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Vorwort

Dieses Skript wird/wurde im Wintersemester 2013/2014 geschrieben. Es beinhaltet Vorlesungs-
notizen von Studenten zur Vorlesung von Prof. Dr. Herrlich.

Es darf jeder gerne Verbesserungen einbringen!

Die Kurz-URL des Projekts lautet tinyurl.com/GeoTopo.

An dieser Stelle möchte ich noch Herrn Prof. Dr. Herrlich für einige Korrekturvorschläge und
einen gut strukturierten Tafelanschrieb danken, der als Vorlage für dieses Skript diente. Vielen
Dank auch an Frau Lenz, die es mir erlaubt hat, ihre Übungsaufgaben und Lösungen zu benutzen.

Was ist Topologie?

Die Kugeloberfläche S2 lässt sich durch strecken, stauchen und umformen zur Würfeloberfläche
oder der Oberfläche einer Pyramide verformen, aber nicht zum R2 oder zu einem Torus T 2. Für
den R2 müsste man die Oberfläche unendlich ausdehnen und für einen Torus müsste man ein
Loch machen.

(a) S2 (b) Würfel (c) Pyramide

y

x

(d) R2 (e) T 2

Abbildung 0.1: Beispiele für verschiedene Formen
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1 Topologische Grundbegriffe

1.1 Topologische Räume

Definition 1
Ein topologischer Raum ist ein Paar (X,T) bestehend aus einer MengeX und T ⊆ P(X)

mit folgenden Eigenschaften

(i) ∅, X ∈ T

(ii) Sind U1, U2 ∈ T, so ist U1 ∩ U2 ∈ T

(iii) Ist I eine Menge und Ui ∈ T für jedes i ∈ I, so ist
⋃
i∈I

Ui ∈ T

Die Elemente von T heißen offene Teilmengen von X.

A ⊆ X heißt abgeschlossen, wenn X \A offen ist.

Es gibt auch Mengen, die weder abgeschlossen, noch offen sind wie z. B. [0, 1). Auch gibt es
Mengen, die sowohl abgeschlossen als auch offen sind.

Korollar 1.1 (Mengen, die offen und abgeschlossen sind, existieren)
Betrachte ∅ und X mit der „trivialen Topologie“ Ttriv = { ∅, X }.
Es gilt: X ∈ T und ∅ ∈ T, d. h. X und ∅ sind offen. Außerdem XC = X \X = ∅ ∈ T und
X \ ∅ = X ∈ T, d. h. X und ∅ sind als Komplement offener Mengen abgeschlossen. �

Beispiel 1
1) X = Rn mit der euklidischen Metrik.

U ⊆ Rn offen⇔ für jedes x ∈ U gibt es r > 0,
sodass Br(x) = { y ∈ Rn | d(x, y) < r } ⊆ U

Also: T = {M ⊆ X |M ist offene Kugel }. Diese Topologie wird auch „Standardtopo-

logie des Rn“ genannt.

2) Jeder metrische Raum (X, d) ist auch ein topologischer Raum.

3) Für eine Menge X heißt T = P(X) „diskrete Topologie“.

4) X := R,TZ := { U ⊆ R | R \ U endlich } ∪ { ∅ } heißt „Zariski-Topologie“
Beobachtungen:

• U ∈ TZ ⇔ ∃f ∈ R[X], sodass R \ U = V (f) = { x ∈ R | f(x) = 0 }
• Es gibt keine disjunkten offenen Mengen in TZ .

5) X := Rn,TZ = {U ⊆ Rn|Es gibt Polynome f1, . . . , fr ∈ R[X1, . . . , Xn] sodass
Rn \ U = V (f1, . . . , fr)}

2



1.1. TOPOLOGISCHE RÄUME 3

6) X := { 0, 1 } ,T = { ∅, { 0, 1 } , { 0 } } heißt „Sierpińskiraum“.
∅, { 0, 1 } , { 1 } sind dort alle abgeschlossenen Mengen.

Definition 2
Sei (X,T) ein topologischer Raum und x ∈ X.

Eine Teilmenge U ⊆ X heißt Umgebung von x, wenn es ein U0 ∈ T gibt mit x ∈ U0 und
U0 ⊆ U .

Definition 3
Sei (X,T) ein topologischer Raum und M ⊆ X eine Teilmenge.

a) M◦ := { x ∈M |M ist Umgebung von x } =
⋃

U⊆M

U∈T

U heißt Inneres oder offener

Kern von M .

b) M :=
⋂

M⊆A

A abgeschlossen

A heißt abgeschlossene Hülle oder Abschluss von M .

c) ∂M := M \M◦ heißt Rand von M .

d) M heißt dicht in X, wenn M = X ist.

Beispiel 2
1) Sei X = R mit euklidischer Topologie und M = Q. Dann gilt: M = R und M◦ = ∅

2) Sei X = R und M = (a, b). Dann gilt: M = [a, b]

3) Sei X = R,T = TZ und M = (a, b). Dann gilt: M = R

Definition 4
Sei (X,T) ein topologischer Raum.

a) B ⊆ T heißt Basis der Topologie T, wenn jedes U ∈ T Vereinigung von Elementen
aus B ist.

b) B ⊆ T heißt Subbasis, wenn jedes U ∈ T Vereinigung von endlich vielen Durchschnit-
ten von Elementen aus B ist.

Beispiel 3
Gegeben sei X = Rn mit euklidischer Topologie T. Dann ist

B = {Br(x) | r ∈ Q>0, x ∈ Qn }

ist eine abzählbare Basis von T.

Bemerkung 1
Sei X eine Menge und B ⊆ P(X). Dann gibt es genau eine Topologie T auf X, für die B
Subbasis ist.

Definition 5
Sei (X,T) ein topologischer Raum und Y ⊆ X.

TY := { U ∩ Y | U ∈ T } ist eine Topologie auf Y .

TY heißt Spurtopologie und (Y,TY ) heißt ein Teilraum von (X,T)
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Definition 6
Seien X1, X2 topologische Räume.
U ⊆ X1 × X2 sei offen, wenn es zu jedem x = (x1, x2) ∈ U Umgebungen Ui um xi mit
i = 1, 2 gibt, sodass U1 × U2 ⊆ U gilt.

T = { U ⊆ X1 ×X2 | U offen } ist eine Topologie auf X1×X2. Sie heißt Produkttopologie.
B = { U1 × U2 | Ui offen in Xi, i = 1, 2 } ist eine Basis von T.

U

xx2

x1

U2

U1

X1

X2

Abbildung 1.1: Zu x = (x1, x2) gibt es Umgebungen U1, U2 mit U1 × U2 ⊆ U

Beispiel 4
1) X1 = X2 = R mit euklidischer Topologie.
⇒ Die Produkttopologie auf R× R = R2 stimmt mit der euklidischen Topologie auf
R2 überein.

2) X1 = X2 = R mit Zariski-Topologie. T Produkttopologie auf R2: U1 × U2

(Siehe Abbildung 1.2)

U1 = R \ N

U
2

=
R
\
N

Abbildung 1.2: Zariski-Topologie auf R2

Definition 7
Sei X ein topologischer Raum, ∼ eine Äquivalenzrelation auf X, X = X/∼ sei die Menge
der Äquivalenzklassen, π : x→ x, x 7→ [x]∼.

TX :=
{
U ⊆ X

∣∣ π−1(U) ∈ TX
}
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(X,TX) heißt Quotiententopologie.

Beispiel 5
X = R, a ∼ b :⇔ a− b ∈ Z

R-1 0 1 2 3 4 5

0

a
U

aπ−1(u)

0 ∼ 1, d. h. [0] = [1]

Beispiel 6
Sei X = R2 und (x1, y1) ∼ (x2, y2)⇔ x1 − x2 ∈ Z und y1 − y2 ∈ Z.

X/∼ ist ein Torus.

Beispiel 7

X = Rn−1 \ { 0 } , x ∼ y ⇔ ∃λ ∈ R× mit y = λx

⇔ x und y liegen auf der gleichen Ursprungsgerade

X = Pn(R)

Also für n = 1:

−4 −2 2 4 6 8

−4

−2

2

4

1.2 Metrische Räume

Definition 8
Sei X eine Menge. Eine Abbildung d : X ×X → R+

0 heißt Metrik, wenn gilt:

(i) Definitheit: d(x, y) = 0⇔ x = y ∀x, y ∈ X
(ii) Symmetrie: d(x, y) = d(y, x) ∀x, y ∈ X
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(iii) Dreiecksungleichung: d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X
Das Paar (X, d) heißt ein metrischer Raum.

Bemerkung 2
Sei (X, d) ein metrischer Raum und

Br(x) := { y ∈ X | d(x, y) < r } für x ∈ X, r ∈ R+

B ist Basis einer Topologie auf X.

Beispiel 8
Sei V ein euklidischer oder hermiteischer Vektorraum mit Skalarprodukt 〈·, ·〉. Dann wird V
durch d(x, y) :=

√
〈x− y, x− y〉 zum metrischen Raum.

Beispiel 9 (diskrete Metrik)
Sei X eine Menge. Dann heißt

d(x, y) =

{
0 falls x = y

1 falls x 6= y

die diskrete Metrik. Die Metrik d induziert die diskrete Topologie.

Beispiel 10
X = R2 und d ((x1, y1), (x2, y2)) := max(‖x1 − x2‖, ‖y1 − y2‖) ist Metrik.

Beobachtung: d erzeugt die euklidische Topologie.

Br(0) =

r r

r

r

(a) Br(0) (b) Euklidische Topologie

Abbildung 1.3: Veranschaulichungen zur Metrik d

Beispiel 11 (SNCF-Metrik1)
X = R2
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−4 −2 2 4 6 8

−4

−2

2

4

Definition 9
Ein topologischer Raum X heißt hausdorffsch, wenn es für je zwei Punkte x 6= y in X
Umgebungen Ux um x und Uy um y gibt, sodass Ux ∩ Uy = ∅.

Bemerkung 3 (Trennungseigenschaft)
Metrische Räume sind hausdorffsch, da

d(x, y) > 0⇒ ∃ε > 0 : Bε(x) ∩Bε(y) = ∅

Ein Beispiel für einen topologischen Raum, der nicht hausdorffsch ist, ist (R,TZ).

Bemerkung 4
Seien X,X1, X2 Hausdorff-Räume.

a) Jeder Teilraum um X ist Hausdorffsch.

b) X1 ×X2 ist Hausdorffsch.

(x1, y1) (x2, y2)

x1 x2
U1 ×X2 U2 ×X2

X1

X2

Abbildung 1.4: Wenn X1, X2 hausdorffsch sind, dann auch X1 ×X2

Definition 10
Sei X ein topologischer Raum und (x)n∈N eine Folge in X. x ∈ X heißt Grenzwert oder

Limes von (xn), wenn es für jede Umgebung U von x ein n0 gibt, sodass xn ∈ U für alle
n ≥ n0.

Korollar 1.2
Ist X hausdorffsch, so hat jede Folge in X höchstens einen Grenzwert.
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Beweis: Sei (xn) eine konvergierende Folge und x und y Grenzwerte der Folge.

Nach Voraussetzung gibt es Umgebungen Ux von x und Uy von y mit Ux ∩ Uy = ∅. Es
existiert ein n0 mit xn ∈ Ux ∩ Uy für alle n ≥ n0 ⇒ x = y �

1.3 Stetigkeit

Definition 11
Seien X,Y topologische Räume und f : X → Y eine Abbildung.

a) f heißt stetig, wenn für jedes offene U ⊆ Y auch f−1(U) ⊆ X offen ist.

b) f heißt Homöomorphismus, wenn f stetig ist und es eine stetige Abbildung g :
Y → X gibt, sodass g ◦ f = idX und f ◦ g = idY .

