül aus „Grundbegriffe der Informatik“ hilfreich sein.

Die Unifikation wird wohl auch in „Formale Systeme“ erklärt; das
könnte also hier von Vorteil sein.

Inhaltsverzeichnis

1 Programmiersprachen 3
1.1 Abstraktion . 3
1.2 Paradigmen . 5
1.3 Typisierung . 6
1.4 Kompilierte und interpretierte Sprachen 6
1.5 Dies und das . 6

2 Programmiertechniken 9
2.1 Rekursion . 9
2.2 Backtracking . 12
2.3 Funktionen höherer Ordnung 12

3 Logik 13
3.1 Prädikatenlogik erster Stufe 13

3.1.1 Symbole . 13
3.1.2 Terme . 14
3.1.3 Ausdrücke 15
3.1.4 1. Stufe . 16
3.1.5 Freie Variablen 17
3.1.6 Metasprachliche Ausdrücke 17
3.1.7 Substitutionen 18

4 λ-Kalkül 21
4.1 Reduktionen . 22
4.2 Auswertungsstrategien 23
4.3 Church-Zahlen . 24
4.4 Church-Booleans 25
4.5 Weiteres . 26

Inhaltsverzeichnis vi

5 Typinferenz 27

6 Parallelität 31
6.1 Architekturen . 32
6.2 Prozesskommunikation 34
6.3 Parallelität in Java 36
6.4 Message Passing Modell 36

7 Haskell 39
7.1 Erste Schritte . 39

7.1.1 Hello World 39
7.2 Syntax . 40

7.2.1 Klammern und Funktionsdeklaration 40
7.2.2 if / else . 41
7.2.3 Rekursion 41
7.2.4 Listen . 42
7.2.5 Strings . 44

7.3 Typen . 44
7.3.1 Standard-Typen 44
7.3.2 Typinferenz 45
7.3.3 type . 47
7.3.4 data . 47

7.4 Lazy Evaluation 47
7.5 Beispiele . 48

7.5.1 Quicksort 48
7.5.2 Fibonacci 48
7.5.3 Quicksort 49
7.5.4 Funktionen höherer Ordnung 49
7.5.5 Chruch-Zahlen 50
7.5.6 Standard Prelude 50

7.6 Weitere Informationen 51

8 Prolog 53
8.1 Erste Schritte . 53

8.1.1 Hello World 53
8.2 Syntax . 54

vii Inhaltsverzeichnis

8.3 Beispiele . 54
8.3.1 Humans . 54
8.3.2 Splits . 55
8.3.3 Delete . 55
8.3.4 Zebrarätsel 55

8.4 Weitere Informationen 57

9 Scala 59
9.1 Erste Schritte . 59

9.1.1 Hello World 59
9.2 Vergleich mit Java 60
9.3 Syntax . 61
9.4 Companion Object 62
9.5 actor . 62
9.6 Beispiele . 62

9.6.1 Wetter . 62
9.7 Weitere Informationen 63

10 X10 65
10.1 Erste Schritte . 65
10.2 Syntax . 65
10.3 Datentypen . 65
10.4 Beispiele . 66
10.5 Weitere Informationen 66

11 C 67
11.1 Datentypen . 67
11.2 ASCII-Tabelle . 68
11.3 Syntax . 69
11.4 Präzedenzregeln . 69
11.5 Beispiele . 69

11.5.1 Hello World 69
11.5.2 Pointer . 70

12 MPI 71
12.1 Erste Schritte . 71

1 Inhaltsverzeichnis

12.2 Funktionen . 72
12.3 Beispiele . 75
12.4 Weitere Informationen 75

13 Compilerbau 77
13.1 Funktionsweise . 79
13.2 Lexikalische Analyse 79

13.2.1 Reguläre Ausdrücke 79
13.2.2 Lex . 80

13.3 Syntaktische Analyse 81
13.4 Semantische Analyse 81
13.5 Zwischencodeoptimierung 82
13.6 Codegenerierung 82

14 Java Bytecode 85
14.1 Instruktionen . 85
14.2 Weitere Informationen 86

Bildquellen 87

Abkürzungsverzeichnis 89

Ergänzende Definitionen 91

Symbolverzeichnis 95

Stichwortverzeichnis 97

1 Programmiersprachen

Im folgenden werden einige Begriffe definiert anhand derer Pro-
grammiersprachen unterschieden werden können.

Definition 1
Eine Programmiersprache ist eine formale Sprache, die
durch eine Spezifikation definiert wird und mit der Algorith-
men beschrieben werden können. Elemente dieser Sprache
heißen Programme.

Ein Beispiel für eine Sprachspezifikation ist die Java Language
Specification.1 Obwohl es kein guter Stil ist, ist auch eine Referenz-
implementierung eine Form der Spezifikation.

Im Folgenden wird darauf eingegangen, anhand welcher Kriterien
man Programmiersprachen unterscheiden kann.

1.1 Abstraktion

Wie nah an den physikalischen Prozessen im Computer ist die
Sprache? Wie nah ist sie an einer mathematisch / algorithmischen
Beschreibung?

Definition 2
Eine Maschinensprache beinhaltet ausschließlich Instruk-
tionen, die direkt von einer CPU ausgeführt werden können.
Die Menge dieser Instruktionen sowie deren Syntax wird Be-
fehlssatz genannt.

1Zu finden unter http://docs.oracle.com/javase/specs/

http://docs.oracle.com/javase/specs/

1.1. ABSTRAKTION 4

Beispiel 1 (Maschinensprachen)
1) x86:

2) SPARC:

Definition 3 (Assembler)
Eine Assemblersprache ist eine Programmiersprache, deren
Befehle dem Befehlssatz eines Prozessor entspricht.

Beispiel 2 (Assembler)
Folgendes Beispiel stammt von https://de.wikibooks.
org/wiki/Assembler-Programmierung_für_x86-Prozessoren/
_Das_erste_Assemblerprogramm:

firstp.asm
1 org 100h
2 start:
3 mov ax, 5522h
4 mov cx, 1234h
5 xchg cx,ax
6 mov al, 0
7 mov ah,4Ch
8 int 21h

Definition 4 (Höhere Programmiersprache)
Eine Programmiersprache heißt höher, wenn sie nicht aus-
schließlich für eine Prozessorarchitektur geschrieben wurde
und turing-vollständig ist.

Beispiel 3 (Höhere Programmiersprachen)
Java, Python, Haskell, Ruby, TCL, . . .

Definition 5 (Domänenspezifische Sprache)
Eine domänenspezifische Sprache (engl. domain-specific lan-
guage; kurz DSL) ist eine formale Sprache, die für ein bestimm-
tes Problemfeld entworfen wurde.

Beispiel 4 (Domänenspezifische Sprache)
1) HTML

2) VHDL

https://de.wikibooks.org/wiki/Assembler-Programmierung_f�r_x86-Prozessoren/_Das_erste_Assemblerprogramm
https://de.wikibooks.org/wiki/Assembler-Programmierung_f�r_x86-Prozessoren/_Das_erste_Assemblerprogramm
https://de.wikibooks.org/wiki/Assembler-Programmierung_f�r_x86-Prozessoren/_Das_erste_Assemblerprogramm

5 1. PROGRAMMIERSPRACHEN

1.2 Paradigmen

Die grundlegendste Art, wie man Programmiersprachen unterschei-
den kann ist das sog. „Programmierparadigma“, also die Art wie
man Probleme löst.

Definition 6 (Imperatives Paradigma)
In der imperativen Programmierung betrachtet man Program-
me als eine folge von Anweisungen, die vorgibt auf welche Art
etwas Schritt für Schritt gemacht werden soll.

Definition 7 (Prozedurales Paradigma)
Die prozeduralen Programmierung ist eine Erweiterung des
imperativen Programmierparadigmas, bei dem man versucht
die Probleme in kleinere Teilprobleme zu zerlegen.

Definition 8 (Funktionales Paradigma)
In der funktionalen Programmierung baut man auf Funktionen
und ggf. Funktionen höherer Ordnung, die eine Aufgabe ohne
Nebeneffekte lösen.

Haskell ist eine funktionale Programmiersprache, C ist eine nicht-
funktionale Programmiersprache.

Wichtige Vorteile von funktionalen Programmiersprachen sind:

• Sie sind weitgehend (jedoch nicht vollständig) frei von Sei-
teneffekten.

• Der Code ist häufig sehr kompakt und manche Probleme
lassen sich sehr elegant formulieren.

Definition 9 (Logisches Paradigma)
In der logischen Programmierung baut auf der Unifikation
auf. genauer!genauer!

1.3. TYPISIERUNG 6

1.3 Typisierung

Eine weitere Art, Programmiersprachen zu unterscheiden ist die
stärke ihrer Typisierung.

Definition 10 (Dynamische Typisierung)
Bei dynamisch typisierten Sprachen kann eine Variable ihren
Typ ändern.

Beispiele sind Python und PHP.

Definition 11 (Statische Typisierung)
Bei statisch typisierten Sprachen kann eine niemals ihren Typ
ändern.

Beispiele sind C, Haskell und Java.

1.4 Kompilierte und interpretierte Sprachen

Sprachen werden überlicherweise entweder interpretiert oder kompi-
liert, obwohl es Programmiersprachen gibt, die beides unterstützen.

C und Java werden kompiliert, Python und TCL interpretiert.

1.5 Dies und das

Definition 12 (Seiteneffekt)
Seiteneffekte sind Veränderungen des Zustandes.Das

geht
besser

Das
geht
besser Manchmal werden Seiteneffekte auch als Nebeneffekt oder Wirkung

bezeichnet.

Definition 13 (Unifikation)
Die Unifikation ist eine Operation in der Logik und dient zur
Vereinfachung prädikatenlogischer Ausdrücke. Der Unifikator

7 1. PROGRAMMIERSPRACHEN

ist also eine Abbildung, die in einem Schritt dafür sorgt, dass
auf beiden Seiten der Gleichung das selbe steht.

Beispiel 5 (Unifikation2)
Gegeben seien die Ausdrücke

A1 = (X,Y, f(b))

A2 = (a, b, Z)

Großbuchstaben stehen dabei für Variablen und Kleinbuchsta-
ben für atomare Ausdrücke.

Ersetzt man in A1 nun X durch a, Y durch b und in A2 die
Variable Z durch f (b), so sind sie gleich oder „unifiziert“. Man
erhält

σ(A1) = (a, b, f(b))

σ(A2) = (a, b, f(b))

mit
σ = {X 7→ a, Y 7→ b, Z 7→ f(b)}

Definition 14 (Allgemeinster Unifikator)
Ein Unifikator σ heißt allgemeinster Unifikator, wenn es für
jeden Unifikator γ eine Substitution δ mit

γ = δ ◦ σ

gibt.

Beispiel 6 (Allgemeinster Unifikator3)
Sei

C = { f(a,D) = Y,X = g(b), g(Z) = X }

eine Menge von Gleichungen über Terme.

Dann ist
γ = [Y 	f(a, b), D	b,X	g(b), Z	b]

1.5. DIES UND DAS 8

ein Unifikator für C. Jedoch ist

σ = [Y 	f(a,D), X	g(b), Z	b]

der allgemeinste Unifikator. Mit

δ = [D	b]

gilt γ = δ ◦ σ.

3Folie 268 von Prof. Snelting
3https://de.wikipedia.org/w/index.php?title=Unifikation_
(Logik)&oldid=116848554#Beispiel

https://de.wikipedia.org/w/index.php?title=Unifikation_(Logik)&oldid=116848554#Beispiel
https://de.wikipedia.org/w/index.php?title=Unifikation_(Logik)&oldid=116848554#Beispiel

2 Programmiertechniken

2.1 Rekursion

Definition 15 (rekursive Funktion)
Eine Funktion f : X → X heißt rekursiv definiert, wenn in
der Definition der Funktion die Funktion selbst wieder steht.

Beispiel 7 (rekursive Funktionen)
1) Fibonacci-Funktion:

fib : N0 → N0

fib(n) =

{
n falls n ≤ 1

fib(n− 1) + fib(n− 2) sonst

Erzeugt die Zahlen 0, 1, 1, 2, 3, 5, 8, 13, . . .

2) Fakultät:

! : N0 → N0

n! =

{
1 falls n ≤ 1

n · (n− 1)! sonst

3) Binomialkoeffizient:(
·
·

)
: N0 × N0 → N0(

n

k

)
=

{
1 falls k = 0 ∨ k = n(
n−1
k−1
)

+
(
n−1
k

)
sonst

2.1. REKURSION 10

Ein Problem von rekursiven Funktionen in Computerprogrammen
ist der Speicherbedarf. Für jeden rekursiven Aufruf müssen alle
Umgebungsvariablen der aufrufenden Funktion („stack frame“)
gespeichert bleiben, bis der rekursive Aufruf beendet ist. Im Fall der
Fibonacci-Funktion sieht ist der Call-Stack in Abb. 2.1 abgebildet.