Korollar 1.32

Seien X,Y metrische Räume und f : X → Y eine Abbildung.

Dann gilt: f ist stetig ⇔ zu jedem x ∈ X und jedem ε > 0 gibt es δ(x, ε) > 0, sodass für
alle y ∈ X mit d(x, y) < δ gilt dY (f(x), f(y)) < ε.

Beweis: „⇒“: Sei x ∈ X, ε > 0 gegeben und U := Bε(f(x)).
Dann ist U offen in Y .
11.a
==⇒ f−1(U) ist offen in X. Dann ist x ∈ f−1(U).
⇒ ∃δ > 0, sodass Bδ(x) ⊆ f−1(U)
⇒ f(Bδ(x)) ⊆ U
⇒ { y ∈ X | dX(x, y) < δ } ⇒ Beh.

„⇐“: Sei U ⊆ Y offen, X ∈ f−1(U).
Dann gibt es ε > 0, sodass Bε(f(x)) ⊆ U
Vor.
==⇒ Es gibt δ > 0, sodass f(Bδ(x)) ⊆ Bε(f(x)))
⇒ Bδ(x) ⊆ f−1(Bε(f(x))) ⊆ f−1(U) �

Bemerkung 5
Eine Ableitung f : X → Y von topologischen Räumen ist genau dann stetig, wenn für jede
abgeschlossene Teilmenge A ⊆ Y gilt: f−1(A) ⊆ X ist abgeschlossen.

Beispiel 12
1) Für jeden topologischen Raum X gilt: idX : X → X ist Homöomorphismus.

2) Ist Y trivialer topologischer Raum, d. h. T = Ttriv, so ist jede Abbildung f : X → Y
stetig.

3) Ist X diskreter topologischer Raum, so ist f : X → Y stetig für jeden topologischen
Raum Y und jede Abbildung f .

4) Sei X = [0, 1), Y = S1 = { z ∈ C | ‖z‖ = 1 } und f(t) = e2πit Die Umkehrabbildung g
ist nicht stetig, da g−1(U) nicht offen ist (vgl. Abbildung 1.5).

Korollar 1.4 (Verkettungen stetiger Abbildungen sind stetig)
Seien X,Y, Z topologische Räume, f : X → Y und g : Y → Z stetige Abbildungen.

2Im Grunde wird die Äquivalenz von Stetigkeit im Sinne der Analysis und Topologie auf metrischen Räumen
gezeigt.
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R0 1
0

f

g

Abbildung 1.5: Beispiel einer stetigen Funktion f , deren Umkehrabbildung g nicht stetig ist.

Dann ist g ◦ f : X → Z stetig.

X
f //

g◦f   

Y

g��
Z

Beweis: Sei U ⊆ Z offen ⇒ (g ◦ f)−1(U) = f−1(g−1(U)). g−1(U) ist offen in Y weil g stetig
ist, f−1(g−1(U)) ist offen in X, weil f stetig ist. �

Bemerkung 6
a) Für jeden topologischen Raum ist Homöo(X) := { f : X → X | f ist Homöomorphismus }

eine Gruppe.

b) Jede Isometrie f : X → Y zwischen metrischen Räumen ist ein Homöomorphismus.

c) Iso(X) := { f : X → X | f ist Isometrie } ist eine Untergruppe von Homöo(X) für
jeden metrischen Raum X.

Korollar 1.5
Seien X,Y topologische Räume. πX : X × Y → X und πY : X × Y → Y die Projektionen

πX : (x, y) 7→ x und πY : (x, y) 7→ y

Wird X × Y mit der Produkttopologie versehen, so sind πX und πY stetig.

Beweis: Sei U ⊆ X offen ⇒ π−1
x (U) = U × Y ist offen in X × Y . �

Korollar 1.6
Sei X ein topologischer Raum, ∼ eine Äquivalenzrelation auf X, X = X/∼ der Bahnenraum
versehen mit der Quotiententopologie, π : X → X, x 7→ [x]∼.

Dann ist π stetig.

Beweis: Nach Definition ist U ⊆ X offen ⇔ π−1(U) ⊆ X offen. �

Beobachtung: Die Quotiententopologie ist die feinste Topologie, sodass π stetig wird.

Beispiel 13 (Stereographische Projektion)
Rn und Sn \ {N } sind homöomorph für beliebiges N ∈ Sn. Es gilt:

Sn =
{
x ∈ Rn+1

∣∣ ‖x‖ = 1
}

=

{
x ∈ Rn+1

∣∣∣∣∣
n+1∑
i=1

x2
i

}
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O. B. d. A. sei N =

0
...
1

. Die Gerade durch N und P schneidet die Ebene H in genau

einem Punkt P̂ . P wird auf P̂ abgebildet.

f :Sn \ {N } → Rn

P 7→
genau ein Punkt︷ ︸︸ ︷
LP ∩H

wobei Rn = H =


 x1

...
xn+1

 ∈ Rn+1

∣∣∣∣∣∣∣ xn+1 = 0

 und LP die Gerade in Rn+1 durch N

und P ist.

x

y

z

N

P̂

0

P

Abbildung 1.6: Visualisierung der stereographischen Projektion

Sei P =

 x1
...

xn+1

, so ist xn+1 < 1, also ist LP nicht parallel zu H. Also schneiden sich LP

und H in genau einem Punkt P̂ .

Es gilt: f ist bijektiv und die Umkehrabbildung ist ebenfalls stetig.
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1.4 Zusammenhang

Definition 12
Ein Raum X heißt zusammenhängend, wenn es keine offenen, nichtleeren Teilmengen
U1, U2 von X gibt mit U1 ∩ U2 = ∅ und U1 ∪ U2 = X.

Bemerkung 7
X ist zusammenhängend ⇔ Es gibt keine abgeschlossenen, nichtleeren Teilmengen A1, A2

mit A1 ∩A2 = ∅ und A1 ∪A2 = X.

Bemerkung 8
Eine Teilmenge Y ⊆ X heißt zusammenhängend, wenn Y als topologischer Raum mit der
Teilraumtopologie zusammenhängend ist.

Beispiel 14 (Zusammenhang von Räumen)
1) Rn ist mit der euklidischen Topologie zusammenhängend, denn:

Annahme: Rn = U1 ∪ U2 mit Ui offen, Ui 6= ∅ und U1 ∩ U2 = ∅ existieren.
Sei x ∈ U1, y ∈ U2 und [x, y] die Strecke zwischen x und y. Dann ist U1 ∩ [x, y] die
Vereinigung von offenen Intervallen. Dann gibt es z ∈ [x, y] mit z ∈ ∂(U1 ∩ [x, y]), aber
z /∈ U1 ⇒ z ∈ U2. In jeder Umgebung von z liegt ein Punkt von U1 ⇒ Widerspruch
zu U2 offen.

2) R \ { 0 } ist nicht zusammenhängend, denn R \ { 0 } = R<0 ∪ R>0

3) R2 \ { 0 } ist zusammenhängend.

4) Q ( R ist nicht zusammenhängend, da (Q ∩ R<√2) ∪ (Q ∩ R>√2) = Q

5) { x } ist zusammenhängend für jedes x ∈ X, wobei X ein topologischer Raum ist.

6) R mit Zariski-Topologie ist zusammenhängend

Korollar 1.7
Sei X ein topologischer Raum und A ⊆ X zusammenhängend. Dann ist auch A zusammen-
hängend.

Beweis: Annahme: A = A1 ∪A2, Ai abgeschlossen, 6= ∅, A1 ∩A2 = ∅

⇒ A = (A ∩A1)︸ ︷︷ ︸
abgeschlossen

∪ (A ∩A2)︸ ︷︷ ︸
abgeschlossen︸ ︷︷ ︸

disjunkt

Wäre A ∩A1 = ∅
⇒ A ⊆ A2

⇒ A ⊆ A2

⇒ A1 = ∅
⇒ Widerspruch zu A1 6= ∅
⇒ A ∩A1 6= ∅ und analog A ∩A2 6= ∅
⇒ Widerspruch zu A ist zusammenhängend �

Korollar 1.8
Sei X ein topologischer Raum und A,B ⊆ X zusammenhängend.

Ist A ∩B 6= ∅, dann ist A ∪B zusammenhängend.
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Beweis: Sei A ∪B = U1 ∪ U2, Ui 6= ∅ offen, disjunkt
o. B. d. A.
======⇒ A = (A ∩ U1) ∪ (A ∩ U2) offen, disjunkt
A zhgd.
====⇒ A ∩ U1 = ∅
A∩B 6=∅
====⇒ U1 ⊆ B
B = (B ∩ U1)︸ ︷︷ ︸

=U1

∪ (B ∩ U2)︸ ︷︷ ︸
=∅

ist unerlaubte Zerlegung

�

Definition 13
Sei X ein topologischer Raum.

Für x ∈ X sei
Z(x) :=

⋃
A⊆Xzhgd.
X∈A

A

Z(x) heißt Zusammenhangskomponente.

Korollar 1.9
Sei X ein topologischer Raum. Dann gilt:

a) Z(X) ist die größte zusammenhängende Teilmenge von X, die x enthält.

b) Z(X) ist abgeschlossen.

c) X ist disjunkte Vereinigung von Zusammenhangskomponenten.

Beweis:

a) Sei Z(x) = A1 ∪A2 mit Ai 6= ∅ abgeschlossen, disjunkt.
O. B. d. A. sei x ∈ A1 und y ∈ A2. y liegt in einer zusammehängenden Teilmenge A,
die auch x enthält. ⇒ A = (A ∩A1)︸ ︷︷ ︸

3x

∪ (A ∩A2)︸ ︷︷ ︸
3y

ist unerlaubte Zerlegung.

b) Nach Korollar 1.7 ist Z(x) zusammenhängend ⇒ Z(x) ⊆ Z(x) ⇒ Z(x) = Z(x

c) Ist Z(y) ∩ Z(x) 6= ∅ 1.8
=⇒ Z(y) ∪ Z(x) ist zusammenhängend.

⇒ Z(x) ∪ Z(y) ⊆ Z(x)⇒ Z(y) ⊆ Z(x)

⊆ Z(y)⇒ Z(x) ⊆ Z(y)

�

Korollar 1.10
Sei f : X → Y stetig. Ist A ⊆ X zusammenhängend, so ist f(A) ⊆ y zusammenhängend.

Beweis: Sei f(A) = U1 ∪ U2, Ui 6= ∅, offen, disjunkt.
⇒ f−1(f(A)) = f−1(U1) ∪ f−1(U2)

⇒ A = (A ∩ f−1(U1))︸ ︷︷ ︸
6=∅

∪ (A ∩ f−1(U2))︸ ︷︷ ︸
6=∅

�
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1.5 Kompaktheit

Definition 14
Sei X eine Menge und T ⊆ P(X).

T heißt eine Überdeckung von X, wenn gilt:

∀x ∈ X : ∃M ∈ T : x ∈M
Definition 15

Ein topologischer Raum X heißt kompakt, wenn jede offene Überdeckung U von X eine
endliche Teilüberdeckung besitzt.

U = { Ui }i∈I , Ui offen in X,
⋃
i∈I

Ui = X

Korollar 1.11
I = [0, 1] ist kompakt bezüglich der euklidischen Topologie.

Beweis: Sei (Ui)i∈J eine offene Überdeckung von I. Der
Be-
weis
ist ko-
misch.
Das
würde
ich
gerne
mit
je-
man-
den
durch-
spre-
chen.

Der
Be-
weis
ist ko-
misch.
Das
würde
ich
gerne
mit
je-
man-
den
durch-
spre-
chen.

z. Z.: Es gibt ein δ > 0, sodass jedes Teilintervall der Länge δ von I in einem der Ui enthalten
ist.

Angenommen, es gibt kein solches δ. Dann gibt es für jedes n ∈ N ein Intervall In ⊆ [0, 1]
der Länge 1/n sodass In 6⊆ Ui für alle i ∈ I.
Sei xn der Mittelpunkt von In. Die Folge (xn) hat einen Häufungspunkt x ∈ [0, 1]. Dann
gibt es i ∈ I mit x ∈ Ui. Da Ui offen ist, gibt es ein ε > 0, sodass (x− ε, x+ ε) ⊆ Ui. Dann
gibt es n mit 1/n < ε/2 und |x− xn| < ε/2, also In ⊆ (x− ε, x+ ε) ⊆ Ui
⇒ Widerspruch

Dann überdecke [0, 1] mit endlich vielen Intervallen I1, . . . , Id der Länge δ. Jedes Ij ist in
Uij enthalten.

⇒ Uj1 , . . . , Ujd ist endliche Teilüberdeckung von U �

Beispiel 15
1) R ist nicht kompakt.

2) (0, 1) ist nicht kompakt.
Un = (1/n, 1− 1/n)⇒ ⋃

n∈N Un = (0, 1)

3) R mit der Zariski-Topologie ist kompakt und jede Teilmenge von R ist es auch.

Korollar 1.12
Sei X kompakter Raum, A ⊆ X abgeschlossen. Dann ist A kompakt.

Beweis: Sei (Vi)i∈I offene Überdeckung von A.
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Dann gibt es für jedes i ∈ I eine offene Teilmenge Ui ⊆ X mit Vi = Ui ∩A.

⇒ A ⊆
⋃
i∈I

Ui

⇒ U = { Ui | i ∈ I } ∪ {X \A } ist offene Überdeckung von X

X kompakt
=======⇒ es gibt i1, . . . , in ∈ I, sodass

n⋃
j=1

Uij ∪ (X \A) = X

⇒

 n⋃
j=1

Uij ∪ (X \A)

 ∩A = A

⇒
n⋃
j=1

(Uij ∩A)︸ ︷︷ ︸
=Vij

∪ ((X \A) ∩A)︸ ︷︷ ︸
=∅

= A

⇒ Vi1 , . . . , Vin überdecken A

�

Korollar 1.13
Seien X,Y kompakte topologische Räume. Dann ist X × Y mit der Produkttopologie
kompakt.

Beweis: Sei (Wi)i∈I eine offene Überdeckung von X × Y . Für jedes (x, y) ∈ X × Y gibt es
offene Teilmengen Ux,y von X und Vx,y von Y sowie ein i ∈ I, sodass Ux,y × Vx,y ⊆Wi.

Wi

xy

x

Vx,y

Ux,y

Y

X

Abbildung 1.7: Die blaue Umgebung ist Schnitt vieler Umgebungen

Die offenen Mengen Ux0,y × Vx0,y für festes x0 und alle y ∈ Y überdecken { x0 } × y. Da Y
kompakt ist, ist auch { x0 } × Y kompakt. Also gibt es y1, . . . , ym(x0) mit

⋃m(x0)
i=1 Ux0,yi ×

Vx0,yi ⊇ { x0 } × Y .

Sei Ux0 :=
⋂m(x)
i=1 Ux0,yi . Da X kompakt ist, gibt es x1, . . . , xn ∈ X mit

⋃n
j=1 Uxj = X

⇒ ⋃k
j=1

⋃m(xj)
i=1

(
Uxj ,yi × Vxj ,yi

)︸ ︷︷ ︸
Ein grün-oranges Kästchen

⊇ X × Y

⇒ ⋃
j

⋃
iWi(xj , yi) = X × Y �

Korollar 1.14
Sei X ein Hausdorffraum und K ⊆ X kompakt. Dann ist K abgeschlossen.
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Beweis: z. Z.: Komplement ist offen

Ist X = K, so ist K abgeschlossen in X. Andernfalls sei y ∈ X \K. Für jedes x ∈ K seien
Ux bzw. Vy Umgebungen von x bzw. von y, sodass Ux ∩ Vy = ∅.

Xi

K

x

y

Da K kompakt ist, gibt es endlich viele x1, . . . , xn ∈ K, sodass
⋃m
i=1 Uxi ⊇ K.

Sei V :=
n⋂
i=1

Vxi

⇒ V ∩
(

n⋃
i=1

Uxi

)
= ∅

⇒ V ∩K = ∅
⇒ V ist Überdeckung von y, die ganz in X \K enthalten ist.
⇒ X \K ist offen

Damit ist K abgeschlossen. �

Korollar 1.15
Seien X,Y topologische Räume, f : X → Y stetig. Ist K ⊆ X kompakt, so ist f(K) ⊆ Y
kompakt.

Beweis: Sei (Vi)i∈I offene Überdeckung von f(K)
f stetig
====⇒ (f−1(Vi))i∈I ist offene Überdeckung von K
Kompakt
=====⇒ es gibt i1, . . . , in, sodass f−1(Vi1), . . . , f−1(Vin) Überdeckung von K ist.
⇒ f(f−1(Vi1)), . . . , f(f−1(Vin)) überdecken f(K).

Es gilt: f(f−1(V )) = V ∩ f(X) �

Satz 1.16 (Heine-Borel)
Eine Teilmenge von Rn oder Cn ist genau dann kompakt, wenn sie beschränkt und
abgeschlossen ist.

Beweis: „⇒“: Sei K ⊆ Rn (oder Cn) kompakt.
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Da Rn und Cn hausdorffsch sind, ist K nach Korollar 1.14 abgeschlossen. Nach Vorausset-
zung kann K mit endlich vielen offenen Kugeln von Radien 1 überdeckt werden ⇒ K ist
beschränkt.

„⇐“ Sei A ⊆ Rn (oder Cn) beschränkt und abgeschlossen.

Dann gibt es einen Würfel W = [−N,N ]× · · · × [−N,N ]︸ ︷︷ ︸
n mal

mit A ⊆ W bzw. „Polyzylinder“

Z = { (z1, . . . , zn) ∈ Cn | zi ≤ N für i = 1, . . . , n }
Nach Korollar 1.13 und Korollar 1.11 ist W kompakt, also ist A nach Korollar 1.12 auch
kompakt. Genauso ist Z kompakt, weil

{ z ∈ C ‖ z| ≤ 1 }

homöomorph zu {
(x, y) ∈ R2

∣∣ ‖(x, y)‖ ≤ 1
}

ist. �

1.6 Wege und Knoten

Definition 16
Sei X ein topologischer Raum.

a) Ein Weg in X ist eine stetige Abbildung γ : [0, 1]→ X.

b) γ heißt geschlossen, wenn γ(1) = γ(0) gilt.

c) γ heißt einfach, wenn γ|[0,1] injektiv ist.

Beispiel 16
Ist X diskret, so ist jeder Weg konstant, d. h. von der Form

∀x ∈ [0, 1] : γ(x) = c, c ∈ X

Denn γ([0, 1]) ist zusammenhängend für jeden Weg γ.

Definition 17
Ein topologischer Raum X heißt wegzusammenhängend, wenn es zu je zwei Punkten
x, y ∈ X einen Weg γ : [0, 1]→ X gibt mit γ(0) = x und γ(1) = y.

Korollar 1.17
Sei X ein topologischer Raum.

(i) X ist wegzusammenhängend ⇒ X ist zusammenhängend

(ii) X ist wegzusammenhängend 6⇐ X ist zusammenhängend

Beweis:

(i) Sei X ein wegzusammenhängender topologischer Raum, A1, A2 nichtleere, disjunkte,
abgeschlossene Teilmengen von X mit A1 ∪A2 = X. Sei x ∈ A1, y ∈ A2, γ : [0, 1]→ X
ein Weg von x nach y.
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Dann ist C := γ([0, 1]) ⊆ X zusammenhängend, weil γ stetig ist.

C = (C ∩A1)︸ ︷︷ ︸
3x

∪ (C ∩A2)︸ ︷︷ ︸
3y

ist Zerlegung in nichtleere, disjunkte, abgeschlossene Teilmengen ⇒ Widerspruch

(ii) Sei X =
{

(x, y) ∈ R2
∣∣∣ x2 + y2 = 1 ∨ y = 1 + 2 · e− 1

10
x
}
.

Abbildung 1.8a veranschaulicht diesen Raum.

(a) Spirale S mit Kreis C

0.1 1

−1

0

1

X

Y

{(x, sin( 1
x)) ∈ X × Y }

(−1, 1) ⊆ Y

(b) Sinus

Abbildung 1.8: Beispiele für Räume, die zusammenhängend, aber nicht wegzusammenhängend
sind.

Sei U1 ∪ U2 = X,U1 6= U2 = ∅, Ui offen. X = C ∪ S. Dann ist C ⊆ U1 oder C ⊆ U2,
weil C und S zusammenhängend sind.

Also ist C = U1 und S = U2 (oder umgekehrt).

Sei γ ∈ C = U1, ε > 0 und Bε(y) ⊆ U1 eine Umgebung von y, die in U1 enthalten ist.

Aber: Bε(y) ∩ S 6= ∅ ⇒ Widerspruch �

Achtung: Es gibt stetige, surjektive Abbildungen [0, 1]→ [0, 1]× [0, 1]. Ein Beispiel ist die in
Abbildung 1.9 dargestellte Hilbert-Kurve.

(a) n = 1 (b) n = 2 (c) n = 3 (d) n = 4 (e) n = 5

Abbildung 1.9: Hilbert-Kurve

Definition 18
Sei X ein topologischer Raum. Eine (geschlossene) Jordankurve in X ist ein Homöomor-
phismus γ : [0, 1]→ C ⊆ X (γ : S1 → C ⊆ X)
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Satz 1.18 (Jordanscher Kurvensatz)
Ist C = γ([0, 1]) eine geschlossene Jordankurve in R2, so hat R2 \ C genau zwei
Zusammenhangskomponenten, von denen eine beschränkt ist und eine unbeschränkt.

außen
innen

Jordankurve

Abbildung 1.10: Die unbeschränkte Zusammenhangskomponente wird häufig inneres, die be-
schränkte äußeres genannt.

Beweis: ist technisch mühsam und wird daher hier nicht geführt. Er kann in „Algebraische
Topologie: Eine Einführung“ von R. Stöcker und H. Zieschang auf S. 301f (ISBN 978-
3519122265) nachgelesen werden.

Idee: Ersetze Weg C durch Polygonzug.

Definition 19
Eine geschlossene Jordankurve in R3 heißt Knoten.

Beispiel 17

(a) Trivialer Knoten (b) Kleeblattknoten (c) Achterknoten (d) 62-Knoten

Abbildung 1.11: Beispiele für verschiedene Knoten

Definition 20
Zwei Knoten γ1, γ2 : S1 → R3 heißen äquivalent, wenn es eine stetige Abbildung H :
S1 × [0, 1]⇒ R3 gibt mit H(z, 0) = γ1(z), H(z, 1) = γ2(z) und für jedes feste t ∈ [0, 1] ist
Hz : S1 → R2, z 7→ H(z, t) ein Knoten. Die Abbildung H heißt Isotopie zwischen γ1 und
γ2.