Abbildung 2.1: Call-Stack der Fibonacci-Funktion

Bemerkung 1
Die Anzahl der rekursiven Aufrufe der Fibonacci-Funktion fC
ist:

fC(n) =

{
1 falls n = 0

2 · fib(n)− 1 falls n ≥ 1

Beweis:

• Offensichtlich gilt fC(0) = 1

• Offensichtlich gilt fC(1) = 1 = 2 · fib(1)− 1

• Offensichtlich gilt fC(2) = 3 = 2 · fib(2)− 1

• Für n ≥ 3:

fC(n) = 1 + fC(n− 1) + fC(n− 2)

= 1 + (2 · fib(n− 1)− 1) + (2 · fib(n− 2)− 1)

11 2. PROGRAMMIERTECHNIKEN

= 2 · (fib(n− 1) + fib(n− 2))− 1

= 2 · fib(n)− 1

Mit Hilfe der Formel von Moivre-Binet folgt:

fC ∈ O
(
ϕn − ψn

ϕ− ψ

)
mit ϕ :=

1 +
√

5

2
und ψ := 1− ϕ

Dabei ist der Speicherbedarf O(n). Dieser kann durch das Benutzen
eines Akkumulators signifikant reduziert werden. TODOTODO

Definition 16 (linear rekursive Funktion)
Eine Funktion heißt linear rekursiv, wenn in jedem Definitions-
zweig der Funktion höchstens ein rekursiver Aufruf vorkommt.

Definition 17 (endrekursive Funktion)
Eine Funktion heißt endrekursiv, wenn in jedem Definitions-
zweig der Rekursive aufruf am Ende des Ausdrucks steht. Der
rekursive Aufruf darf also insbesondere nicht in einen anderen
Ausdruck eingebettet sein.

Auf Englisch heißen endrekursive Funktionen tail recursive.

Beispiel 8 (Linear- und endrekursive Funktionen)
1) fak n = if (n==0) then 1 else (n * fak (n-1))

ist eine linear rekursive Funkion, aber nicht endrekur-
siv, da nach der Rückgabe von fak (n-1) noch die
Multiplikation ausgewertet werden muss.

2) fakAcc n acc = if (n==0) then acc else fakAcc
(n-1) (n*acc)
ist eine endrekursive Funktion.

3) fib n = n <= 1 ? n : fib(n-1) + fib (n-2)
ist weder linear- noch endrekursiv.

Wenn eine rekursive Funktion nicht terminiert oder wenn

2.2. BACKTRACKING 12

2.2 Backtracking

2.3 Funktionen höherer Ordnung

Funktionen höherer Ordnung sind Funktionen, die auf Funktionen
arbeiten. Bekannte Beispiele sind:

• map(function, list)
map wendet function auf jedes einzelne Element aus list
an.

• filter(function, list)
filter gibt eine Liste aus Elementen zurück, für die function
mit true evaluiert.

• reduce(function, list)
function ist für zwei Elemente aus list definiert und gibt
ein Element des gleichen Typs zurück. Nun steckt reduce
zuerst zwei Elemente aus list in function, merkt sich
dann das Ergebnis und nimmt so lange weitere Elemente aus
list, bis jedes Element genommen wurde.
Bei reduce ist die Assoziativität wichtig (vgl. Seite 49)

3 Logik

3.1 Prädikatenlogik erster Stufe

Folgendes ist von http://de.wikipedia.org/wiki/Pr%C3%
A4dikatenlogik_erster_Stufe

Die Prädikatenlogik erster Stufe ist ein Teilgebiet der mathema-
tischen Logik. Sie befasst sich mit der Struktur gewisser mathe-
matischer Ausdrücke und dem logischen Schließen, mit dem man
von derartigen Ausdrücken zu anderen gelangt. Dabei gelingt es,
sowohl die Sprache als auch das Schließen rein syntaktisch, das
heißt ohne Bezug zu mathematischen Bedeutungen, zu definieren.
[...]

Wir beschreiben hier die verwendete Sprache auf rein syntaktische
Weise, das heißt wir legen die betrachteten Zeichenketten, die
wir Ausdrücke der Sprache nennen wollen, ohne Bezug auf ihre
Bedeutung fest.

3.1.1 Symbole

Eine Sprache erster Stufe wird aus folgenden Symbolen aufgebaut:

• ∀,∃,∧,∨,→,↔,¬, (,),≡

• sogenannte Variablensymbole v0, v1, v2, . . .,

• eine (möglicherweise leere) Menge C von Konstantensymbo-
len,

• eine (möglicherweise leere) Menge F von Funktionssymbolen,

http://de.wikipedia.org/wiki/Pr%C3%A4dikatenlogik_erster_Stufe
http://de.wikipedia.org/wiki/Pr%C3%A4dikatenlogik_erster_Stufe

3.1. PRÄDIKATENLOGIK ERSTER STUFE 14

• eine (möglicherweise leere) Menge R von Relationssymbolen.

Das Komma wird hier nur als Trennzeichen für die Aufzählung
der Symbole benutzt, es ist nicht Symbol der Sprache.

3.1.2 Terme

Die nach folgenden Regeln aufgebauten Zeichenketten heißen Ter-
me:

• Ist v ein Variablensymbol, so ist v ein Term.

• Ist c ein Konstantensymbol, so ist c ein Term.

• Ist f ein 1-stelliges Funktionssymbol und ist t1 ein Term, so
ist ft1 ein Term.

• Ist f ein 2-stelliges Funktionssymbol und sind t1, t2 Terme,
so ist ft1t2 ein Term.

• Ist f ein 3-stelliges Funktionssymbol und sind t1, t2, t3 Terme,
so ist ft1t2t3 ein Term.

• und so weiter für 4,5,6,...-stellige Funktionssymbole.

Ist zum Beispiel c eine Konstante und sind f und g 1- bzw. 2-
stellige Funktionssymbole, so ist fgv2fc ein Term, da er sich durch
Anwendung obiger Regeln erstellen lässt: c ist ein Term, daher auch
fc; fc und v2 sind Terme, daher auch gv2fc und damit schließlich
auch fgv2fc.

Wir verzichten hier auf Klammern und Kommata als Trennzeichen,
das heißt wir schreiben fgv2fc und nicht f(g(v2, f(c))). Wir setzen
damit implizit voraus, dass unsere Symbole derart beschaffen sind,
dass eine eindeutige Lesbarkeit gewährleistet ist.

Die Regeln für die Funktionssymbole fasst man oft so zusammen:

• Ist f ein n-stelliges Funktionssymbol und sind t1, . . . , tn
Terme, so ist ft1 . . . tn ein Term.

15 3. LOGIK

Damit ist nichts anderes als die oben angedeutete unendliche Folge
von Regeln gemeint, denn die drei Punkte . . . gehören nicht zu
den vereinbarten Symbolen. Dennoch wird manchmal von dieser
Schreibweise Gebrauch gemacht.

Über den Aufbau der Terme lassen sich weitere Eigenschaften
definieren. So definieren wir offenbar durch die folgenden drei
Regeln rekursiv, welche Variablen in einem Term vorkommen:

• Ist v ein Variablensymbol, so sei var(v) = {v}.

• Ist c ein Konstantensymbol, so sei var(c) = ∅.

• Ist f ein n-stelliges Funktionssymbol und sind t1, . . . , tn
Terme, so sei var(ft1 . . . tn) = var(t1) ∪ . . . ∪ var(tn).

3.1.3 Ausdrücke

Wir erklären nun durch Bildungsgesetze, welche Zeichenketten wir
als Ausdrücke der Sprache ansehen wollen.

Atomare Ausdrücke

• Sind t1 und t2 Terme, so ist t1 ≡ t2 ein Ausdruck.

• Ist R ein 1-stelliges Relationssymbol und ist t1 ein Term, so
ist Rt1 ein Ausdruck.

• Ist R ein 2-stelliges Relationssymbol und sind t1, t2 Terme,
so ist Rt1t2 ein Ausdruck.

• und so weiter für 3,4,5,...-stellige Relationssymbole.

Dabei gelten die oben zur Schreibweise bei Termen gemachten
Bemerkungen.

3.1. PRÄDIKATENLOGIK ERSTER STUFE 16

Zusammengesetzte Ausdrücke

Wir beschreiben hier, wie sich aus Ausdrücken weitere gewinnen
lassen.

• Ist ϕ ein Ausdruck, so ist auch ¬ϕ ein Ausdruck.

• Sind ϕ und ψ Ausdrücke, so sind auch (ϕ ∧ ψ), (ϕ ∨ ψ),
(ϕ→ ψ) und (ϕ↔ ψ) Ausdrücke.

• Ist ϕ ein Ausdruck und ist x eine Variable, so sind auch ∀xϕ
und ∃xϕ Ausdrücke.

Damit sind alle Ausdrücke unserer Sprache festgelegt. Ist zum
Beispiel f ein 1-stelliges Funktionssymbol und R ein 2-stelliges
Relationssymbol, so ist : ∀v0((Rv0v1 ∨ v0 ≡ fv1) → ∃v2¬Rv0v2)
ein Ausdruck, da er sich durch Anwendung obiger Regeln aufbauen
lässt. Es sei noch einmal darauf hingewiesen, dass wir die Ausdrücke
mittels der genannten Regeln rein mechanisch erstellen, ohne dass
die Ausdrücke zwangsläufig irgendetwas bezeichnen müssten.

3.1.4 1. Stufe

Unterschiedliche Sprachen erster Stufe unterscheiden sich lediglich
in den Mengen C, F und R, die man üblicherweise zur Symbol-
menge S zusammenfasst und auch die Signatur der Sprache nennt.
Man spricht dann auch genauer von S-Termen bzw. S-Ausdrücken.
Die Sprache, das heißt die Gesamtheit aller nach obigen Regeln
gebildeten Ausdrücke, wird mit L(S), LS oder LSI bezeichnet. Bei
letzterem steht die römische I für die 1-te Stufe. Dies bezieht
sich auf den Umstand, dass gemäß letzter Erzeugungsregel nur
über Variable quantifiziert werden kann. LSI sieht nicht vor, über
alle Teilmengen einer Menge oder über alle Funktionen zu quan-
tifizieren. So lassen sich die üblichen [[Peano-Axiome]] nicht in
LSI ausdrücken, da das Induktionsaxiom eine Aussage über alle
Teilmengen der natürlichen Zahlen macht. Das kann als Schwä-
che dieser Sprache angesehen werden, allerdings sind die Axiome

17 3. LOGIK

der [[Zermelo-Fraenkel-Mengenlehre]] sämtlich in der ersten Stufe
mit dem einzigen Symbol ∈ formulierbar, so dass die erste Stufe
prinzipiell für die Mathematik ausreicht.

3.1.5 Freie Variablen

Weitere Eigenschaften von Ausdrücken der Sprache LSI lassen sich
ebenfalls rein syntaktisch definieren. Gemäß dem oben beschriebe-
nen Aufbau durch Bildungsregeln definieren wir die Menge frei(ϕ)
der im Ausdruck ϕ frei vorkommenden Variablen wie folgt:

• frei(t1 ≡ t2) = var(t1) ∪ var(t2)

• frei(Rt1 . . . tn) = var(t1) ∪ . . . ∪ var(tn)

• frei(¬ϕ) = frei(ϕ)

• frei(ϕ ∧ ψ) = frei(ϕ) ∪ frei(ψ) und genauso für ∨,→,↔

• frei(∀xϕ) = frei(ϕ) \ {x}

• frei(∃xϕ) = frei(ϕ) \ {x}

Nicht-freie Variable heißen gebundene Variable. Ausdrücke ϕ oh-
ne freie Variable, das heißt solche mit frei(ϕ) = ∅, nennt man
Sätze. Sämtliche in obigem motivierenden Beispiel angegebenen
Axiome der geordneten abelschen Gruppen sind bei entsprechen-
der Übersetzung in die Sprache L{0,+,−,≤}I Sätze, so zum Beispiel
∀v0∀v1 +v0v1 ≡ +v1v0 für das Kommutativgesetz.

3.1.6 Metasprachliche Ausdrücke

Das gerade gegebene Beispiel ∀v0∀v1 +v0v1 ≡ +v1v0 als Symboli-
sierung des Kommutativgesetzes in der Sprache L{0,+,−,≤}I zeigt,
dass die entstehenden Ausdrücke oft schwer lesbar sind. Daher
kehrt der Mathematiker, und oft auch der Logiker, gern zur klassi-
schen Schreibweise ∀x, y : x+ y = y + x zurück. Letzteres ist aber

3.1. PRÄDIKATENLOGIK ERSTER STUFE 18

kein Ausdruck der Sprache L{0,+,−,≤}I sondern nur eine Mitteilung
eines solchen Ausdrucks unter Verwendung anderer Symbole ei-
ner anderen Sprache, hier der sogenannten [[Metasprache]], das
heißt derjenigen Sprache, in der man über L{0,+,−,≤}I spricht. Aus
Gründen der besseren Lesbarkeit lässt man auch gern überflüssige
Klammern fort. Das führt nicht zu Problemen, solange klar bleibt,
dass man die leichter lesbaren Zeichenketten jederzeit zurücküber-
setzen könnte.

3.1.7 Substitutionen

Häufig werden in der Mathematik Variablen durch Terme ersetzt.
Auch das lässt sich hier rein syntaktisch auf Basis unserer Symbole
erklären. Durch folgende Regeln legen wir fest, was es bedeuten
soll, den Term t für eine Variable x einzusetzen. Wir folgen da-
bei wieder dem regelhaften Aufbau von Termen und Ausdrücken.
Die Ersetzung wird als [] tx notiert, wobei die eckigen Klammern
weggelassen werden dürfen.

Für Terme s wird die Einsetzung s tx wie folgt definiert:

• Ist v ein Variablensymbol, so ist v tx gleich t falls v = x und
v sonst.

• Ist c ein Konstantensymbol, so ist c tx := c.

• Sind f ein n-stelliges Funktionssymbol und t1, . . . , tn Terme,
so ist [ft1 . . . tn] tx := ft1

t
x . . . tn

t
x .

Für Ausdrücke schreiben wir eckige Klammern um den Ausdruck,
in dem die Substitution vorgenommen werden soll. Wir legen fest:

• [t1 ≡ t2] tx := t1
t
x ≡ t2

t
x

• [Rt1 . . . tn] tx := Rt1
t
x . . . tn

t
x

• [¬ϕ] tx := ¬[ϕ] tx

• [(ϕ ∨ ψ)] tx := ([ϕ] tx ∨ [ψ] tx) und genauso für ∧,→,↔

19 3. LOGIK

• [∃xϕ] tx := ∃xϕ; analog für den Quantor ∀

• [∃yϕ] tx := ∃y[ϕ] tx falls x 6= y und y /∈ var(t); analog für den
Quantor ∀

• [∃yϕ] tx := ∃u[ϕ]uy
t
x falls x 6= y und y ∈ var(t), wobei u eine

Variable sei, die nicht in ϕ oder t vorkommt, zum Beispiel die
erste der Variablen v0, v1, v2, . . ., die diese Bedingung erfüllt.
Die analoge Festlegung wird für ∀ getroffen.

Bei dieser Definition wurde darauf geachtet, dass Variablen nicht
unbeabsichtigt in den Einflussbereich eines Quantors geraten. Falls
die gebundene Variable x im Term auftritt, so wird diese zuvor
durch eine andere ersetzt, um so die Variablenkollision zu vermei-
den.

Definition 18 (Freie Variable)
Eine Variable, die nicht gebunden ist, heißt frei.

Beispiel 9 (Freie Variablen1)
In dem Ausduck (λx→ xy) ist y eine freie Variable.

Definition 19 (Kombinator)
Ein Kombinator ist eine Funktion oder Definition ohne freie
Variablen.

Beispiel 10 (Kombinatoren2)
1) λa→ a

2) λa→ λb→ a

3) λf → λa→ λb→ fba

1Quelle: http://www.haskell.org/haskellwiki/Free_variable
2Quelle: http://www.haskell.org/haskellwiki/Combinator

http://www.haskell.org/haskellwiki/Free_variable
http://www.haskell.org/haskellwiki/Combinator

4 λ-Kalkül

Der λ-Kalkül (gesprochen: Lambda-Kalkül) ist eine formale Spra-
che. In diesem Kalkül gibt es drei Arten von Termen T :

• Variablen: x

• Applikationen: (TS)

• Lambda-Abstraktion: λx.T

In der Lambda-Abstraktion nennt man den Teil vor dem Punkt die
Parameter der λ-Funktion. Wenn etwas dannach kommt, auf die
die Funktion angewendet wird so heißt dieser Teil das Argument :

(λ x︸︷︷︸
Parameter

.x2)

Argument︷︸︸︷
5 = 52

Beispiel 11 (λ-Funktionen)
1) λx.x heißt Identität.

2) (λx.x2)(λy.y + 3) = λy.(y + 3)2

3) (λx.
(
λy.yx

)
) ab

⇒(λy.ya)b

⇒ba

In Beispiel 11.3 sieht man, dass λ-Funktionen die Argumente
von Links nach rechts einziehen.

Die Funktionsapplikation sei linksassoziativ. Es gilt also:

4.1. REDUKTIONEN 22

a b c d = ((a b) c) d

Definition 20 (Gebundene Variable)
Eine Variable heißt gebunden, wenn sie der Parameter einer
λ-Funktion ist.

Definition 21 (Freie Variable)
Eine Variable heißt frei, wenn sie nicht gebunden ist.

Satz 4.1
Der untypisierte λ-Kalkül ist Turing-Äquivalent.

4.1 Reduktionen

Definition 22 (Redex)
Eine λ-Term der Form (λx.t1)t2 heißt Redex.

Definition 23 (α-Äquivalenz)
Zwei Terme T1, T2 heißen α-Äquivalent, wenn T1 durch kon-
sistente Umbenennung in T2 überführt werden kann.

Man schreibt dann: T1
α
= T2.

Beispiel 12 (α-Äquivalenz)

λx.x
α
= λy.y

λx.xx
α
= λy.yy

λx.(λy.z(λx.zy)y)
α
= λa.(λx.z(λc.zx)x)

Definition 24 (β-Äquivalenz)
Eine β-Reduktion ist die Funktionsanwendung auf einen Re-
dex:

(λx.t1)t2 ⇒ t1[x 7→ t2]

23 4. λ-KALKÜL

Beispiel 13 (β-Äquivalenz)
a) (λx.x)y

β⇒ x[x 7→ y] = y

b) (λx.x(λx.x))(yz)
β⇒ (x(λx.x))[x 7→ yz](yz)(λx.x)

Definition 25 (η-Äquivalenz)
Zwei Terme λx.f x und f heißen η-Äquivalent, wenn x nicht
freie Variable von f ist.

Beispiel 14 (η-Äquivalenz)
TODO

4.2 Auswertungsstrategien

Definition 26 (Normalenreihenfolge)
In der Normalenreihenfolge-Auswertungsstrategie wird der
linkeste äußerste Redex ausgewertet.

Definition 27 (Call-By-Name)
In der Call-By-Name Auswertungsreihenfolge wird der linkeste
äußerste Redex reduziert, der nicht von einem λ umgeben ist.

Die Call-By-Name Auswertung wird in Funktionen verwendet.

Haskell verwendet die Call-By-Name Auswertungsreihenfolge zu-
sammen mit „sharing“. Dies nennt man Lazy Evaluation.

Was ist sharing?

Definition 28 (Call-By-Value)
In der Call-By-Value Auswertung wird der linkeste Redex
reduziert, der nicht von einem λ umgeben ist und dessen
Argument ein Wert ist.

Die Call-By-Value Auswertungsreihenfolge wird in C und Java
verwendet. Auch in Haskell werden arithmetische Ausdrücke in
der Call-By-Name Auswertungsreihenfolge reduziert.

4.3. CHURCH-ZAHLEN 24

4.3 Church-Zahlen

Im λ-Kalkül lässt sich jeder mathematische Ausdruck darstellen,
also insbesondere beispielsweise auch λx.x+ 3. Aber „3“ und „+“
ist hier noch nicht das λ-Kalkül.

Zuerst müssen wir uns also Gedanken machen, wie man natürliche
Zahlen n ∈ N darstellt. Dafür dürfen wir nur Variablen und λ
verwenden. Eine Möglichkeit das zu machen sind die sog. Church-
Zahlen.

Dabei ist die Idee, dass die Zahl angibt wie häufig eine Funktion
f auf eine Variable z angewendet wird. Also:

• 0 := λf z.z

• 1 := λf z.fz

• 2 := λf z.f(fz)

• 3 := λf z.f(f(fz))

Auch die gewohnten Operationen lassen sich so darstellen.

Beispiel 15 (Nachfolger-Operation)

succ : = λnfz.f(nfz)

= λn.(λf(λzf(nfz)))

Dabei ist n die Zahl.

Will man diese Funktion anwenden, sieht das wie folgt aus:

succ 1 = (λnfz.f(nfz))1

= (λnfz.f(nfz)) (λf z.fz)︸ ︷︷ ︸
n

= λfz.f(λf z.fz)fz

= λfz.f(fz)

= 2

25 4. λ-KALKÜL

Beispiel 16 (Vorgänger-Operation)

pair := λa.λb.λf.fab

fst := λp.p(λa.λb.a)

snd := λp.p(λa.λb.b)

next := λp. pair(snd p) (succ(snd p))

pred := λn. fst(n next(pair c0c0))

Beispiel 17 (Addition)

plus := λmnfz.mf(nfz)

Dabei ist m der erste Summand und n der zweite Summand.
Beispiel 18 (Multiplikation)

times : = λmnf.m s (n f z)
η
= λmnfz.n(ms)z

Dabei ist m der erste Faktor und n der zweite Faktor.
Beispiel 19 (Potenz)

exp : = λbe.eb
η
= λbefz.ebfz

Dabei ist b die Basis und e der Exponent.

4.4 Church-Booleans

Definition 29 (Church-Booleans)
True wird zu ctrue := λt.λf.t.
False wird zu cfalse := λt.λf.f .

4.5. WEITERES 26

4.5 Weiteres

Satz 4.2 (Satz von Curch-Rosser)
Wenn zwei unterschiedliche Terme a und b äquivalent
sind, d.h. mit Reduktionsschritten beliebiger Richtung
ineinander transformiert werden können, dann gibt es einen
weiteren Term c, zu dem sowohl a als auch b reduziert
werden können.

5 Typinferenz

Definition 30 (Datentyp)
Ein Datentyp oder kurz Typ ist eine Menge von Werten, mit
denen eine Bedeutung verbunden ist.

Beispiel 20 (Datentypen)
• bool = { True,False }

• char = vgl. Seite 68

• intHaskell = [−229, 229 − 1] ∩ N

• intC90 = [−215 − 1, 215 − 1] ∩ N1

• float = siehe IEEE 754

• Funktionstypen, z. B. int→ int oder char→ int

Hinweis: Typen sind unabhängig von ihrer Repräsentation. So
kann ein bool durch ein einzelnes Bit repräsentiert werden oder
eine Bitfolge zugrunde liegen.

Auf Typen sind Operationen definiert. So kann man auf numeri-
schen Typen eine Addition (+), eine Subtraktion (-), eine Multi-
plikation (*) und eine Division (/) definieren.
Ich schreibe hier bewusst „eine“ Multiplikation und nicht „die“ Mul-
tiplikation, da es verschiedene Möglichkeiten gibt auf Gleitpunkt-
zahlen Multiplikationen zu definieren. So kann man beispielsweise
die Assoziativität unterschiedlich wählen.
Beispiel 21 (Multiplikation ist nicht assoziativ)

In Python 3 ist die Multiplikation linksassoziativ. Also:

1siehe ISO/IEC 9899:TC2, Kapitel 7.10: Sizes of integer types <limits.h>

28

>>> 0.1*0.1*0.3
0.0030000000000000005
>>> (0.1*0.1)*0.3
0.0030000000000000005
>>> 0.1*(0.1*0.3)
0.003

Definition 31 (Typvariable)
Eine Typvariable repräsentiert einen Typen.

Hinweis: Üblicherweise werden kleine griechische Buchstaben (α, β, τ1, τ2, . . .)
als Typvariablen gewählt.

Genau wie Typen bestimmte Operationen haben, die auf ihnen
definiert sind, kann man sagen, dass Operationen bestimmte Typen,
auf die diese Anwendbar sind. So ist

α+ β

für numerische α und β wohldefiniert, auch wenn α und β boolesch
sind oder beides Strings sind könnte das Sinn machen. Es macht
jedoch z. B. keinen Sinn, wenn α ein String ist und β boolesch.

Die Menge aller Operationen, die auf die Variablen angewendet
werden, nennt man Typkontext. Dieser wird üblicherweise mit Γ
bezeichnet.

Das Ableiten einer Typisierung für einen Ausdruck nennt man
Typinferenz. Man schreibt: ` (λx.2) : α→ int.

Bei solchen Ableitungen sind häufig viele Typen möglich. So kann
der Ausdruck

λx.2

Mit folgenderweise typisiert werden:

• ` (λx.2) : bool→ int

• ` (λx.2) : int→ int

29 5. TYPINFERENZ

• ` (λx.2) : Char→ int

• ` (λx.2) : α→ int

In der letzten Typisierung stellt α einen beliebigen Typen dar.