Definition 21
Ein Knotendiagramm eines Knotens γ ist eine Projektion π : R3 → E auf eine Ebene E,
sodass |(π|C)−1(x)| ≤ 2 für jedes x ∈ D.

Ist (π|C)−1(x) = { y1, y2 }, so liegt y1 über y2, wenn (y1−x) = λ(y2−x) für ein λ > 1 ist.
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Satz 1.19 (Reidemeister)
Zwei endliche Knotendiagramme gehören genau dann zu äquivalenten Knoten, wenn sie
durch endlich viele „Reidemeister-Züge“ in einander überführt werden können.

(a) Ω1 (b) Ω2

(c) Ω3

Abbildung 1.12: Reidemeister-Züge

Beweis: Durch sorgfältige Fallunterscheidung.3

Definition 22
Ein Knotendiagramm heißt 3-färbbar, wenn jeder Bogen von D so mit einer Farbe gefärbt
werden kann, dass an jeder Kreuzung eine oder 3 Farben auftreten und alle 3 Farben
auftreten.

Abbildung 1.13: Ein 3-gefärber Kleeblattknoten

3Siehe „Knot Theory and Its Applications“ von Kunio Murasugi. ISBN 978-0817638177.
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Übungsaufgaben

Aufgabe 1 (Sierpińskiraum)

Es sei X := { 0, 1 } und TX := { ∅, { 0 } , X }. Dies ist der sogenannte Sierpińskiraum.

(a) Beweisen Sie, dass (X,TX) ein topologischer Raum ist.

(b) Ist (X,TX) hausdorffsch?

(c) Ist TX von einer Metrik erzeugt?

Aufgabe 2

Es sei Z mit der von den Mengen Ua,b := a+ bZ(a ∈ Z, b ∈ Z \ { 0 }) erzeugten Topologie
versehen.

Zeigen Sie:

(a) Jedes Ua,b und jede einelementige Teilmenge von Z ist abgeschlossen.

(b) { −1, 1 } ist nicht offen.
(c) Es gibt unendlich viele Primzahlen.

Aufgabe 3 (Cantorsches Diskontinuum)

Für jedes i ∈ N sei Pi := { 0, 1 } mit der diskreten Topologie. Weiter Sei P :=
∏
i∈N Pi.

(a) Wie sehen die offenen Mengen von P aus?

(b) Was können Sie über den Zusammenhang von P sagen?

Aufgabe 4 (Kompaktheit)

(a) Ist GLn(R) = {A ∈ Rn×n | det(A) 6= 0 } kompakt?

(b) Ist SLn(R) = {A ∈ Rn×n | det(A) = 1 } kompakt?

(c) Ist P(R) kompakt?



2 Mannigfaltigkeiten und
Simplizialkomplexe

2.1 Topologische Mannigfaltigkeiten

Definition 23
Sei X ein topologischer Raum und n ∈ N.

a) Eine n-dimensionale Karte auf X ist ein Paar (U,ϕ), wobei U ⊆ X offen und
ϕ : U → V Homöomorphismus von U auf eine offene Teilmenge V ⊆ Rn.

b) Ein n-dimensionaler Atlas A auf X ist eine Familie (Ui, ϕi)i∈I von Karten auf X,
sodass

⋃
i∈I Ui = X.

c) X heißt (topologische) n-dimensionale Mannigfaltigkeit, wenn X hausdorffsch ist,
eine abzählbare Basis der Topologie hat und ein n-dimensionalen Atlas besitzt.

Bemerkung 9
(a) Es gibt surjektive, stetige Abbildungen [0, 1]→ [0, 1]× [0, 1]

(b) Für n 6= m sind Rn und Rm nicht homöomorph. Zum Beweis benutzt man den „Satz
von der Gebietstreue“ (Brouwer):

Ist U ⊆ Rn offen und f : U → Rn stetig und injektiv, so ist f(U) offen.

Ist n < m und Rm homöomorph zu Rn, so wäre

f : Rn → Rm → Rn, (x1, . . . , xn) 7→ (x1, x2, . . . , xn, 0, . . . , 0)

eine stetige injektive Abbildung. Also müsste f(Rn) offen sein ⇒ Widerspruch
Beispiel 18

1) Jede offene Teilmenge U ⊆ Rn ist eine n-dimensionale Mannigfaltigkeit mit einem
Atlas aus einer Karte.

2) Cn ist eine 2n-dimensionale Mannigfaltigkeit mit einem Atlas aus einer Karte:

(z1, . . . , zn) 7→ (Re z1, Im z1, . . . ,Re zn, Im zn)

3) Pn(R) = (Rn+1 \ { 0 })/∼ = Sn/∼ und Pn(C) sind Mannigfaltigkeiten der Dimension
n bzw. 2n, da gilt:

Sei Ui := { (x0 : · · · : xn) ∈ Pn(R) | xi 6= 0 } ∀i ∈ 0, . . . , n. Dann ist Pn(R) =
⋃n
i=0 Ui

und die Abbildung

Ui → Rn

(x0 : · · · : xn) 7→
(
x0

xi
, . . . ,

xi
xi
, . . . ,

xn
xi

)
(y1 : · · · : yi−1 : 1 : yi : · · · : yn) 7→(y1, . . . , yn)

21
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ist bijektiv.

Was wird im Folgenden gemacht?

Die Ui mit i = 0, . . . , n bilden einen n-dimensionalen Atlas:

x = (1 : 0 : 0) ∈ U0 → R2 x 7→ (0, 0)

y = (0 : 1 : 1) ∈ U2 → R2 y 7→ (0, 1)

Umgebung: B1(0, 1)→ { (1 : u : v) | ‖(u, v)‖ < 1 } = V1

Umgebung: B1(0, 1)→
{

(w : z : 1)
∣∣ w2 + z2 < 1

}
= V2

V1 ∩ V2 = ∅?
(a : b : c) ∈ V1 ∩ V2

⇒ a 6= 0 und ( ba)2 + ( ca)2 < 1⇒ c
a < 1

⇒ c 6= 0 und (ac )2 + ( bc)
2 < 1⇒ a

c < 1
⇒ Widerspruch

4) Sn =
{
x ∈ Rn+1

∣∣ ‖x‖ = 1
}
ist n-dimensionale Mannigfaltigkeit.

Karten: Oi := { (x1, . . . , xn+1) ∈ Sn | xi > 0 } → B1(0, . . . , 0︸ ︷︷ ︸
∈Rn

)

(x1, . . . , xn+1) 7→ (x1, . . . , xi, . . . , xn+1)

(x1, . . . , xi−1,
√

1−∑n
k=1 x

2
k, xi, · · · , xn) 7→(x1, . . . , xn)

Sn =
⋃n+1
i=1 (Ci ∪Di)

5) [0, 1] ist keine Mannigfaltigkeit, denn:
Es gibt keine Umgebung von 0 in [0, 1], die homöomorph zu einem offenem Intervall
ist.

6) V1 =
{

(x, y) ∈ R2
∣∣ x · y = 0

}
ist keine Mannigfaltigkeit.

Das Problem ist (0, 0). Wenn man diesen Punkt entfernt, zerfällt der Raum in 4
Zusammenhangskomponenten. Jeder Rn zerfällt jedoch in höchstens zwei Zusammen-
hangskomponenten, wenn man einen Punkt entfernt.

7) V2 =
{

(x, y) ∈ R2
∣∣ x3 = y2

}
ist eine Mannigfaltigkeit.

8) X = (R \ { 0 }) ∪ (01, 02)

U ⊆ X offen ⇔
{
U offen in R \ { 0 } , falls 01 /∈ U, 02 ∈ U
∃ε > 0 mit (−ε, ε) ⊆ U falls 01 ∈ U, 02 ∈ U

Insbesondere sind (R \ { 0 }) ∪ { 01 } und (R \ { 0 }) ∪ { 02 } offen und homöomorph
zu R.

Aber: X ist nicht hausdorffsch! Denn es gibt keine disjunkten Umgebungen von 01

und 02.

9) GLn(R) ist eine Mannigfaltigkeit der Dimension n2, weil offene Teilmengen von Rn2

eine Mannigfaltigkeit bilden.
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Abbildung 2.1: Zweifachtorus

Definition 24
Seien X,Y n-dimensionale Mannigfaltigkeiten, U ⊆ X und V ⊆ Y offen, Φ : U → V ein Ho-
möomorphismus Z = (X ∪̇Y )/∼ mit der von u ∼ Φ(u) ∀u ∈ U erzeugten Äquivalenzrelation
und der von ∼ induzierten Quotiententopologie.

Z heißtVerklebung vonX und Y längs U und V . Z besitzt einen Atlas aus n-dimensionalen
Karten. Falls Z hausdorffsch ist, ist Z eine n-dimensionale Mannigfaltigkeit.

Korollar 2.1
Sind X,Y Mannigfaltigkeiten der Dimension n bzw. m, so ist X × Y eine Mannigfaltigkeit
der Dimension n+m.

Beweis: Produkte von Karten sind Karten. �

Beispiel 19
Mannigfaltigkeiten mit Dimension 1:

1) Offene Intervalle, R, (0, 1) sind alle homöomorph

2) S1

Mannigfaltigkeiten mit Dimension 2:

1) R2

2) S2 (0 Henkel)

3) T 2 (1 Henkel)

4) oder mehr Henkel, wie z.B. der Zweifachtorus in Abbildung 2.1

Korollar 2.2
Sei n ∈ N, F : Rn → R stetig differenzierbar und X = V (F ) := { x ∈ Rn | F (x) = 0 } das
„vanishing set“.

Dann gilt:

a) X ist abgeschlossen in Rn

b) Ist grad(F )(X) 6= 0 ∀x ∈ X, so ist X eine Mannigfaltigkeit der Dimension n− 1.

Beweis:

a) Sei y ∈ Rn \ V (F ). Weil F stetig ist, gibt es δ > 0, sodass F (Bδ(y)) ⊆ Bε(F (y)) mit
ε = 1

2‖F (y)‖. Folgt Bδ(y) ∩ V (F ) = ∅ ⇒ Rn \ V (F ) ist offen.

b) Sei x ∈ X mit grad(F )(x) 6= 0, also o. B. d. A. ∂F
∂X1

(x) 6= 0, x = (x1, . . . , xn),
x′ := (x2, . . . , xn) ∈ Rn−1. Der Satz von der impliziten Funktion liefert nun: Es
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gibt Umgebungen U von x′ und differenzierbare Funktionen g : U → R, sodass
G : U → Rn, u 7→ (g(u), u) eine stetige Abbildung auf eine offene Umgebung V von x
in X ist.

�

Beispiel 20

a) F : R3 → R, (x, y, z) 7→ x2 + y2 + z2− 1, V (F ) = S2, grad(F ) = (2x, 2y, 2z)
24.b
==⇒ Sn

ist n-dimensionale Mannigfaltigkeit in Rn+1

b) F : R2 → R, (x, y) 7→ y2−x3 Es gilt: grad(F ) = (−3x2, 2y). Also: grad(0, 0) = (0, 0).
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(a) F (x, y) = y2 − x3
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(b) y2 − ax3 = 0

Abbildung 2.2: Rechts ist die Neilsche Parabel für verschiedene Parameter a.