Ein Typkontext Γ ordnet jeder freien Variable x einen Typ Γ(x)
durch folgende Regeln zu:

CONST :
c ∈ Const
Γ ` c : τc

VAR :
Γ(x) = τ

Γ ` c : τ

ABS :
Γ, x : τ1 ` t : τ2

Γ ` λx.t : τ1 → τ2

APP :
Γ ` t1, τ2τ Γ ` t2 : τ2

Γ ` t1t2 : τ

Dabei ist der lange Strich kein Bruchstrich, sondern ein Symbol
der Logik das als Schlussstrich bezeichnet wird. Dabei ist der
Zähler als Voraussetzung und der Nenner als Schlussfolgerung zu
verstehen.
Definition 32 (Typsubstituition)

Eine Typsubstituition ist eine endliche Abbildung von Typva-
riablen auf Typen.

Für eine Menge von Typsubsitutionen wird überlicherweise σ als
Symbol verwendet. Man schreibt also beispielsweise:

σ = [α1	bool, α2	α1 → α1]

Definition 33 (Lösung eines Typkontextes)
Sei t eine beliebige freie Variable, τ = τ(t) ein beliebiger Typ
σ eine Menge von Typsubstitutionen und Γ ein Typkontext.

(σ, τ) heißt eine Lösung für (Γ, t), falls gilt:

σΓ ` t : τ

6 Parallelität

Systeme mit mehreren Prozessoren sind heutzutage weit verbreitet.
Inzwischen sind sowohl in Desktop-PCs als auch Laptops, Tablets
und Smartphones „Multicore-CPUs“ verbaut. Daher sollten auch
Programmierer in der Lage sein, Programme für mehrere Kerne
zu entwickeln.

Parallelverarbeitung kann auf mehreren Ebenen statt finden:

• Bit-Ebene: Werden auf 32-Bit Computern long long,
also 64-Bit Zahlen, addiert, so werden parallel zwei 32-Bit
Additionen durchgeführt und das carry-flag benutzt.

• Anweisungs-Ebene: Die Ausführung von Anweisungen in
der CPU besteht aus mehreren Phasen (Instruction Fetch,
Decode, Execution, Write-Back). Besteht zwischen aufeinan-
derfolgenden Anweisungen keine Abhängigkeit, so kann der
Instruction Fetch-Teil einer zweiten Anweisung parallel zum
Decode-Teil einer ersten Anweisung geschehen. Das nennt
man Pipelining.

• Datenebene: Es kommt immer wieder vor, dass man in
Schleifen eine Operation für jedes Objekt eines Contaitainers
(z. B. einer Liste) durchführen muss. Zwischen den Anweisun-
gen verschiedener Schleifendurchläufe besteht dann eventuell
keine Abhängigkeit. Dann können alle Schleifenaufrufe par-
allel durchgeführt werden.

• Verarbeitungsebene: Verschiedene Programme sind unab-
hängig von einander.

6.1. ARCHITEKTUREN 32

Gerade bei dem letzten Punkt ist zu beachten, dass echt parallele
Ausführung nicht mit verzahnter Ausführung zu verwechseln ist.
Auch bei Systemen mit nur einer CPU und einem Kern kann
man gleichzeitig den Browser nutzen und einen Film über eine
Multimedia-Anwendung laufen lassen. Dabei wechselt der Schedu-
ler sehr schnell zwischen den verschiedenen Anwendungen, sodass
es sich so anfühlt, als würden die Programme echt parallel ausge-
führt werden.

Weitere Informationen zu Pipelining gibt es in der Vorlesung „Rech-
nerorganisation“ bzw. „Digitaltechnik und Entwurfsverfahren“ (zu
der auch ein exzellentes Skript angeboten wird). Informationen
über Schedulung werden in der Vorlesung „Betriebssysteme“ ver-
mittelt.

6.1 Architekturen

Es gibt zwei Ansätze, wie man Parallelrechner entwickeln kann:

• Gemeinsamer Speicher: In diesem Fall kann jeder Pro-
zessor jede Speicherzelle ansprechen. Dies ist bei Multicore-
CPUs der Fall.

• Verteilter Speicher: Es ist auch möglich, dass jeder Pro-
zessor seinen eigenen Speicher hat, der nur ihm zugänglich
ist. In diesem Fall schicken die Prozessoren Nachrichten (engl.

message passing). Diese Technik wird in Clustern eingesetzt.

Eine weitere Art, wie man Parallelverarbeitung klassifizieren kann,
ist anhand der verwendeten Architektur. Der der üblichen, sequen-
tiellen Art der Programmierung, bei der jeder Befehl nach einan-
der ausgeführt wird, liegt die sog. Von-Neumann-Architektur
zugrunde. Bei der Programmierung von parallel laufenden Anwen-
dungen kann man das PRAM-Modell (kurz für Parallel Random
Access Machine) zugrunde legen. In diesem Modell geht man von ei-

33 6. PARALLELITÄT

ner beliebigen Anahl an Prozessoren aus, die über lokalen Speicher
verfügen und synchronen Zugriff auf einen gemeinsamen Speicher
haben.

Anhand der Flynn’schen Klassifikation können Rechnerarchi-
tekturen in vier Kategorien unterteilt werden:

Single Instruction Multiple Instruction
Single Data SISD MISD
Multiple Data SIMI MIMD

Dabei wird die Von-Neumann-Architektur als SISD-Architektur
und die PRAM-Architektur als SIMD-Architektur klassifiziert. Es
ist so zu verstehen, dass ein einzelner Befehl auf verschiedene
Daten angewendet wird.

Bei heutigen Multicore-Rechnern liegt MIMD vor.

MISD ist nicht so richtig sinnvoll.

Definition 34 (Nick’s Class)
Nick’s Class (in Zeichen: NC) ist die Klasse aller Probleme,
die im PRAM-Modell in logarithmischer Laufzeit lösbar sind.

Beispiel 22 (Nick’s Class)
Folgende Probleme sind in NC:

1) Die Addition, Multiplikation und Division von Ganzzah-
len,

2) Matrixmultiplikation, die Berechnung von Determinan-
ten und Inversen,

3) ausschließlich Probleme aus P, also: NC ⊆ P

Es ist nicht klar, ob P ⊆ NC gilt. Bisher wurde also noch kein
Problem P ∈ P gefunden mit P /∈ NC.

6.2. PROZESSKOMMUNIKATION 34

6.2 Prozesskommunikation

Die Prozesskommunikation wird durch einige Probleme erschwert:

Definition 35 (Wettlaufsituation)
Ist das Ergebnis einer Operation vom zeitlichen Ablauf der
Einzeloperationen abhängig, so liegt eine Wettlaufsituation
vor.

Beispiel 23 (Wettlaufsituation)
Angenommen, man hat ein Bankkonto mit einem Stand von
2000 Euro. Auf dieses Konto wird am Monatsende ein Ge-
halt von 800 Euro eingezahlt und die Miete von 600 Euro
abgehoben. Nun stelle man sich folgende beiden Szenarien vor:

t Prozess 1: Lohn Prozess 2: Miete Kontostand
1 Lade Kontostand Lade Kontostand 2000
2 Addiere Lohn 2000
3 Speichere Kontostand 2800
4 Subtrahiere Miete 2800
5 Speichere Kontostand 1400

Dieses Problem existiert nicht nur bei echt parallelen Anwen-
dungen, sondern auch bei zeitlich verzahnten Anwendungen.

Definition 36 (Semaphore)
Eine Semaphore S = (c, r, f, L) ist eine Datenstruktur, die
aus einer Ganzzahl, den beiden atomaren Operationen r =
„reservieren probieren“ und f = „freigeben“ sowie einer Liste
L besteht.

r gibt entweder Wahr oder Falsch zurück um zu zeigen, ob
das reservieren erfolgreich war. Im Erfolgsfall wird c um 1
verringert. Es wird genau dann Wahr zurück gegeben, wenn c
positiv ist. Wenn Wahr zurückgegeben wird, dann wird das
aufrufende Objekt der Liste hinzugefügt.

f kann nur von Objekten aufgerufen werden, die in L sind.
Wird f von o ∈ L aufgerufen, wird o aus L entfernt und c um

35 6. PARALLELITÄT

eins erhöht.

Semaphoren können eingesetzt werden um Wettlaufsituationen zu
verhindern.
Definition 37 (Monitor)

Ein Monitor M = (m, c) ist ein Tupel, wobei m ein Mutex
und c eine Bedingung ist.

Monitore können mit einer Semaphore, bei der c = 1 ist, imple-
mentiert werden. Monitore sorgen dafür, dass auf die Methoden
der Objekte, die sie repräsentieren, zu jedem Zeitpunkt nur ein
mal ausgeführt werden können. Sie sorgen also für gegenseitigen
Ausschluss.
Beispiel 24 (Monitor)

Folgendes Beispiel von https://en.wikipedia.org/w/
index.php?title=Monitor_(synchronization)&oldid=
596007585 verdeutlicht den Nutzen eines Monitors:

monitor class Account {
private int balance := 0
invariant balance >= 0

public method boolean withdraw(int amount)
precondition amount >= 0

{
if balance < amount:

return false
else:

balance := balance - amount
return true

}

public method deposit(int amount)
precondition amount >= 0

{
balance := balance + amount

https://en.wikipedia.org/w/index.php?title=Monitor_(synchronization)&oldid=596007585
https://en.wikipedia.org/w/index.php?title=Monitor_(synchronization)&oldid=596007585
https://en.wikipedia.org/w/index.php?title=Monitor_(synchronization)&oldid=596007585

6.3. PARALLELITÄT IN JAVA 36

}
}

6.3 Parallelität in Java

Java unterstützt mit der Klasse Thread und dem Interface Runnable
Parallelität.

Interessante Stichwörder sind noch:

• ThreadPool

• Interface Executor

• Interface Future<V>

• Interface Callable<V>

6.4 Message Passing Modell

Das Message Passing Modell ist eine Art, wie man parallel lau-
fende Programme schreiben kann. Dabei tauschen die Prozesse
Nachrichten aus um die Arbeit zu verteilen.

Ein wichtiges Konzept ist hierbei der Kommunikator . Ein Kom-
munikator definiert eine Gruppe von Prozessen, die mit einander
kommunizieren können. In dieser Gruppe von Prozessen hat je-
der Prozesse einen eindeutigen Rang , den sie zur Kommunikation
nutzen.

Die Grundlage der Kommunikation bilden send und receive Opera-
tionen. Prozesse schicken Nachrichten an andere Prozesse, indem
sie den eindeutigen Rang und einen tag angeben, der die Nachricht
identifiziert.

Wenn ein Prozess mit einem einzigen weiteren Prozess kommuni-
ziert, wird dies Punkt-zu-Punkt-Kommunikation genannt.

37 6. PARALLELITÄT

Wenn ein Prozess allen anderen eine Nachricht schickt, nennt man
das Broadcast .

7 Haskell

Haskell ist eine funktionale Programmiersprache, die von Haskell
Brooks Curry entwickelt und 1990 in Version 1.0 veröffentlicht
wurde.

Wichtige Konzepte sind:

1. Funktionen höherer Ordnung

2. anonyme Funktionen (sog. Lambda-Funktionen)

3. Pattern Matching

4. Unterversorgung

5. Typinferenz

Haskell kann mit „Glasgow Haskell Compiler“ mittels ghci inter-
pretiert und mittels

7.1 Erste Schritte

Haskell kann unter www.haskell.org/platform/ für alle Platt-
formen heruntergeladen werden. Unter Debian-Systemen ist das
Paket ghc bzw. haskell-platform relevant.

7.1.1 Hello World

Speichere folgenden Quelltext als hello-world.hs:

http://www.haskell.org/platform/

7.2. SYNTAX 40

hello-world.hs
1 main = putStrLn "Hello, World!"

Kompiliere ihn mit ghc -o hello hello-world.hs. Es wird
eine ausführbare Datei erzeugt.

Alternativ kann es direkt mit runghc hello-world.hs ausge-
führt werden.

7.2 Syntax

7.2.1 Klammern und Funktionsdeklaration

Haskell verzichtet an vielen Stellen auf Klammern. So werden
im Folgenden die Funktionen f(x) := sinx

x und g(x) := x · f(x2)
definiert:

f :: Floating a => a -> a
f x = sin x / x

g :: Floating a => a -> a
g x = x * (f (x*x))

Die Funktionsdeklarationen mit den Typen sind nicht notwendig,
da die Typen aus den benutzten Funktionen abgeleitet werden.

Zu lesen ist die Deklaration wie folgt:

[Funktionsname] :: [Typendefinitionen] =>
Signatur

T. Def. Die Funktion f benutzt als Parameter bzw. Rückgabewert
einen Typen. Diesen Typen nennen wir a und er ist vom
Typ Floating. Auch b, wasweisich oder etwas ähnliches
wäre ok.

Signatur Die Signatur liest man am einfachsten von hinten:

41 7. HASKELL

– f bildet auf einen Wert vom Typ a ab und

– f hat genau einen Parameter a

Gibt es Funktionsdeklarationen, die bis auf Wechsel des Na-
mens und der Reihenfolge äquivalent sind?

7.2.2 if / else

Das folgende Beispiel definiert den Binomialkoeffizienten (vgl. Bei-
spiel 7.3)

binom :: (Eq a, Num a, Num a1) => a -> a -> a1
binom n k =

if (k==0) || (k==n)
then 1
else binom (n-1) (k-1) + binom (n-1) k

Das könnte man auch mit sog. Guards machen:

binom :: (Eq a, Num a, Num a1) => a -> a -> a1
binom n k

| (k==0) || (k==n) = 1
| otherwise = binom (n-1) (k-1)

+ binom (n-1) k

7.2.3 Rekursion

Die Fakultätsfunktion wurde wie folgt implementiert:

fak(n) :=

{
1 falls n = 0

n · fak(n) sonst

fak :: (Eq a, Num a) => a -> a
fak n = if (n==0) then 1 else n * fak (n-1)

7.2. SYNTAX 42

Diese Implementierung benötigt O(n) rekursive Aufrufe und hat

einen Speicherverbrauch von O(n). Durch einen Akkumulator
kann dies verhindert werden:

fakAcc :: (Eq a, Num a) => a -> a -> a
fakAcc n acc = if (n==0)

then acc
else fakAcc (n-1) (n*acc)

fak :: (Eq a, Num a) => a -> a
fak n = fakAcc n 1

7.2.4 Listen

• [] erzeugt die leere Liste,

• [1,2,3] erzeugt eine Liste mit den Elementen 1, 2, 3

• : wird cons genannt und ist der Listenkonstruktor.

• list !! i gibt das i-te Element von list zurück.

• head list gibt den Kopf von list zurück, tail list
den Rest:

Prelude> head []

*** Exception: Prelude.head: empty list
Prelude> tail []

*** Exception: Prelude.tail: empty list
Prelude> tail [1]
[]
Prelude> head [1]
1
Prelude> null []
True
Prelude> null [[]]
False

43 7. HASKELL

• null list prüft, ob list leer ist.

• length list gibt die Anzahl der Elemente in list zu-
rück.

• maximum [1,9,1,3] gibt 9 zurück (analog: minimum).

• last [1,9,1,3] gibt 3 zurück.

• reverse [1,9,1,3] gibt [3,1,9,1] zurück.

• elem item list gibt zurück, ob sich item in list be-
findet.

Beispiel in der interaktiven Konsole

Prelude> let mylist = [1,2,3,4,5,6]
Prelude> head mylist
1
Prelude> tail mylist
[2,3,4,5,6]
Prelude> take 3 mylist
[1,2,3]
Prelude> drop 2 mylist
[3,4,5,6]
Prelude> mylist
[1,2,3,4,5,6]
Prelude> mylist ++ sndList
[1,2,3,4,5,6,9,8,7]

List-Comprehensions

List-Comprehensions sind kurzschreibweisen für Listen, die sich
an der Mengenschreibweise in der Mathematik orientieren. So
entspricht die Menge

myList = { 1, 2, 3, 4, 5, 6 }

7.3. TYPEN 44

test = { x ∈ myList | x > 2 }

in etwa folgendem Haskell-Code:

Prelude> let mylist = [1,2,3,4,5,6]
Prelude> let test = [x | x <- mylist, x>2]
Prelude> test
[3,4,5,6]

7.2.5 Strings

• Strings sind Listen von Zeichen:
tail ÄBCDEF" gibt "BCDEF" zurück.

7.3 Typen

7.3.1 Standard-Typen

Haskell kennt einige Basis-Typen:

• Int: Ganze Zahlen. Der Zahlenbereich kann je nach Imple-
mentierung variieren, aber der Haskell-Standart garantiert,
dass das Intervall [−229, 229 − 1] abgedeckt wird.

• Integer: beliebig große ganze Zahlen

• Float: Fließkommazahlen

• Double: Fließkommazahlen mit doppelter Präzision

• Bool: Wahrheitswerte

• Char: Unicode-Zeichen

Des weiteren gibt es einige strukturierte Typen:

• Listen: z. B. [1, 2, 3]

• Tupel: z. B. (1,′ a′, 2)

45 7. HASKELL

• Brüche (Fractional, RealFrac)

• Summen-Typen: Typen mit mehreren möglichen Repräsen-
tationen

7.3.2 Typinferenz

In Haskell werden Typen aus den Operationen geschlossfolgert.
Dieses Schlussfolgern der Typen, die nicht explizit angegeben
werden müssen, nennt man Typinferent.

Haskell kennt die Typen aus Abb. 7.1.

Ein paar Beispiele zur Typinferenz:

Prelude> let x = \x -> x*x
Prelude> :t x
x :: Integer -> Integer
Prelude> x(2)
4
Prelude> x(2.2)
<interactive>:6:3:

No instance for (Fractional Integer)
arising from the literal ‘2.2’

Possible fix: add an instance declaration for
(Fractional Integer)

In the first argument of ‘x’, namely ‘(2.2)’
In the expression: x (2.2)
In an equation for ‘it’: it = x (2.2)

Prelude> let mult = \x y->x*y
Prelude> mult(2,5)
<interactive>:9:5:

Couldn’t match expected type ‘Integer’ with
actual type ‘(t0, t1)’

In the first argument of ‘mult’, namely ‘(2, 5)’

7.3. TYPEN 46

In the expression: mult (2, 5)
In an equation for ‘it’: it = mult (2, 5)

Prelude> mult 2 5
10
Prelude> :t mult
mult :: Integer -> Integer -> Integer

Prelude> let concat = \x y -> x ++ y
Prelude> concat [1,2,3] [3,2,1]
[1,2,3,3,2,1]
Prelude> :t concat
concat :: [a] -> [a] -> [a]

Eq
All except
IO, (->)

Show
All except
IO, (->)

Read
All except
IO, (->)

Ord
All except IO,
(->), IOError

Num
Int, Integer,
Float, Double

Bounded
Int, Char,

Bool, (), Or-
dering, tuples

Enum
(), Bool, Char, Or-
dering, Int, Integer,

Float, Double

Real
Int, Integer,
Float, Double

Fractional
Float, Double

Integral
Int, Integer

RealFrac
Float, Double

Floating
Float, Double

Monad
IO, (), Maybe

RealFloat
Float, Double

MonadPlus
IO, (), Maybe

Functor
IO, (), Maybe

Abbildung 7.1: Hierarchie der Haskell Standardklassen

47 7. HASKELL

7.3.3 type

Mit type können Typsynonyme erstellt werden:

type Prename = String
type Age = Double
type Person = (Prename, Age)
type Friends = [Person]
type Polynom = [Double]

7.3.4 data

Mit dem Schlüsselwort data können algebraische Datentypen
erzeugt werden:

data Bool = False | True
data Color = Red | Green | Blue | Indigo | Violet
data Tree a = Leaf a | Branch (Tree a) (Tree a)
data Point = Point Float Float deriving (Show)
data Tree t = Node t [Tree t]

7.4 Lazy Evaluation

Haskell wertet Ausdrücke nur aus, wenn es nötig ist.

Beispiel 25 (Lazy Evaluation)
Obwohl der folgende Ausdruck einen Teilausdruck hat, der
einen Fehler zurückgeben würde, kann er aufgrund der Lazy
Evaluation zu 2 evaluiert werden:

lazy-evaluation.hs
1 g a b c
2 | c > 0 = b
3 | otherwise = a
4

7.5. BEISPIELE 48

5 main = do
6 print (g (1/0) 2 3)

Ein spezialfall der Lazy-Evaluation ist die sog.Kurzschlussauswertung.
Das bezeichnet die Lazy-Evaluation von booleschen Ausdrücken.

7.5 Beispiele

7.5.1 Quicksort

qsort.hs
1 qsort [] = []
2 qsort (p:ps) = (qsort (filter (\x -> x<=p) ps))
3 ++ p:(qsort (filter (\x -> x> p) ps))

• Die leere Liste ergibt sortiert die leere Liste.

• Wähle das erste Element p als Pivotelement und teile die
restliche Liste ps in kleinere und gleiche sowie in größere
Elemente mit filter auf. Konkateniere diese beiden Listen
mit ++.

Durch das Ausnutzen von Unterversorgung lässt sich das ganze
sogar noch kürzer schreiben:

qsort.hs
1 qsort [] = []
2 qsort (p:ps) = (qsort (filter (<=p) ps))
3 ++ p:(qsort (filter (> p) ps))

7.5.2 Fibonacci

49 7. HASKELL

fibonacci.hs
1 fib n
2 | (n == 0) = 0
3 | (n == 1) = 1
4 | otherwise = fib (n - 1) + fib (n - 2)

fibonacci-akk.hs
1 fibAkk n n1 n2
2 | (n == 0) = n1
3 | (n == 1) = n2
4 | otherwise = fibAkk (n - 1) n2 (n1 + n2)
5 fib n = fibAkk n 0 1

fibonacci-zip.hs
1 fib = 0 : 1 : zipWith (+) fibs (tail fibs)

fibonacci-pattern-matching.hs
1 fib 0 = 0
2 fib 1 = 1
3 fib n = fib (n - 1) + fib (n - 2)

7.5.3 Quicksort

TODO

7.5.4 Funktionen höherer Ordnung

folds.hs
1 summer :: [Int] -> Int
2 summer = foldr (-) 0
3

4 summel :: [Int] -> Int
5 summel = foldl (-) 0
6

7.5. BEISPIELE 50

7 main :: IO ()
8 main = do
9 print (summer [1,2,3])

10 -- 0-(1-(2-3)) = 0-(1-(-1)) = 2
11 print (summel [1,2,3])
12 -- ((0-1)-2)-3 = -6

7.5.5 Chruch-Zahlen

church.hs
1 type Church t = (t -> t) -> t -> t
2

3 int2church :: Integer -> Church t
4 int2church 0 s z = z
5 int2church n s z = int2church (n - 1) s (s z)
6

7 church2int :: Church Integer -> Integer
8 church2int n = n (+1) 0

7.5.6 Standard Prelude

Hier sind die Definitionen eininger wichtiger Funktionen:

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

zipWith :: (a->b->c) -> [a]->[b]->[c]
zipWith z (a:as) (b:bs)

= z a b : zipWith z as bs
zipWith _ _ _ = []

51 7. HASKELL

zip :: [a] -> [b] -> [(a,b)]
zip = zipWith (,)

unzip :: [(a,b)] -> ([a],[b])
unzip = foldr (\(a,b) ~(as,bs) -> (a:as,b:bs)) ([],[])

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

take :: Int -> [a] -> [a]
take n _ | n <= 0 = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs

splitAt :: Int -> [a] -> ([a],[a])
splitAt n xs = (take n xs, drop n xs)

7.6 Weitere Informationen

• hackage.haskell.org/package/base-4.6.0.1: Re-
ferenz

• haskell.org/hoogle: Suchmaschine für das Haskell-Manual

http://hackage.haskell.org/package/base-4.6.0.1
http://www.haskell.org/hoogle/

7.6. WEITERE INFORMATIONEN 52

• wiki.ubuntuusers.de/Haskell: Hinweise zur Installa-
tion von Haskell unter Ubuntu

http://wiki.ubuntuusers.de/Haskell

8 Prolog

Prolog ist eine Programmiersprache, die das logische Programmier-
paradigma befolgt.

Eine interaktive Prolog-Sitzung startet man mit swipl.

In Prolog definiert man Terme.

8.1 Erste Schritte

8.1.1 Hello World

Speichere folgenden Quelltext als hello-world.pl:

hello-world.hs
1 :- initialization(main).
2 main :- write(’Hello World!’), nl, halt.

Kompiliere ihn mit gplc hello-world.pl. Es wird eine aus-
führbare Datei erzeugt.

8.2. SYNTAX 54

8.2 Syntax

8.3 Beispiele

8.3.1 Humans

Erstelle folgende Datei:

human.pro
1 human(bob).
2 human(socrates).
3 human(antonio).

Kompiliere diese mit

$ swipl -c human.pro
% library(swi_hooks) compiled into pce_swi_hooks
% 0.00 sec, 2,224 bytes
% human.pro compiled 0.00 sec, 644 bytes
% /usr/lib/swi-prolog/library/listing compiled into
% prolog_listing 0.00 sec, 21,648 bytes

Dabei wird eine a.out Datei erzeugt, die man wie folgt nutzen
kann:

$./a.out
Welcome to SWI-Prolog (Multi-threaded, 32 bits, Version 5.10.4)
Copyright (c) 1990-2011 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free
software, and you are welcome to redistribute it under certain
conditions. Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?- human(socrates).
true.