Daher ist Korollar 24.b nicht anwendbar, aber V (F ) ist trotzdem eine 1-dimensionale
topologische Mannigfaltigkeit.

Definition 25
Sei X ein Hausdorffraum mit abzählbarer Basis der Topologie. X heißt n-dimensionale
Mannigfaltigkeit mit Rand, wenn es einen Atlas (Ui, ϕi) gibt, wobei Ui ⊆ Xi offen und
ϕi ein Homöomorphismus auf eine offene Teilmenge von

Rn+,0 := { (x1, . . . , xn) ∈ Rn | xm ≥ 0 }

ist. Rn+,0 ist ein „Halbraum“.

Definition 26
Sei X eine n-dimensionale Mannigfaltigkeit mit Rand und Atlas (Ui, ϕi). Dann heißt

∂X :=
⋃
i∈I
{ x ∈ Ui | ϕi(x)n = 0 }

Rand von X.

∂X ist eine Mannigfaltigkeit der Dimension n− 1.
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∼
=

(a) Halbraum

∼
=

(b) Pair of pants

∼
=

(c) Sphäre mit einem Loch

Abbildung 2.3: Beispiele für Mannigfaltigkeiten mit Rand

Definition 27
Sei X eine n-dimensionale Mannigfaltigkeit mit Atlas (Ui, ϕi)i∈I

Für i, j ∈ I mit Ui, Uj 6= ∅ heißt

ϕij := ϕj ◦ ϕ−1
i

ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj)

Kartenwechsel oder Übergangsfunktion.

Rn Rn

Ui Uj

Vi Vj

X

ϕi ϕj

Abbildung 2.4: Kartenwechsel

2.2 Differenzierbare Mannigfaltigkeiten

Definition 28
Sei X eine n-dimensionale Mannigfaltigkeit mit Atlas (Ui, ϕi)i∈I .

a) X heißt differenzierbare Mannigfaltigkeit der Klasse Ck, wenn jede Karten-
wechselabbildung ϕij , i, j ∈ I k-mal stetig differenzierbar ist.

b) X heißt differenzierbare Mannigfaltigkeit, wenn X eine differenzierbare Mannig-
faltigkeit der Klasse C∞ ist.
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Definition 29
Sei X eine differenzierbare Mannigfaltigkeit der Klasse Ck (k ∈ N ∪ {∞ }) mit Atlas
(Ui, ϕi)i∈I .

a) Eine Karte (U,ϕ) auf X heißt verträglich mit A, wenn alle Kartenwechsel ϕ ◦ ϕ−1
i

und ϕi ◦ ϕ−1 (i ∈ I mit Ui ∩ U 6= ∅) differenzierbar von Klasse Ck sind.

b) Die Menge aller mit A verträglichen Karten auf X bildet einen maximalen Atlas von

Klasse Ck. Er heißt Ck-Struktur auf X.

Eine C∞-Struktur heißt auch differenzierbare Struktur auf X.

Bemerkung 10
Für n ≥ 4 gibt es auf Sn mehrere verschiedene differenzierbare Strukturen, die sog. „exotische

Sphären“.

Definition 30
Seien X,Y differenzierbare Mannigfaltigkeiten der Dimension n bzw. m, x ∈ X.

a) Eine stetige Abbildung f : X → Y heißt differenzierbar in x (von Klasse Ck), wenn
es Karten (U,ϕ) von X mit x ∈ U und (V, ψ) von Y mit f(U) ⊆ V gibt, sodass
ψ ◦ f ◦ ϕ−1 stetig differenzierbar von Klasse Ck in ϕ(x) ist.

b) f heißt differenzierbar (von Klasse Ck), wenn f in jedem x ∈ X differenzierbar ist.

c) f heißt Diffeomorphismus, wenn f differenzierbar von Klasse C∞ ist und es eine
differenzierbare Abbildung g : Y → X von Klasse C∞ gibt mit g ◦ f = idX und
f ◦ g = idY .

Korollar 2.3
Die Bedingung in Definition 30.a hängt nicht von den gewählten Karten ab.

Beweis: Seien (U ′, ϕ′) und (V ′, ψ′) Karten von X bzw. Y um x bzw. f(x) mit f(U ′) ⊆ V ′.
⇒ ψ′ ◦ f ◦ (ϕ′)−1

= ψ′ ◦ (ψ−1 ◦ ψ) ◦ f ◦ (ϕ−1 ◦ ϕ) ◦ (ϕ′)−1

ist genau dann differenzierbar, wenn ψ ◦ f ◦ ϕ−1 differenzierbar ist.

Beispiel 21
f : R→ R, x 7→ x3 ist kein Diffeomorphismus, aber Homöomorphismus, da mit g(x) := 3

√
x

gilt: f ◦ g = idR, g ◦ f = idR

Bemerkung 11
Sei X eine glatte Mannigfaltigkeit. Dann ist

Diffeo(X) := { f : X → X | f ist Diffeomorphismus }

eine Untergruppe von Homöo(X).

Definition 31
S ⊆ R3 heißt reguläre Fläche :⇔ ∀s ∈ S ∃ Umgebung V (s) ⊆ R3 ∃U ⊆ R2 offen:
∃ differenzierbare Abbildung F : U → V ∩ S: Rg(JF (u)) = 2 ∀u ∈ U .

F heißt (lokale) reguläre Parametrisierung von S.
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N

S

vu

(a) Kugelkoordinaten

−1
0

1
2−2

−1
0

1
2

0.6

0.8

1

(b) Rotationskörper

π
2

π 3π
2

2π

−1

−0.5

0.5

1

x

y

sinx
cosx

(c) Sinus und Kosinus haben keine gemeinsame Nullstelle

F (u, v) = (x(u, v), y(u, v), z(u, v))

JF (u, v) =

∂x
∂u(p) ∂x

∂v (p)
∂y
∂u(p) ∂y

∂v (p)
∂z
∂u(p) ∂z

∂v (p)


Beispiel 22

1) Rotationsflächen: Sei r : R→ R>0 eine differenzierbare Funktion.

F : R2 → R3 (u, v) 7→ (r(u) cos(u), r(v) sin(u), v)

JF (u, v) =

−r(v) sinu r′(v) cosu
r(v) cosu r′(v) sinu

0 1


hat Rang 2 für alle (u, v) ∈ R2.

2) Kugelkoordinaten: F : R2 → R3, (u, v) 7→ (R cos v cosu,R cos v sinu,R sin v)
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F (u, v) ∈ S2
R, denn

R2 cos2(v) cos2(u) +R2 cos2(v) sin2(u) +R2 sin2(v)

=R2(cos2(v) cos2(u) + cos2(v) sin2(u) + sin2(v))

=R2
(
cos2(v)(cos2(u) + sin2(u)) + sin2(v)

)
=R2

(
cos2(v) + sin2(v)

)
=R2

Die Jacobi-Matrix

JF (u, v) =

−R cos v sinu −R sin v cosu
R cos v cosu −R sin v sinu

0 R cos v


hat Rang 2 für cos v 6= 0. In N und S ist cos v = 0.

Korollar 2.4
Jede reguläre Fläche S ⊆ R3 ist eine 2-dimensionale, differenzierbare Mannigfaltigkeit.

Beweis: z.Z.: F−1
j ◦ Fi ist Diffeomorphismus Hier

muss
ich
noch-
mals
drü-
ber
lesen.

Hier
muss
ich
noch-
mals
drü-
ber
lesen.

Ui Uj

S

s

Fi Fj

F−1
j ◦Fi

Abbildung 2.5: Reguläre Fläche S zum Beweis von Korollar 2.4

Idee: Finde differenzierbare Funktion F̃−1
j in Umgebung W von s, sodass F̃−1

j |S∩W = F−1
j .

Ausführung: Sei u0 ∈ Ui mit Fi(u0) = s = Fj(v0), v0 ∈ Uj .
Da rg JFj (v0) = 2 ist, ist o. B. d. A.

det

(∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
(v0) 6= 0

und Fj(u, v) = (x(u, v), y(u, v), z(u, v)).

Definiere F̃j : Uj × R→ R3 durch

F̃j(u, v, t) = (x(u, v), y(u, v), z(u, v) + t)

Offensichtlich: F̃j |Uj×{ 0 } = Fj

J
F̃j

=

∂x
∂u

∂x
∂v 0

∂y
∂u

∂y
∂v 0

∂z
∂u

∂z
∂v 1

⇒ det J
F̃j

(v0, 0) 6= 0
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Analysis II
======⇒ Es gibt Umgebungen W von Fj von F̃j(v0, 0) = Fj(v0) = s, sodass F̃j auf W eine
differenzierbar Inverse F−1

j hat.

Weiter ist F̃j
−1|W∩S = F−1

j |W∩S ⇒ F−1
j ◦Fi|F−1

i (W∩S) = F−1
j ◦Fi|F−1

i (W∩S) ist differenzier-
bar.

Definition 32
Sei G eine Mannigfaltigkeit, ◦ : G × G → G eine Abbildung, (g, h) 7→ g · h, sodass (G, ◦)
eine Gruppe ist.

(a) G heißt topologische Gruppe, wenn die Abbildungen ◦ : G×G→ G und ι : G→ G.

(g, h) 7→ g · h g 7→ g−1

stetig sind.

(b) Ist G eine differenzierbare Mannigfaltigkeit, so heißt G Lie-Gruppe, wenn (G, ◦) und
(G, ι) differenzierbar sind.

Beispiel 23
1) Alle endlichen Gruppen sind 0-dimensionale Lie-Gruppen.

2) GLn(R)

3) (R×, ·)
4) (R>0, ·)
5) (Rn,+), denn A ·B(i, j) =

∑n
k=1 aikbkj ist nach allen Variablen differenzierbar

(A−1)(i, j) =
det(Aij)

detA

Aij =

ai1 . . . ain
...

. . .
...

an1 . . . ann

 ∈ R(n−1)×(n−1)

ist differenzierbar.

detAij kann 0 werden, da: (
1 1
−1 0

)
6) SLn(R) = {A ∈ GLn(R) | det(A) = 1 } Besser

struk-
turie-
ren

Besser
struk-
turie-
ren

grad(det−1)(A) = 0?
∂

∂a11
(det−1) = 1 · detA11

Es gibt i ∈ { 1, . . . , n } mit ∂
∂a1i

(det−1)A 6= 0

Bemerkung 12
Ist G eine Lie-Gruppe, g ∈ G, so ist die Abbildung

lg : G→ G

h 7→ g · h

ein Diffeomorphismus.
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2.3 Simplizialkomplex

Definition 33
Seien v0, . . . , vk ∈ Rn Punkte.

a) v0, . . . , vk sind in allgemeiner Lage ⇔ es gibt keinen (k − 1)-dimensionalen affinen
Untervektorraum, der v0, . . . , vk enthält ⇔v1 − v0, . . . , vk − v0 sind linear abhängig.

b) conv(v0, . . . , vk) =
{∑k

i=0 λivi

∣∣∣ λi ≥ 0,
∑k

i=0 λi = 1
}

Definition 34
a) Sei ∆k = conv(e0, . . . , ek) ⊆ Rn+1 die konvexe Hülle der Standard-Basisvektoren

e0, . . . , ek.

Dann heißt ∆k Standard-Simplex und k die Dimension des Simplex.

b) Für Punkte v0, . . . , vk im Rn in allgemeiner Lage heißt δ(v0, . . . , vk) = conv(v0, . . . , vk)

ein k-Simplex in Rn.

c) Ist ∆(v0, . . . , vk) ein k-Simplex und I = { i0, . . . , ir } ⊆ { 0, . . . , k }, so heißt si0,...,ir :=

conv(vi0 , . . . , vir) Teilsimplex oder Seite von ∆.

si0,...,ir ist r-Simplex.

(a) 0-Simplex ∆0

1 2 3

1

2

3

e0

e1

(b) 1-Simplex ∆1

1 2 3

1

2

3

e0

e1

e2

(c) 2-Simplex ∆2

e0 e1

e2

e3

(d) 3-Simplex ∆3

Abbildung 2.6: Beispiele für k-Simplexe

Definition 35
a) Eine endliche Menge K von Simplizes im Rn heißt (endlicher) Simplizialkomplex,

wenn gilt:

(i) Für ∆ ∈ K und S ⊆ ∆ Teilsimplex ist S ∈ K
(ii) Für ∆1,∆2 ∈ K ist ∆1 ∩∆2 leer oder ein Teilsimplex von ∆1 und von ∆2

b) |K| := ⋃∆∈K ∆ (mit Spurtopologie) heißt geometrische Realisierung von K.

c) Ist d = max { k | K enthält k − Simplex }, so heißt d Dimension von K.
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(a) 1D Simplizialkomplex (b) 2D Simplizialkomplex (oh-
ne untere Fläche!)

(c) 2D Simplizialkomplex

(d) 1D Simplizialkomplex (e) 2D Simplizialkomplex

P

(f) P ist kein Teilsimplex, da Eigen-
schaft b.ii verletzt ist

P

(g) Simplizialkomplex

Abbildung 2.7: Beispiele für Simplizialkomplexe

Definition 36
Seien K,L Simplizialkomplexe. Eine stetige Abbildung

f : |K| → |L|

heißt simplizial, wenn für jedes ∆ ∈ K gilt:

(i) f(∆) ∈ L
(ii) f |∆ : ∆→ f(∆) ist eine affine Abbildung.

Beispiel 24
1) ϕ(e1) := b1, ϕ(e2) := b2

ϕ ist eine eindeutig bestimmte lineare Abbildung
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0 e2

e1

0 b1

b2

ϕ

2) Folgende Abbildung ∆n → ∆n−1 ist simplizial:

ϕ

3) Wozu dient das Beispiel?

M

a b

a b

c

d d

c

M Quotient nach

Punktspiegelung

1 2

34

Definition 37
Sei K ein endlicher Simplizialkomplex. Für n ≥ 0 sei an(K) die Anzahl der n-Simplizes in
K.

Dann heißt

χ(K) :=
dimK∑
k=0

(−1)nan(K)

Eulerzahl (oder Euler-Charakteristik) von K.

Beispiel 25
1) χ(∆1) = 2− 1 = 1

χ(∆2) = 3− 3 + 1 = 1
χ(∆3) = 4− 6 + 4− 1 = 1

2) χ(Oktaeder-Oberfläche) = 6− 12 + 8 = 2
χ(Rand des Tetraeders) = 2
χ(Ikosaeder) = 12− 30 + 20 = 2

3) χ(Würfel) = 8− 12 + 6 = 2
χ(Würfel, unterteilt in Dreiecksflächen) = 8− (12 + 6) + (6 · 2) = 2

Korollar 2.5
χ(∆n) = 1 für jedes n ∈ N0

Beweis: ∆n ist die konvexe Hülle von (e0, . . . , en) in Rn+1. Jede (k + 1)-elementige Teilmenge
von { e0, . . . , en } definiert ein k-Simplex.
⇒ ak(∆

n) =
(
n+1
k+1

)
, k = 0, . . . , n

⇒ χ(∆n) =
∑n

k=0(−1)k
(
n+1
k+1

)
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f(x) = (x+ 1)n+1
Binomischer

Lehrsatz=
∑n+1

k=0

(
n+1
k

)
xk

⇒ 0 =
∑n+1

k=0

(
n+1
k

)
(−1)k = χ(∆n)− 1

⇒ χ(∆n) = 1 �

Definition 38
a) Ein 1D-Simplizialkomplex heißt Graph.

b) Ein Graph, der homöomorph zu S1 ist, heißt Kreis.

c) Ein zusammenhängender Graph heißt Baum, wenn er keinen Kreis enthält.

(a) Dies wird häufig auch als
Multigraph bezeichnet.

(b) Planare Einbettung des Te-
traeders

(c) K5 (d) K3,3

Abbildung 2.8: Beispiele für Graphen

Korollar 2.6
Für jeden Baum T gilt γ(T ) = 1.

Beweis: Induktion über die Anzahl der Ecken.
Korollar 2.7

a) Jeder zusammenhängende Graph Γ enthält einen Teilbaum T , der alle Ecken von Γ
enthält.1

b) Ist n = a1(Γ) = a1(T ), so ist χ(Γ) = 1− n.

Beweis:

a) Siehe „Algorithmus von Kruskal“.

b) χ(Γ) = a0(Γ)− a1(Γ)

= a0(Γ)− (n+ a1(T ))

= a0(T )− a1(T )− n
= χ(T )− n
= 1− n

1T wird „Spannbaum“ genannt.
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Korollar 2.8
Sei ∆ ein n-Simplex und x ∈ ∆◦ ⊆ Rn. Sei K der Simplizialkomplex, der aus ∆ durch
„Unterteilung“ in x entsteht. Dann ist χ(K) = χ(∆) = 1.

(a) K (b) ∆, das aus K durch Unter-
teilung entsteht

Abbildung 2.9: Beispiel für Korollar 2.8.

Beweis: χ(K) = χ(∆)− (−1)n︸ ︷︷ ︸
n−Simplex

+
n∑
k=0

(−1)k

︸ ︷︷ ︸
(1+(−1))n+1

= χ(∆) �

Satz 2.9 (Eulersche Polyederformel)
Sei P ein konvexes Polyeder in R3, d. h. ∂P ist ein 2-dimensionaler Simplizialkomplex,
sodass gilt:

∀x, y ∈ ∂P : [x, y] ⊆ P

Dann ist χ(∂P ) = 2.

Beweis:

1) Die Aussage ist richtig für den Tetraeder.

2) O. B. d. A. sei 0 ∈ P und P ⊆ B1(0). Projeziere 0P von 0 aus auf ∂B1(0) = S2.
Erhalte Triangulierung von S2.

3) Sind P1 und P2 konvexe Polygone und T1, T2 die zugehörigen Triangulierungen von S2,
so gibt es eine eine Triangulierungen T , die sowohl um T1 als auch um T2 Verfeinerung
ist.

T1

T2

?

Was
be-
deu-
tet
diese
Zeich-
nung?

Was
be-
deu-
tet
diese
Zeich-
nung?

Nach Korollar 2.8 ist χ(∂P1) = χ(T1) = χ(T ) = χ(T2) = χ(∂P2) = 2, weil o. B. d. A.
P2 ein Tetraeder ist.

Korollar 2.10 (Der Rand vom Rand ist 0)
Sei K ein (endlicher) Simplizialkomplex mit Knotenmenge V und < eine Totalordnung auf

Warum
in
Klam-
mern?

Warum
in
Klam-
mern?

V .
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Sei An die Menge der n-Simplizes in K, d. h.

An(K) := { σ ∈ K | dim(σ) = n } für n = 0, . . . , d = dim(K)

und Cn(K) der R-Vektorraum mit Basis An(K), d. h.

Cn(K) =

 ∑
σ∈An(K)

cσ · σ

∣∣∣∣∣∣ cσ ∈ R


Sei σ = ∆(x0, . . . , xn) ∈ An(K), sodass x0 < x1 < · · · < xn.

Für i = 0, . . . , n sei ∂iσ := ∆(x0, . . . , x̂i, . . . , xn) die i-te Seite von σ und dσ = dnσ :=∑
i=0(−1)i∂iσ ∈ Cn−1(K) und dn : Cn(K) → Cn−1(K) die dadurch definierte lineare

Abbildung.

Dann gilt: dn−1 ◦ dn = 0

a b

c

σ

e3

e1e2

Beispiel 26
a < b < c

d2σ = e1 − e2 + e3 = (c− b)− (c− a) + (b− a) = 0

Beispiel auf Tetraeder übertragen

Beweis: Sei σ ∈ An. Dann gilt:

dn−1(dnσ) = dn−1(
n∑
i=0

(−1)i∂iσ)

=
n∑
i=0

(−1)idn−1(∂iσ)

=
n∑
i=0

(−1)i
n−1∑
j=0

∂i(∂jσ)(−1)j

=
∑

0≤i≤j≤n−1

(−1)i+j∂j(∂j(σ)) +
∑

0≤j<i≤n
(−1)i+j∂i−1(∂jσ)

= 0

weil jeder Summand aus der ersten Summe auch in der zweiten Summe vorkommt, aber mit
umgekehrten Vorzeichen. �

Definition 39
Sei Zn := Kern(dn) ⊆ Cn und Bn := Bild(dn+1) ⊆ Cn.
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a) Hn = Hn(K,R) := Zn/Bn heißt n-te Homotopiegruppe von K.

b) bn(K) := dimRHn heißt n-te Belti-Zahl von K.

Bemerkung 13
Nach Korollar 2.10 ist Bn ⊆ Zn, denn dn+1(C) ∈ Kern(dn) für C ∈ Cn+1.

Satz 2.11
Für jeden endlichen Simplizialkomplex K der Dimension d gilt:

d∑
k=0

(−1)kbk(K) =
d∑

k=0

(−1)kak(K) = χ(K)

Bemerkung 14
Es gilt nicht ak = bk ∀k ∈ N0.

Beweis:

• Dimensionsformel für dn: an = dimZn + dimBn−1 für n ≥ 1

• Dimensionsformel für Zn → Hn = Zn/Bn : dimZn = bn + dimBn

⇒
d∑

k=0

(−1)kak = a0 +
d∑

k=1

(−1)k(dimZk + dimBk−1) (2.1)

= a0 +

d∑
k=1

(−1)k dimZk +

d∑
k=0

(−1)k+1 dimBk−1 (2.2)

= a0 +

d∑
k=1

(−1)k dimZk −
d∑

k=0

(−1)k dimBk−1 (2.3)

= a0 +

d−1∑
k=1

(−1)kbk + (−1)d dimZd︸ ︷︷ ︸
=bd

−dimB0 (2.4)

= b0 +
d−1∑
k=1

(−1)kbk + (−1)dbd (2.5)

=

d∑
k=0

(−1)kbk (2.6)
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Übungsaufgaben

Aufgabe 5 (Zusammenhang)

(a) Beweisen Sie, dass eine topologische Mannigfaltigkeit genau dann wegzusammenhän-
gend ist, wenn sie zusammenhängend ist

(b) Betrachten Sie nun wie in Beispiel 8) den Raum X := (R \ { 0 })∪ { 01, 02 } versehen
mit der dort definierten Topologie. Ist X wegzusammenhängend?



3 Fundamentalgruppe und Überlagerungen

3.1 Homotopie von Wegen

a b

γ1

γ2

(a) γ1 und γ2 sind homotop,
da man sie „zueinander ver-
schieben“ kann.

a b

γ1

γ2

(b) γ1 und γ2 sind wegen dem
Hindernis nicht homotop.