55 8. PROLOG

8.3.2 Splits

splits.pl
1 splits(L, ([], L)).
2 splits([X|L], ([X|S], E)) :- splits(L, (S, E)).

Dieses skript soll man swipl -f test.pl aufrufen. Dann erhält
man:

? splits([1,2,3], Res).
Res = ([], [1,2,3]) ;
Res = ([1], [2,3]) ;
Res = ([1,2], [3]) ;
Res = ([1,2,3], []) ;
No

8.3.3 Delete

remove([(X,A)|L],X,[(X,ANew)|L]) :- A>0, ANew is A-1.
remove([X|L],Y,[X|L1]) :- remove(L,Y,L1).

8.3.4 Zebrarätsel

Folgendes Rätsel wurde von https://de.wikipedia.org/w/
index.php?title=Zebrar%C3%A4tsel&oldid=126585006
entnommen:

1. Es gibt fünf Häuser.

2. Der Engländer wohnt im roten Haus.

3. Der Spanier hat einen Hund.

4. Kaffee wird im grünen Haus getrunken.

5. Der Ukrainer trinkt Tee.

6. Das grüne Haus ist direkt rechts vom weißen Haus.

https://de.wikipedia.org/w/index.php?title=Zebrar%C3%A4tsel&oldid=126585006
https://de.wikipedia.org/w/index.php?title=Zebrar%C3%A4tsel&oldid=126585006

8.3. BEISPIELE 56

7. Der Raucher von Altem-Gold-Zigaretten hält Schnecken als
Haustiere.

8. Die Zigaretten der Marke Kools werden im gelben Haus
geraucht.

9. Milch wird im mittleren Haus getrunken.

10. Der Norweger wohnt im ersten Haus.

11. Der Mann, der Chesterfields raucht, wohnt neben dem Mann
mit dem Fuchs.

12. Die Marke Kools wird geraucht im Haus neben dem Haus
mit dem Pferd.

13. Der Lucky-Strike-Raucher trinkt am liebsten Orangensaft.

14. Der Japaner raucht Zigaretten der Marke Parliaments.

15. Der Norweger wohnt neben dem blauen Haus.

Wer trinkt Wasser? Wem gehört das Zebra?

zebraraetsel.pro
1 Street=[Haus1,Haus2,Haus3],
2 mitglied(haus(rot,_,_),Street),
3 mitglied(haus(blau,_,_),Street),
4 mitglied(haus,(grün,_,_),Street),
5 mitglied(haus(rot,australier,_),Street),
6 mitglied(haus(_,italiener,tiger),Street),
7 sublist(haus(_,_,eidechse),haus(_,chinese,_),Street),
8 sublist(haus(blau,_,_),haus(_,_,eidechse),Street),
9 mitglied(haus(_,N,nilpferd),Street).

TODO

57 8. PROLOG

8.4 Weitere Informationen

• wiki.ubuntuusers.de/Prolog: Hinweise zur Installa-
tion von Prolog unter Ubuntu

http://wiki.ubuntuusers.de/Prolog

9 Scala

Scala ist eine objektorientierte und funktionale Programmierspra-
che, die auf der JVM aufbaut und in Java Bytecode kompiliert
wird. Scala bedeutet scalable language.

Mit sog. „actors“ bietet Scala eine Unterstützung für die Entwick-
lung prallel ausführender Programme.

Weitere Materialien sind unter http://www.scala-lang.org/
und http://www.simplyscala.com/ zu finden.

9.1 Erste Schritte

Scala kann auf Debian-basierten Systemen durch das Paket scala
installiert werden. Für andere Systeme stehen auf http://www.
scala-lang.org/download/ verschiedene Binärdateien be-
reit.

9.1.1 Hello World

Interaktiv

$ scala
Welcome to Scala version 2.9.2 [...]

scala> println("Hello world")
Hello world

http://www.scala-lang.org/
http://www.simplyscala.com/
http://www.scala-lang.org/download/
http://www.scala-lang.org/download/

9.2. VERGLEICH MIT JAVA 60

Es kann mit ./scala-test.scala Scala funktioniert
ausgeführt werden.

Kompiliert

hello-world.scala
1 object HelloWorld {
2 def main(args: Array[String]) {
3 println("Hello World!")
4 }
5 }

Dieses Beispiel kann mit scalac hello-world.scala kompi-
liert und mit scala HelloWorld ausgeführt werden.

9.2 Vergleich mit Java

Scala und Java haben einige Gemeinsamkeiten, wie den Java
Bytecode, aber auch einige Unterschiede.

Gemeinsamkeiten
• Java Bytecode
• Keine Mehrfachvererbung
• Statische Typisierung
• Scopes

Unterschiede
• Java hat Interfaces, Scala hat

traits.
• Java hat primitive Typen, Scala

ausschließlich Objekte.
• Scala benötigt kein ; am Ende
von Anweisungen.
• Scala ist kompakter.
• Java hat static, Scala hat
object (Singleton)

Weitere Informationen hat Graham Lea unter http://tinyurl.
com/scala-hello-world zur Verfügung gestellt.

http://tinyurl.com/scala-hello-world
http://tinyurl.com/scala-hello-world

61 9. SCALA

9.3 Syntax

In Scala gibt es sog. values, die durch das Schlüsselwort val
angezeigt werden. Diese sind Konstanten. Die Syntax ist der UML-
Syntax ähnlich.

val name: type = value

Variablen werden durch das Schlüsselwort var angezeigt:

var name: type = value

Methoden werden mit dem Schlüsselwort def erzeugt:

def name(parameter: String): Unit = { code ... }

Klassen werden wie folgt erstellt:

class Person (
val firstName: String,
var lastName: String,
age: Int) {
println("This is the constructur.")

def sayHi() = println("Hello world!")
}

und so instanziiert:

val anna = new Person("anna", "bern", 18)
anna.sayHi()

Listen können erstellt und durchgegangen werden:

val list = List("USA", "Russia", "Germany")
for(country <- list)

println(country)

9.4. COMPANION OBJECT 62

9.4 Companion Object

Ein Companion Object ist ein Objekt mit dem Namen einer Klasse
oder eines Traits. Im Gegensatz zu anderen Objekten / Traits hat
das Companion Object zugriff auf die Klasse.

9.5 actor

actor dient der Concurrency.

9.6 Beispiele

9.6.1 Wetter

Das folgende Script sendet parallel Anfragen über verschiedene
ZIP-Codes an die Yahoo-Server, parst das XML und extrahiert
die Stadt sowie die Temperatur:

weather.scala
1 import scala.io._
2 import scala.xml.{Source => Source2, _}
3 import scala.actors._
4 import Actor._
5

6 def getWeatherInfo(woeid: String) = {
7 val url = "http://weather.yahooapis.com/forecastrss?w=" + woeid
8 val response = Source.fromURL(url).mkString
9 val xmlResponse = XML.loadString(response)

10 println(xmlResponse \\ "location" \\ "@city",
11 xmlResponse \\ "condition" \\ "@temp")
12 }
13

14 val caller = self

63 9. SCALA

15

16 for(id <- 2391271 to 2391279) {
17 actor{ getWeatherInfo(id.toString) }
18 }
19

20 for(id <- 2391271 to 2391279) {
21 receiveWithin(5000) {
22 case msg => println(msg)
23 }
24 }

9.7 Weitere Informationen

• http://docs.scala-lang.org/style/naming-conventions.
html

http://docs.scala-lang.org/style/naming-conventions.html
http://docs.scala-lang.org/style/naming-conventions.html

10 X10

X10 ist eine objektorientierte Programmiersprache, die 2004 bei
IBM entwickelt wurde.

10.1 Erste Schritte

Als erstes sollte man x10 von http://x10-lang.org/x10-development/
building-x10-from-source.html?id=248 herunterladen.

Dann kann man die bin/x10c++ zum erstellen von ausführbaren
Dateien nutzen. Der Befehl x10c++ hello-world.x10 erstellt
eine ausführbare Datei namens a.out.

hello-world.x10
// file HelloWorld.x10
public class HelloWorld {

public static def main(args:Rail[String]) {
x10.io.Console.OUT.println("Hello, World");

}
}

10.2 Syntax

10.3 Datentypen

Byte, UByte, Short, UShort, Char, Int, UInt, Long, ULong, Float,
Double, Boolean, Complex, String, Point, Region, Dist, Array

http://x10-lang.org/x10-development/building-x10-from-source.html?id=248
http://x10-lang.org/x10-development/building-x10-from-source.html?id=248

10.4. BEISPIELE 66

10.4 Beispiele

10.5 Weitere Informationen

• http://x10-lang.org/

http://x10-lang.org/

11 C

C ist eine imperative Programmiersprache. Sie wurde in vielen
Standards definiert. Die wichtigsten davon sind:

• C89 wird auch ANSI C genannt.

• C90 wurde unter ISO 9899:1990 veröffentlicht. Es gibt keine
bedeutenden Unterschiede zwischen C89 und C90, nur ist das
eine ein ANSI-Standard und das andere ein ISO-Standard.

• C99 wurde unter ISO 9899:1999 veröffentlicht.

• C11 wurde unter ISO 9899:2011 veröffentlicht.

11.1 Datentypen

Die grundlegenden C-Datentypen sind

Typ Größe
char 1 Byte
int 4 Bytes
float 4 Bytes
double 8 Bytes
void 0 Bytes

zusätzlich kann man char und int noch in signed und unsigned
unterscheiden. Diese werden Modifier genannt.

In C gibt es keinen direkten Support für Booleans.

11.2. ASCII-TABELLE 68

11.2 ASCII-Tabelle

Dez. Z. Dez. Z. Dez. Z. Dez. Z.
0 32 64 @ 96 ’
1 33 ! 65 A 97 a
2 34 " 66 B 98 b
3 35 # 67 C 99 c
4 36 $ 68 D 100 d
5 37 % 69 E 101 e
6 38 & 70 F 102 f
7 39 ’ 71 G 103 g
8 40 (72 H 104 h
9 41) 73 I 105 i
10 42 * 74 J 106 j
11 43 + 75 K 107 k
12 44 , 76 L 108 l
13 45 - 77 M 109 m
14 46 . 78 N 110 n
15 47 / 79 O 111 o
16 48 0 80 P 112 p
17 49 1 81 Q 113 q
18 50 2 82 R 114 r
19 51 3 83 S 115 s
20 52 4 84 T 116 t
21 53 5 85 U 117 u
22 54 6 86 V 118 v
23 55 7 87 W 119 w
24 56 8 88 X 120 x
25 57 9 89 Y 121 y
26 58 : 90 Z 122 z
27 59 ; 91 [123 {
28 60 < 92 \ 124 |
29 61 = 93] 125 }
30 62 > 94 ^ 126 ∼
31 63 ? 95 _ 127 DEL

69 11. C

11.3 Syntax

11.4 Präzedenzregeln

A „[name] is a. . . “
B.1 prenthesis ()
B.2 postfix operators:

B.2.1 () „. . . function returning. . . “
B.2.2 [] „. . . array of. . . “

B.3 prefix operator: * „. . . pointer to. . . “
B.4 prefix operator * and const / volatile modifier:

„. . . [modifier] pointer to. . . “
B.5 const / volatile modifier next to type specifier:

„. . . [modifier] [specifier]“
B.6 type specifier: „. . . [specifier]“

static unsigned int* const *(*next)();

A next next is a
B.3 * . . . pointer to. . .
B.1 () . . .
B.2.1 () . . . a function returning. . .
B.3 * . . . pointer to. . .
B.4 *const . . . a read-only pointer to. . .
B.6 static unsigned int . . . static unsigned int.

11.5 Beispiele

11.5.1 Hello World

Speichere den folgenden Text als hello-world.c:

hello-world.c
1 #include <stdio.h>
2

11.5. BEISPIELE 70

3 int main(void)
4 {
5 printf("Hello, World\n");
6 return 0;
7 }

Compiliere ihn mit gcc hello-world.c. Es wird eine ausführ-
bare Datei namens a.out erzeugt.

11.5.2 Pointer

1 #include <stdio.h>
2

3 int arr[] = {0,1,2,3,4,5};
4

5 int main() {
6 printf("%i %i", arr[0], (&arr[3])[0]);
7 return 0;
8 }

Die Ausgabe hier ist 0 3.

12 MPI

Message Passing Interface (kurz: MPI) ist ein Standard, der den
Nachrichtenaustausch bei parallelen Berechnungen auf verteilten
Computersystemen beschreibt.

12.1 Erste Schritte

hello-world.c
#include <stdio.h>
#include <mpi.h>
int main (int argc, char** args) {

int size;
int myrank;
MPI_Init(&argc, &args);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
printf("Hello world, I have rank %d out of %d.\n",

myrank, size);
MPI_Finalize();
return 0;

}

Das wird mpicc hello-world.c kompiliert.
Mit mpirun -np 14 scripts/mpi/a.out werden 14 Kopien
des Programms gestartet.

12.2. FUNKTIONEN 72

12.2 Funktionen

int MPI_Comm_size(MPI_Comm comm, int *size)

Liefert die Größe des angegebenen Kommunikators; dh. die Anzahl
der Prozesse in der Gruppe.

Parameter

• comm: Kommunikator (handle)

• size: Anzahl der Prozesse in der Gruppe von comm

Beispiel

#include "mpi.h"

int size;
MPI_Comm comm;
...
MPI_Comm_size(comm, &size);
...

int MPI_Comm_rank(MPI_Comm comm, int *rank)

Bestimmt den Rang des rufenden Prozesses innerhalb des Kom-
munikators.

Der Rang wird von MPI zum Identifizieren eines Prozesses verwen-
det. Die Rangnummer ist innerhalb eines Kommunikators eindeutig.
Dabei wird stets von Null beginnend durchnumeriert. Sender und
Empfänger bei Sendeoperationen oder die Wurzel bei kollektiven
Operationen werden immer mittels Rang angegeben.

Parameter

• comm: Kommunikator (handle)

• rank: Rang des rufenden Prozesses innerhalb von comm

73 12. MPI

Beispiel

#include "mpi.h"

int rank;
MPI_Comm comm;

...
MPI_Comm_rank(comm, &rank);
if (rank==0) {

... Code fur Prozess 0 ...
}
else {

... Code fur die anderen Prozesse ...
}

int MPI_Reduce(const void *sendbuf, void *recvbuf,
int count, MPI_Datatype datatype,
MPI_Op op, int root, MPI_Comm comm)

Führt eine globale Operation op aus; der Prozeß „root“ erhält das
Resultat.

Parameter

• sendbuf : Startadresse des Sendepuffers

• count: Anzahl der Elemente im Sendepuffer

• datatype: Datentyp der Elemente von sendbuf

• op: auszuführende Operation (handle)

• root: Rang des Root-Prozesses in comm, der das Ergebnis
haben soll

• comm: Kommunikator (handle)

12.2. FUNKTIONEN 74

MPI_Bcast(buffer, count, datatype, root, comm)

Sendet eine Nachricht vom Prozess root an alle anderen Prozesse
des angegebenen Kommunikators.

Parameter

• buffer: Startadresse des Datenpuffers

• count: Anzahl der Elemente im Puffer

• datatype: Datentyp der Pufferelemente (handle)

• root: Wurzelprozeß; der, welcher sendet

• comm: Kommunikator (handle)

MPI_Scatter(sendbuf, sendcount, sendtype, recvbuf,
recvcount, recvtype, root, comm)

Verteilt Daten vom Prozess root unter alle anderen Prozesse in
der Gruppe, so daß, soweit möglich, alle Prozesse gleich große
Anteile erhalten.

Parameter

• sendbuf : Anfangsadresse des Sendepuffers (Wert ist ledig-
lich für ’root’ signifikant)

• sendcount: Anzahl der Elemente, die jeder Prozeß geschickt
bekommen soll (integer)

• sendtype: Datentyp der Elemente in sendbuf (handle)

• recvcount: Anzahl der Elemente im Empfangspuffer. Meist
ist es günstig, recvcount = sendcount zu wählen.

75 12. MPI

• recvtype: Datentyp der Elemente des Empfangspuffers (hand-
le)

• root: Rang des Prozesses in comm, der die Daten versendet

• comm: Kommunikator (handle)

Beispiel

#include "mpi.h"

int myid;
int recvbuf[DATASIZE], sendbuf[DATA_SIZE];

...
/* Minimum bilden */
MPI_Reduce(sendbuf, recvbuf, DATA_SIZE, MPI_INT, MPI_MIN,

0, MPI_COMM_WORLD);
...

12.3 Beispiele

12.4 Weitere Informationen

• http://mpitutorial.com/

• http://www.open-mpi.org/

• http://www.tu-chemnitz.de/informatik/RA/projects/
mpihelp/

http://mpitutorial.com/
http://www.open-mpi.org/
http://www.tu-chemnitz.de/informatik/RA/projects/mpihelp/
http://www.tu-chemnitz.de/informatik/RA/projects/mpihelp/

13 Compilerbau

Wenn man über Compiler redet, meint man üblicherweise „voll-
ständige Übersetzer“:

Definition 38
Ein Compiler ist ein Programm C, das den Quelltext eines
Programms A in eine ausführbare Form übersetzen kann.

Jedoch gibt es verschiedene Ebenen der Interpretation bzw. Über-
setzung:

1. Reiner Interpretierer: TCL, Unix-Shell

2. Vorübersetzung: Java-Bytecode, Pascal P-Code, Python1,
Smalltalk-Bytecode

3. Laufzeitübersetzung: JavaScript2

4. Vollständige Übersetzung: C, C++, Fortran

Zu sagen, dass Python eine interpretierte Sprache ist, ist in etwa
so korrekt wie zu sagen, dass die Bibel ein Hardcover-Buch ist.3

Reine Interpretierer lesen den Quelltext Anweisung für Anweisung
und führen diese direkt aus.

Bild

1Python hat auch .pyc-Dateien, die Python-Bytecode enthalten.
2JavaScript wird nicht immer zur Laufzeit übersetzt. Früher war es üblich,
dass JavaScript nur interpretiert wurde.

3Quelle: stackoverflow.com/a/2998544, danke Alex Martelli für diesen Ver-
gleich.

78

Bei der Interpretation nach Vorübersetzung wird der Quelltext ana-
lysiert und in eine für den Interpretierer günstigere Form übersetzt.
Das kann z. B. durch

• Zuordnung Bezeichnergebrauch - Vereinbarung??

• Transformation in Postfixbaum

• Typcheck, wo statisch möglich

geschehen. Diese Vorübersetzung ist nicht unbedingt maschinen-
nah.

Bild

Die Just-in-time-Compiler (kurz: JIT-Compiler) betreiben Lauf-
zeitübersetzung. Folgendes sind Vor- bzw. Nachteile von Just-in-
time Compilern:

• schneller als reine Interpretierer

• Speichergewinn: Quelle kompakter als ZielprogrammWas
ist
hier
ge-
meint?

Was
ist
hier
ge-
meint?

• Schnellerer Start des Programms

• Langsamer (pro Funktion) als vollständige Übersetzung

• kann dynamisch ermittelte Laufzeiteigenschaften berücksich-
tigen (dynamische Optimierung)

Moderne virtuelle Maschinen für Java und für .NET nutzen JIT-
Compiler.

Bei der vollständigen Übersetzung wird der Quelltext vor der ers-
ten Ausführung des Programms A in Maschinencode (z. B. x86,
SPARC) übersetzt.

Bild

79 13. COMPILERBAU

13.1 Funktionsweise

Üblicherweise führt ein Compiler folgende Schritte aus:

1. Lexikalische Analyse

2. Syntaktische Analyse

3. Semantische Analyse

4. Zwischencodeoptimierung

5. Codegenerierung

6. Assemblieren und Binden

13.2 Lexikalische Analyse

In der lexikalischen Analyse wird der Quelltext als Sequenz von
Zeichen betrachtet. Sie soll bedeutungstragende Zeichengruppen,
sog. Tokens , erkennen und unwichtige Zeichen, wie z. B. Kommen-
tare überspringen. Außerdem sollen Bezeichner identifiziert und in
einer Stringtabelle zusammengefasst werden.

Beispiel 26
Beispiel erstellen

13.2.1 Reguläre Ausdrücke

Beispiel 27 (Regulärere Ausdrücke)
Folgender regulärer Ausdruck erkennt Float-Konstanten in C
nach ISO/IEC 9899:1999 §6.4.4.2:

((0| . . . |9)∗.(0| . . . |9)+)|((0| . . . |9)+.)

13.2. LEXIKALISCHE ANALYSE 80

Satz 13.1
Jede reguläre Sprache wird von einem (deterministischen)
endlichen Automaten akzeptiert.

TODO: Bild einfügen

Zu jedem regulären Ausdruck im Sinne der theoretischen Infor-
matik kann ein nichtdeterministischer Automat generiert werden.
Dieser kann mittels Potenzmengenkonstruktion4 in einen deter-
ministischen Automaten überführen. Dieser kann dann mittels
Äquivalenzklassen minimiert werden.

Alle Schritte beschreiben

13.2.2 Lex

Lex ist ein Programm, das beim Übersetzerbau benutzt wird um
Tokenizer für die lexikalische Analyse zu erstellen. Flex ist eine
Open-Source Variante davon.

Eine Flex-Datei besteht aus 3 Teilen, die durch %% getrennt werden:

Definitionen: Definiere Namen
%%
Regeln: Definiere reguläre Ausdrücke und

zugehörige Aktionen (= Code)
%%
Code: zusätzlicher Code

81 13. COMPILERBAU

x Zeichen ’x’ erkennen
"xy" Zeichenkette ’xy’ erkennen
\ Zeichen ’x’ erkennen (TODO)
[xyz] Zeichen x, y oder z erkennen
[a− z] Alle Kleinbuchstaben erkennen
[− z] Alle Zeichen außer Kleinbuchstaben erkennen
x|y x oder y erkennen
(x) x erkennen
x* 0, 1 oder mehrere Vorkommen von x erkennen
x+ 1 oder mehrere Vorkommen von x erkennen
x? 0 oder 1 Vorkommen von x erkennen
{Name} Expansion der Definition Name
\t, \n, \rq Tabulator, Zeilenumbruch, Wagenrücklauf erkennen

Reguläre Ausdrücke in Flex

13.3 Syntaktische Analyse

In der syntaktischen Analyse wird überprüft, ob die Tokenfolge
zur kontextfreien Sprachegehört. Außerdem soll die hierarchische Warum

kon-
text-
frei?

Warum
kon-
text-
frei?

Struktur der Eingabe erkannt werden.

Was
ist ge-
meint?

Was
ist ge-
meint?

Ausgegeben wird ein abstrakter Syntaxbaum.

Beispiel 28 (Abstrakter Syntaxbaum)
TODO

13.4 Semantische Analyse

Die semantische Analyse arbeitet auf einem abstrakten Syntax-
baum und generiert einen attributierten Syntaxbaum.

Sie führt eine kontextsensitive Analyse durch. Dazu gehören:
4http://martin-thoma.com/potenzmengenkonstruktion/

http://martin-thoma.com/potenzmengenkonstruktion/

13.5. ZWISCHENCODEOPTIMIERUNG 82

• Namensanalyse: Beziehung zwischen Deklaration und Ver-
wendung??

• Typanalyse: Bestimme und prüfe Typen von Variablen,
Funktionen, . . .??

• Konsistenzprüfung: Wurden alle Einschränkungen der Pro-
grammiersprache eingehalten???

Beispiel 29 (Attributeriter Syntaxbaum)
TODO

13.5 Zwischencodeoptimierung

Hier wird der Code in eine sprach- und zielunabhängige Zwischen-
sprache transformiert. Dabei sind viele Optimierungen vorstellbar.
Ein paar davon sind:

• Konstantenfaltung: Ersetze z. B. 3 + 5 durch 8.

• Kopienfortschaffung: Setze Werte von Variablen direkt
ein

• Code verschieben: Führe Befehle vor der Schleife aus, statt
in der Schleife??

• Gemeinsame Teilausdrücke entfernen: Es sollen dop-
pelte Berechnungen vermieden werdenBeispiel?Beispiel?

• Inlining: Statt Methode aufzurufen, kann der Code der
Methode an der Aufrufstelle eingebaut werden.

13.6 Codegenerierung

Der letzte Schritt besteht darin, aus dem generiertem Zwischenco-
de den Maschinencode oder Assembler zu erstellen. Dabei muss
folgendes beachtet werden:

83 13. COMPILERBAU

• Konventionen: Wie werden z. B. im Laufzeitsystem Me-
thoden aufgerufen?

• Codeauswahl: Welche Befehle kennt das Zielsystem?

• Scheduling: In welcher Reihenfolge sollen die Befehle ange-
ordnet werden?

• Registerallokation: Welche Zwischenergebnisse sollen in
welchen Prozessorregistern gehalten werden?

• Nachoptimierung ??

14 Java Bytecode

Definition 39 (Bytecode)
Der Bytecode ist eine Sammlung von Befehlen für eine virtuelle
Maschine.

Bytecode ist unabhängig von realer Hardware.

Definition 40 (Heap)
Der dynamische Speicher, auch Heap genannt, ist ein Speicher-
bereich, aus dem zur Laufzeit eines Programms zusammen-
hängende Speicherabschnitte angefordert und in beliebiger
Reihenfolge wieder freigegeben werden können.

Activation Record ist ein Stackframe.