Abbildung 3.1: Beispiele für Wege γ1 und γ2

Definition 40
Sei X ein topologischer Raum, a, b ∈ X, γ1, γ2 : [0, 1] → X Wege von a nach b, d. h.
γ1(0) = γ2(0) = a, γ1(1) = γ2(1) = b

a) γ1 und γ2 heißen homotop, wenn es eine stetige Abbildung

H(t, 0) = γ1(t), H(t, 1) = γ2(t) ∀t ∈ [0, 1] =: I

und H(0, s) = a und H(1, s) = b für alle s ∈ I gibt. Dann schreibt man: γ1 ∼ γ2

H heißt Homotopie zwischen γ1 und γ2.

b) γs : I → X, γs(t) = H(t, s) ist Weg in X von a nach b für jedes s ∈ I.
Korollar 3.1

„Homotop“ ist eine Äquivalenzrelation auf der Menge aller Wege in X von a nach b.

Beweis:

• reflexiv: H(t, s) = γ(t) für alle t, s ∈ I × I
• symmetrisch: H ′(t, s) = H(t, 1− s) für alle t, s ∈ I × I
• transitiv: Seien H ′ bzw. H ′′ Homotopien von γ1 nach γ2 bzw. von γ2 nach γ3.

Dann sei H(t, s) :=

{
H ′(t, 2s) falls 0 ≤ s ≤ 1

2

H ′′(t, 2s− 1) falls 1
2 ≤ s ≤ 1

⇒ H ist stetig und Homotopie von γ1 nach γ2

�

Beispiel 27
1) Sei X = S1. γ1 und γ2 aus Abbildung 3.3a nicht homöotop.

38
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Abbildung 3.2: Zwei Wege im R2 mit Anfangs- und Endpunkt (0, 0)

2) Sei X = T 2. γ1, γ2 und γ3 aus Abbildung 3.3b sind paarweise nicht homöotop.

3) Sei X = R2 und a = b = (0, 0).

Je zwei Wege im R2 mit Anfangs- und Endpunkt (0, 0) sind homöotop.

Sei γ0 : I → R2 der konstante Weg γ0(t) = 0 ∀t ∈ I. Sei γ(0) = γ(1) = 0.

H(t, s) := (1− s)γ(t) ist stetig, H(t, 0) = γ(t) ∀t ∈ I und H(t, 1) = 0 ∀t ∈ I

a

b

γ1γ2

(a) Kreis mit zwei Wegen

a

b

(b) Torus mit drei Wegen

Abbildung 3.3: Beispiele für (nicht)-Homotopie von Wegen

Korollar 3.2
Sei X ein topologischer Raum, γ : I → X ein Weg und ϕ : I → I stetig mit ϕ(0) = 0,
ϕ(1) = 1. Dann sind γ und γ ◦ ϕ homotop.

Beweis: Sei H(t, s) = γ((1− s)t+ s · ϕ(t)).

Dann ist H stetig, H(t, 0) = γ(t), H(t, 1) = γ(ϕ(t)), H(0, s) = γ(0) und H(1, s) =
γ(1− s+ s) = γ(1)
⇒ H ist Homotopie. �
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Definition 41
Seien γ1, γ2 Wege in X mit γ1(1) = γ2(0). Dann ist

γ(t) =

{
γ1(2t) falls0 ≤ t < 1

2

γ2(2t− 1) falls1
2 ≤ t ≤ 1

ein Weg in X. Er heißt zusammengesetzter Weg und man schreibt γ = γ1 ∗ γ2.

Korollar 3.3
Das zusammensetzen von Wegen ist nur bis auf Homotopie assoziativ, d. h.:

γ1 ∗ (γ2 ∗ γ3) 6= (γ1 ∗ γ2) ∗ γ3

γ1 ∗ (γ2 ∗ γ3) ∼ (γ1 ∗ γ2) ∗ γ3

mit γ1(1) = γ2(0) und γ2(1) = γ3(0).

γ1 γ2 γ3

0 1/2 3/4 1

(a) γ1 ∗ (γ2 ∗ γ3)

γ1 γ2 γ3

0 1/4 1/2 1

(b) (γ1 ∗ γ2) ∗ γ3

Abbildung 3.4: Das Zusammensetzen von Wegen ist nicht assoziativ

Beweis: Das Zusammensetzen von Wegen ist wegen Korollar 3.2 bis auf Homotopie assoziativ,
da

γ(t) =


1
2 t falls 0 ≤ t < 1

2

t− 1
4 falls 1

2 ≤ t < 3
4

2t− 1 falls 3
4 ≤ t ≤ 1

Korollar 3.4
Sei X ein topologischer Raum, a, b, c ∈ X, γ1, γ

′
1 Wege von a nach b und γ2, γ

′
2 Wege von b

nach c.

Sind γ1 ∼ γ′1 und γ2 ∼ γ′2, so ist γ1 ∗ γ2 ∼ γ′1 ∗ γ′2.

Beweis: Sei Hi eine Homotopie zwischen γi und γ′i, i = 1, 2.

Dann ist

H(t, s) :=

{
H1(2t, s) falls 0 ≤ t ≤ 1

2 ∀s ∈ I
H2(2t− 1, s) falls 1

2 ≤ t ≤ 1

Homotopie zwischen γ1 ∗ γ2 und γ′1 ∗ γ′2 (!)

Hier fehlt noch was
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Abbildung 3.5: Situation aus Korollar 3.4
.

3.2 Fundamentalgruppe

Für einen Weg γ sei [γ] seine Homotopieklasse.

Definition 42
Sei X ein topologischer Raum und x ∈ X. Sei außerdem

π1(X,x) := { [γ] | γ ist Weg in X mit γ(0) = γ(1) = x }

Durch [γ1] ∗G [γ2] := [γ1 ∗ γ2] wird π1(X,x) zu einer Gruppe. Diese Gruppe heißt Funda-

mentalgruppe in X im Basispunkt x.

Bemerkung 15
Im R2 gibt es nur eine Homotopieklasse.

Beweis: (Fundamentalgruppe ist eine Gruppe)

a) Abgeschlossenheit folgt direkt aus der Definition von ∗G
b) Assoziativität folgt aus Korollar 3.3

c) Neutrales Element e = [γ0], γ0(t) = x ∀t ∈ I. e ∗ [γ] = [γ] = [γ] ∗ e, da γ0 ∗ γ ∼ γ
d) Inverses Element [γ]−1 = [γ] = [γ(1− t)], denn γ ∗ γ ∼ γ0 ∼ γ ∗ γ

Beispiel 28
1) S1 = { z ∈ C | |z| = 1 } =

{
(cosϕ, sinϕ) ∈ R2

∣∣ 0 ≤ ϕ ≤ 2π
}

π1(S1, 1) =
{

[γk]
∣∣ k ∈ Z

} ∼= Z

[γk] 7→ k

2) π1(R2, 0) = π1(R2, x) = { e } für jedes x ∈ R2

3) π1(Rn, x) = { e } für jedes x ∈ Rn

4) G ⊆ Rn heißt sternförmig bzgl. x ∈ G, wenn für jedes y ∈ G auch die Strecke
[x, y] ⊆ G ist.

Für jedes sternförmige G ⊆ Rn ist π1(G, x) = { e }
5) π1(S2, x0) = { e }, da im R2 alle Wege homotop zu { e } sind. Mithilfe der stereogra-

phischen Projektion kann von S2 auf den R2 abgebildet werden.

Dieses Argument funktioniert nicht mehr bei flächendeckenden Wegen!
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x

Abbildung 3.6: Sternförmiges Gebiet
.

TODO

Abbildung 3.7: Situation aus Korollar 3.5
.

Korollar 3.5
Sei X ein topologischer Raum, a, b ∈ X, δ : I → X ein Weg von a nach b.

Dann ist die Abbildung

α : π1(X, a)→ π1(X, b) [γ] 7→ [δ ∗ γ ∗ δ]

ein Gruppenisomorphismus.

Beweis:

α([γ1] ∗ [γ2]) = [δ ∗ (γ1γ2) ∗ δ]
= [δ ∗ γ1 ∗ δ ∗ δ ∗ γ2 ∗ δ] = [δ ∗ γ1 ∗ δ] ∗ [δ ∗ γ2 ∗ δ]
= α([γ1]) ∗ α([γ2])

Definition 43
Ein wegzusammenhängender topologischer Raum X heißt einfach zusammenhängend,
wenn π1(X,x) = { e } für ein (jedes) x ∈ X. was

denn
nun?

was
denn
nun?Korollar 3.6

Es seien X,Y topologische Räume, f : X → Y eine stetige Abbildung, x ∈ X, y := f(x) ∈ Y .

a) Dann ist die Abbildung f∗ : π1(X,x)→ π1(Y, y), [y]→ [f ◦ y] ein Gruppenhomomor-
phismus.

b) Ist Z ein weiterer topologischer Raum und g : Y → Z eine stetige Abbildung z := g(y).
Dann ist (g ◦ f)∗ = g∗ ◦ f∗ : π1(X,x)→ π1(Z, z)

Beweis:

a) f∗ ist wohldefiniert: Seien γ1, γ2 homotope Wege von x. z.Z.: f ◦ γ1 ∼ f ◦ γ2: Nach
Voraussetzung gibt es stetige AbbildungenH : I×I → X mitH(t, 0) = γ1(t), H(t, 1) =
γ2(t), H(0, S) = H(1, S) = x. Dann ist f ◦ H : I × I → Y mit . . . (f ◦ H)(t, 0) = Warum

die
Punk-
te?

Warum
die
Punk-
te?

f(H(t, 0)) = f(γ1(t)) = (f ◦ γ1)(t) etc. ⇒ f ◦ γ1 ∼ f ◦ γ2.

f∗([γ1] ∗ [γ2]) = [f ◦ (γ1 ∗ γ2)] = [(f ◦ γ1)] ∗ [(f ◦ γ2)] = f∗([γ1]) ∗ f∗([γ2])
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b) (g ◦ f)∗([γ]) = [(g ◦ f) ◦ γ] = [g ◦ (f ◦ γ)] = g∗([f ◦ γ]) = g∗(f∗([γ])) = (g∗ ◦ f∗)([γ])

Beispiel 29
1) f : S1 ↪→ R2 ist injektiv, aber f∗ : π1(S1, 1) ∼= Z→ π1(R2, 1)− 0 { e } ist nicht injektiv
2) f : R→ S1, t 7→ (cos 2πt, sin 2πt) ist surjektiv, aber f∗ : π1(R, 0) = { e } → π1(S2, 1) ∼=

Z ist nicht surjektiv

Korollar 3.7
Sei f : X → Y ein Homöomorphismus zwischen topologischen Räumen X,Y . Dann gilt:

f∗ : π1(X,x)→ π1(Y, f(x))

ist ein Isomorphismus für jedes x ∈ X.

Beweis: Sei g : Y → X die Umkehrabbildung, d. h. g ist stetig und f ◦ g = idY , g ◦ f = idX

⇒ f∗ ◦ g∗ = (f ◦ g)∗ = (idY )∗ = idπ1(Y,f(X) und g∗ ◦ f∗ = idπ1(X,x).

Definition 44
Seien X,Y topologische Räume, x0 ∈ X, y0 ∈ Y, f, g : X → Y stetig mit f(x0) = y0 = g(x0).

f und g heißen homotop (f ∼ g), wenn es eine stetige Abbildung H : X × I → Y gibt mit
H(X, 0) = f(X), H(X, 1) = g(x) für alle x ∈ X und H(x0, S) = y0 für alle s ∈ I.