14.1 Instruktionen

Beschreibung int float
Addition iadd fadd
Element aus Array auf Stack packen iaload faload
Element aus Stack in Array speichern iastore fastore
Konstante auf Stack legen iconst_<i> fconst_<f>
Divide second-from top by top idiv fdiv
Multipliziere die obersten beiden
Zahlen des Stacks

imul fmul

14.2. WEITERE INFORMATIONEN 86

14.2 Weitere Informationen

• http://cs.au.dk/~mis/dOvs/jvmspec/ref-Java.html

http://cs.au.dk/~mis/dOvs/jvmspec/ref-Java.html

Bildquellen

Abb. ?? S2: Tom Bombadil, tex.stackexchange.com/a/42865

http://tex.stackexchange.com/a/42865/5645

Abkürzungsverzeichnis

AST Abstrakter Syntaxbaum (Abstract Syntax Tree)

Beh. Behauptung

Bew. Beweis

bzgl. bezüglich

bzw. beziehungsweise

ca. circa

d. h. das heißt

DEA Deterministischer Endlicher Automat

etc. et cetera

ggf. gegebenenfalls

mgu most general unifier

sog. sogenannte

Vor. Voraussetzung

vgl. vergleiche

z. B. zum Beispiel

z. z. zu zeigen

Ergänzende Definitionen

Definition 41 (Quantoren)

a) ∀x ∈ X : p(x): Für alle Elemente x aus der Menge X
gilt die Aussage p.

b) ∃x ∈ X : p(x): Es gibt mindestens ein Element x aus
der Menge X, für das die Aussage p gilt.

c) ∃!x ∈ X : p(x): Es gibt genau ein Element x in der
Menge X, sodass die Aussage p gilt.

Definition 42 (Prädikatenlogik)
Eine Prädikatenlogik ist ein formales System, das Variablen
und Quantoren nutzt um Aussagen zu formulieren.

Definition 43 (Aussagenlogik)
TODO

Definition 44 (Grammatik)
Eine (formale) Grammatik ist ein Tupel (Σ, V, P, S) wobei
gilt:

(i) Σ ist eine endliche Menge und heißt Alphabet,

(ii) V ist eine endliche Menge mit V ∩ Σ = ∅ und heißt
Menge der Nichtterminale,

(iii) S ∈ V heißt das Startsymbol

(iv) P = { p : I → r | I ∈ (V ∪ Σ)+, r ∈ (V ∪ Σ)∗ } ist eine
endliche Menge aus Produktionsregeln

Ergänzende Definitionen 92

Man schreibt:

• a⇒ b: Die Anwendung einer Produktionsregel auf a ergibt
b.

• a ⇒∗ b: Die Anwendung mehrerer (oder keiner) Produkti-
onsregeln auf a ergibt b.

• a⇒+ b: Die Anwendung mindestens einer Produktionsregel
auf a ergibt b.

Beispiel 30 (Formale Grammatik)
Folgende Grammatik G = (Σ, V, P,A) erzeugt alle korrekten
Klammerausdrücke:

• Σ = { (,) }

• V = { α }

• s = α

• P = { α→ () | αα|(α) }

Definition 45 (Kontextfreie Grammatik)
Eine Grammatik (Σ, V, P, S) heißt kontextfrei, wenn für jede
Produktion p : I → r gilt: I ∈ V .

Definition 46 (Sprache)
Sei G = (Σ, V, P, S) eine Grammatik. Dann ist

L(G) := { ω ∈ Σ∗ | S ⇒∗ ω }

die Menge aller in der Grammatik ableitbaren Wörtern. L(G)
heißt Sprache der Grammatik G.

Definition 47
Sei G = (Σ, V, P, S) eine Grammatik und a ∈ (V ∪ Σ)+.

a) ⇒L heißt Linksableitung, wenn die Produktion auf
das linkeste Nichtterminal angewendet wird.

b) ⇒R heißt Rechtsableitung, wenn die Produktion auf
das rechteste Nichtterminal angewendet wird.

93 Ergänzende Definitionen

Beispiel 31 (Links- und Rechtsableitung)
Sie G wie zuvor die Grammatik der korrekten Klammeraus-
drücke:

α⇒L αα

⇒L ααα

⇒L ()αα

⇒L ()(α)α

⇒L ()(())α

⇒L ()(())()

⇐⇒ α⇒R αα

⇒R ααα

⇒R αα()

⇒R α(α)()

⇒R α(())()

⇒R ()(())()

Definition 48 (LL(k)-Grammatik)
Sei G = (Σ, V, P, S) eine kontextfreie Grammatik. G heißt
LL(k)-Grammatik für k ∈ N≥1, wenn jeder Ableitungsschritt
durch die linkesten k Symbole der Eingabe bestimmt ist. Was

ist die
Ein-
gabe
einer
Gram-
ma-
tik?

Was
ist die
Ein-
gabe
einer
Gram-
ma-
tik?

Ein LL-Parser ist ein Top-Down-Parser liest die Eingabe von
Links nach rechts und versucht eine Linksableitung der Eingabe zu
berechnen. Ein LL(k)-Parser kann k Token vorausschauen, wobei

k als Lookahead bezeichnet wird.

Satz .1
Für linksrekursive, kontextfreie Grammatiken G gilt:

∀k ∈ N : G /∈ SLL(k)

Symbolverzeichnis

Reguläre Ausdrücke

∅ Leere Menge
ε Das leere Wort
α, β Reguläre Ausdrücke
L(α) Die durch α beschriebene Sprache
L(α|β) = L(α) ∪ L(β)

L(α · β) = L(α) · L(β)

L0 := { ε } Die leere Sprache
Ln+1 := Ln ◦ L für n ∈ N0 Potenz einer Sprache
α+ = L(α)+ =

⋃
i∈N

L(α)i

α∗ = L(α)∗ =
⋃
i∈N0

L(α)i

Logik

M |= ϕ Im ModellM gilt das Prädikat ϕ.
ψ ` ϕ Die Formel ϕ kann aus der Menge der Formeln ψ herge-
leitet werden.

Symbolverzeichnis 96

Weiteres

⊥ Bottom

Stichwortverzeichnis

Ableitungsregel, siehe Produk-
tionsregel

Activation Record, siehe Stack-
frame

actor, 62
Akkumulator, 42
Alphabet, 91
Analyse

lexikalische, 79
semantische, 81
syntaktische, 81

Assembler, 4
Ausdrücke

reguläre, 79
Aussagenlogik, 91

Backtracking, 12
Befehlssatz, 3
Binomialkoeffizient, 9
Broadcast, 37
Bytecode, 85

C, 67–70
Call-By-Name, 23
Call-By-Value, 23
char, 67
Church-Booleans, 25

Companion Object, 62
Compiler, 77

Just-in-time, 78
Compilerbau, 77–83
cons, 42

data, 47
Datentyp, 27

algebraischer, 47
Datentypen, 67
def, 61

Fakultät, 9
Fibonacci, 48
Fibonacci-Funktion, 9
filter, 12
Flex, siehe Lex
Flynn’sche Klassifikation, 33
foldl, 49
foldr, 49
Folds, 49
Funktion

endrekursive, 11
linear rekursive, 11
rekursive, 9

Grammatik, 91
Kontextfreie, 92

Stichwortverzeichnis 98

Guard, 41

Haskell, 39–52
Heap, 85

int, 67

Java Bytecode, 85–86
JIT, siehe Just-in-time Com-

piler

Kombinator, 19
Kommunikator, 36
Kurzschlussauswertung, 48

Lazy Evaluation, 47
Lex, 80–81
Linksableitung, 92
List-Comprehension, 43
LL(k)-Grammatik, 93
Lookahead, 93

map, 12
Maschinensprache, 3
message passing, 32
MIMD, 33
MISD, 33
Modifier, 67
Monitor, 35
MPI, 71–75

NC, siehe Nick’s Class
Nebeneffekt, siehe Seiteneffekt
Nichtterminal, 91
Nick’s Class, 33
Normalenreihenfolge, 23

Parallelität, 31–37

Pipelining, 31
Prädikatenlogik, 91
PRAM-Modell, 32
Produktionsregel, 91
Programm, 3
Programmiersprache, 3

höhere, 4
Programmierung

funktionale, 5
imperative, 5
logische, 5
prozedurale, 5

Prolog, 53–57
Punkt-zu-Punkt-Kommunikation,

36

Quantor, 91

Race-Condition, siehe Wett-
laufsituation

Rang, 36
Rechtsableitung, 92
Redex, 22
reduce, 12
Reduktionen, 22–23
Rekursion, 9–11

Scala, 59–63
Schlussstrich, 29
Seiteneffekt, 6
Semaphore, 34
Short-circuit evaluation, 48
signed, 67
SIMI, 33
SISD, 33
SPARC, 4
Speicher

99 Stichwortverzeichnis

dynamischer, 85
Sprache, 92

domänenspezifische, 4
Startsymbol, 91
Stringtabelle, 79
Syntaxbaum

abstrakter, 81
attributeriter, 81

tail recursive, 11
Token, 79
Typ, siehe Datentyp
type, 47
Typinferenz, 28, 45
Typisierung

dynamische, 6
statische, 6

Typkontext, 28
Typsubstituition, 29
Typvariable, 28

Unifikation, 6
Unifikator

allgemeinster, 7
unsigned, 67
Unterversorgung, 48

val, 61
var, 61
Variable

freie, 19, 22
gebundene, 22

verzahnt, 32
Von-Neumann-Architektur, 32

Wettlaufsituation, 34
Wirkung, siehe Seiteneffekt

X10, 65–66
x86, 4

	1 Programmiersprachen
	1.1 Abstraktion
	1.2 Paradigmen
	1.3 Typisierung
	1.4 Kompilierte und interpretierte Sprachen
	1.5 Dies und das

	2 Programmiertechniken
	2.1 Rekursion
	2.2 Backtracking
	2.3 Funktionen höherer Ordnung

	3 Logik
	3.1 Prädikatenlogik erster Stufe
	3.1.1 Symbole
	3.1.2 Terme
	3.1.3 Ausdrücke
	3.1.4 1. Stufe
	3.1.5 Freie Variablen
	3.1.6 Metasprachliche Ausdrücke
	3.1.7 Substitutionen

	4 -Kalkül
	4.1 Reduktionen
	4.2 Auswertungsstrategien
	4.3 Church-Zahlen
	4.4 Church-Booleans
	4.5 Weiteres

	5 Typinferenz
	6 Parallelität
	6.1 Architekturen
	6.2 Prozesskommunikation
	6.3 Parallelität in Java
	6.4 Message Passing Modell

	7 Haskell
	7.1 Erste Schritte
	7.1.1 Hello World

	7.2 Syntax
	7.2.1 Klammern und Funktionsdeklaration
	7.2.2 if / else
	7.2.3 Rekursion
	7.2.4 Listen
	7.2.5 Strings

	7.3 Typen
	7.3.1 Standard-Typen
	7.3.2 Typinferenz
	7.3.3 type
	7.3.4 data

	7.4 Lazy Evaluation
	7.5 Beispiele
	7.5.1 Quicksort
	7.5.2 Fibonacci
	7.5.3 Quicksort
	7.5.4 Funktionen höherer Ordnung
	7.5.5 Chruch-Zahlen
	7.5.6 Standard Prelude

	7.6 Weitere Informationen

	8 Prolog
	8.1 Erste Schritte
	8.1.1 Hello World

	8.2 Syntax
	8.3 Beispiele
	8.3.1 Humans
	8.3.2 Splits
	8.3.3 Delete
	8.3.4 Zebrarätsel

	8.4 Weitere Informationen

	9 Scala
	9.1 Erste Schritte
	9.1.1 Hello World

	9.2 Vergleich mit Java
	9.3 Syntax
	9.4 Companion Object
	9.5 actor
	9.6 Beispiele
	9.6.1 Wetter

	9.7 Weitere Informationen

	10 X10
	10.1 Erste Schritte
	10.2 Syntax
	10.3 Datentypen
	10.4 Beispiele
	10.5 Weitere Informationen

	11 C
	11.1 Datentypen
	11.2 ASCII-Tabelle
	11.3 Syntax
	11.4 Präzedenzregeln
	11.5 Beispiele
	11.5.1 Hello World
	11.5.2 Pointer

	12 MPI
	12.1 Erste Schritte
	12.2 Funktionen
	12.3 Beispiele
	12.4 Weitere Informationen

	13 Compilerbau
	13.1 Funktionsweise
	13.2 Lexikalische Analyse
	13.2.1 Reguläre Ausdrücke
	13.2.2 Lex

	13.3 Syntaktische Analyse
	13.4 Semantische Analyse
	13.5 Zwischencodeoptimierung
	13.6 Codegenerierung

	14 Java Bytecode
	14.1 Instruktionen
	14.2 Weitere Informationen

	Bildquellen
	Abkürzungsverzeichnis
	Ergänzende Definitionen
	Symbolverzeichnis
	Stichwortverzeichnis