Korollar 3.8
Sind f und g homotop, so ist f∗ = g∗ : π1(X,x0)→ π1(Y, y0).

Beweis: Sei γ ein geschlossener Weg in X um x0, d. h. [γ] ∈ π1(X,x0).

Z. Z.: f ◦ γ ∼ g ◦ γ
Sei dazu Hγ : I × I → Y, (t, s) 7→ H(γ(t), S). Dann gilt: Hγ(t, 0) = H(γ(t), 0) = (g ◦ γ)(t),
Hγ(1, s) = H(γ(1), s) = H(x0, s) = y0 für alle s.

Beispiel 30
f : X → Y, g : Y → X mit g ◦ f ∼ idX , f ◦ g ∼ idY

⇒ f∗ ist Isomorphismus. Konkret: f : R2 → { 0 } , g : { 0 } → R2

⇒ f ◦ g = id{ 0 }, g ◦ f : R2 → R2, x 7→ 0 für alle x.

g ◦ f ∼ idR2 mit Homotopie: H : R2 × I → R2, H(x, S) = (1− s)x (stetig!)

⇒ H(X, 0) = X = idR2(X), H(X, 1) = 0, H(0, s) = 0 für alle s ∈ I

Satz 3.9 (Satz von Seifert und van Kampen „light“)
Sei X ein topologischer Raum, U, V ⊆ X offen mit U ∪ V = X und U ∩ V wegzusam-
menhängend.

Dann wird π1(X,x) für x ∈ U ∩ V erzeugt von geschlossenen Wegen um x, die ganz in
U oder ganz in V verlaufen.

Beweis: Sei γ : I → X ein geschlossener Weg von x. Überdecke I mit endlich vielen offenen
Intervallen, die ganz in γ−1(U) oder ganz in γ−1(V ) liegen.
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a b

x

Abbildung 3.8: Topologischer Raum X

V

U

a

b

V

a b

Abbildung 3.9: a ∗ b = b ∗ a⇔ a ∗ b ∗ a ∗ b ∼ e

O. B. d. A. sei γ(I1) ⊆ U, γ(I2) ⊆ V , etc.

Wähle ti ∈ Ii ∩ Ii+1, also γ(ti) ∈ U ∩ V . Sei σi Weg in U ∩ V von x0 nach γ(ti) ⇒ γ ist
homotop zu

γ1 ∗ σ1︸ ︷︷ ︸
in U

∗σ1 ∗ γ2 ∗ σ2︸ ︷︷ ︸
in V

∗ · · · ∗ σn−1 ∗ γ2

Beispiel 31
1) Sei X wie in Abbildung 3.8. π1(X,x) wird „frei“ erzeugt von a und b, weil π1(U, x) =<

a >∼= Z, π1(V, x) =< b >∼= Z, insbesondere ist a ∗ b nicht homotop zu b ∗ a.
2) Torus: π1(T 2, X) wird erzeugt von a und b.

3.3 Überlagerungen

Definition 45
Es seien X,Y zusammenhängende topologische Räume und p : Y → X eine stetige Abbil-
dung.

p heißt Überlagerung, wenn jedes x ∈ X eine offene Umgebung U = U(x) ⊆ X besitzt,
sodass p−1(U) disjunkte Vereinigung von offenen Teilmengen Vj ⊆ Y ist (j ∈ I) und
p|Vj : Vj → U ein Homöomorphismus ist.

Beispiel 32
1) siehe Abbildung 3.10

2) siehe Abbildung 3.11a

3) Rn → Tn = Rn/Zn
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Abbildung 3.10: R→ S1,
t 7→ (cos 2πt, sin 2πt)

4) Sn → Pn(R)

5) S1 → S1, z 7→ z2, siehe Abbildung 3.11b

(a) R2 → T 2 = R2/Z2

1

i

z

z2

ϕ
ϕ

z2

(b) t 7→ (cos 4πt, sin 4πt)

Abbildung 3.11: Beispiele für Überlagerungen

Korollar 3.10
Überlagerungen sind surjektiv.

Beweis: durch Widerspruch
Sei p eine Überlagerung.

Annahme: p ist nicht surjektiv

Dann ∃x ∈ X mit U = U(x) : p−1(U) = ∅. Da p eine Überlagerung ist, existiert eine offene
Umgebung U , sodass p−1(U) eine disjunkte Vereinigung von offenen Teilmengen Vj ⊆ Y ist
und p|Vj : Vj → U ein Homöomorphismus ist.

Da jedes x eine solche Umgebung U besitzt, ist U 6= ∅. Da p|Vj : Vj → U ein Homöomor-
phismus ist, kann also auch Vj nicht leer sein. ⇒ Widerspruch zur Annahme. �

Definition 46
Seien X,Y topologische Räume und f : X → Y eine Abbildung.

f heißt offen :⇔ ∀V ⊆ X offen: f(V ) ist offen in Y .

Korollar 3.11
Überlappungen sind offene Abbildungen.
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Beweis: Sei y ∈ V und x ∈ p(V ), sodass x = p(y) gilt. Sei weiter U = Ux die offene Umgebung
von x wie in Definition 45 und Vj die Komponente von p−1(U), die y enthält.

Dann ist V ∩ Vj offene Umgebung von y.

⇒ p(V ∩Vj) ist offen in p(Vj), also auch offen in X. Außerdem ist p(y) = x ∈ p(V ∩Vj) und
p(V ∩ Vj) ⊆ p(V ).

⇒ p(V ) ist offen.

Die Definition von Diskret habe ich mir überlegt. Hatten wir das schon mal? Haben wir
Häufungspunkt definiert?

Definition 47
Sei M eine Menge und X ein topologischer Raum.

M heißt diskret in X, wenn M in X keinen Häufungspunkt hat.

Korollar 3.12
Sei p : Y → X Überlagerung, x ∈ X.

a) X hausdorffsch ⇒ Y hausdorffsch

b) p−1(X) ist diskret in Y

Beweis:

a) Seien y1, y2 ∈ Y .

1. Fall: p(y1) = p(y2) = x.

Sei U Umgebung von x wie in Definition 45, Vj1 bzw. Vj2 die Komponente von p−1(U),
die y1 bzw. y2 enthält.

Dann ist Vj1 6= Vj2 , weil beide ein Element aus p−1(x) enthalten.

⇒ Vj1 ∩ Vj2 = ∅ nach Voraussetzung.

2. Fall: p(y1) 6= p(y2).

Dann seien U1 und U2 disjunkte Umgebungen von p(y1) und p(y2).

⇒ p−1(U1) und p−1(U2) sind Umgebungen von y1 und y2.

b) Sei y ∈ Y
1. Fall: y ∈ p−1(x)

Finde vj , sodass kein . . .
...

2. Fall: y /∈ p−1(x)

...

Korollar 3.13 (Eindeutigkeit der Liftung)
Sei p : Y → X Überlagerung, x1, x2 ∈ X.

Dann ist |p−1(x1)| = |p−1(x2)|.1

1|p−1(x1)| =∞ ist erlaubt!
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0 1 2 3 4 5 6
0

1

2

3

4

5

6

T
Liften−−−→ R2/Z2

Abbildung 3.12: Beim Liften eines Weges bleiben geschlossene Wege im allgemeinen nicht ge-
schlossen

Z Y

X

f̃

f
p

Abbildung 3.13: Situation aus Korollar 3.14

Beweis: Sei U Umgebung von x1 wie in Definition 45, x ∈ U . Dann enthält jedes Vj , j ∈ IX
genau ein Element von p−1(x)

⇒ |p−1(x)| ist konstant auf U
Xzhgd.
====⇒ |p−1(x)| ist konstant auf X

Definition 48
Sei p : Y → X Überlagerung, Z ein weiterer topologischer Raum, f : Z → X stetig.

Eine stetige Abbildung f̃ : Z → Y heißt Liftung von f , wenn p ◦ f̃ = f ist.

Korollar 3.14
Sei Z zusammenhängend und f0, . . . , f1 : Z → Y Liftungen von f .

∃z0 ∈ Z : f0(z) = f1(z)⇒ f0 = f1

Beweis: Sei T = { z ∈ Z | f0(z) = f1(z) }.
Z. Z.: T ist offen und Z \ T ist auch offen.

Sei z ∈ T, x = f(z), U Umgebung von x wie in Definition 45, V die Komponente von p−1(U),
die y := f0(z) = f1(z). deutsch?deutsch?

Sei q : U → V die Umkehrabbildung zu p|V .
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Abbildung 3.14: Skizze für den Beweis von Satz 3.15

Sei W := f−1(U) ∩ f−1
0 (V ) ∩ f−1

1 (V ). W ist offene Umgebung in Z von z.

Behauptung: B ⊆ T
Denn für w ∈W ist q(f(w)) = q((p ◦ f0))(w) = ((q ◦ p) ◦ f0)(w) = f0(w) = q(f(w)) = f1(w)

⇒ T ist offen.

Analog: Z \ T ist offen.

Satz 3.15
Sei p : Y → X Überlagerung, γ : I → X ein Weg, y ∈ Y mit p(y) = γ(0) =: x.

Dann gibt es genau einen Weg γ̃ : I → Y mit γ̃(0) = y und p ◦ γ̃ = γ.

Beweis: Existenz: Siehe Abbildung 3.14.

p : Y → X Überlagerung, X,Y wegzusammenhängend. p stetig und surjektiv, zu x ∈ X∃
Umgebung U , so dass p−1(U) =

⋃
Vj

p|Vj : Vj → U Homöomorphismus.

Bemerkung 16
Wege in X lassen sich zu Wegen in Y liften.

Zu jedem y ∈ p−1(γ(0)) gibt es genau einen Lift von γ.

Proposition 3.16
Seien p : Y → X eine Überlagerung, a, b ∈ X, γ0, γ1 : I → X homotope Wege von a
nach b, ã ∈ p−1(a), γ̃0, γ̃1 Liftungen von γ0 bzw. γ1 mit γ̃i(0) = 0̃.

Dann ist γ̃0(1) = γ̃1(1) und γ̃0 ∼ γ̃1.

Beweis: Sei H : I × I → X Homotopie zwischen γ1 und γ2.
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Für s ∈ [0, 1] sei γs : I → X, t 7→ H(t, s).

Sei γ̃s Lift von γs mit γ̃s(0) = ã

Sei H̃ : I × I → Y, H̃(t, s) := (γ̃s(t), s)

Dann gilt:

(i) H̃ ist stetig (Beweis wie für Korollar 3.14)

(ii) H̃(t, 0) = γ̃s(t) = H̃(t, 1) = γ̃1(t)

(iii) H̃(0, s) = γ̃s(0) = 0̃

(iv) H̃(1, s) ∈ p−1(b)

Da p−1(b) diskrete Teilmenge von Y ist
⇒ H̃(1, s) = H̃(1, 0) = b̃s∀s ∈ I
⇒ b̃0 = b̃1 und H ist Homotopie zwischen γ̃0 und γ̃1. �

Korollar 3.17
Sei p : Y → X eine Überlagerung, x0 ∈ X, y0 ∈ p−1(x0)

a) p1 : π1(Y, y0)→ π1(X,x0) ist injektiv

b) [π1(X,x0) : p∗(π1(Y, y0))] = deg(p)

Beweis:

a) Sei γ̃ ein Weg in Y um y0 und p∗([γ̃]) = e, also p ◦ γ̃ ∼ γx0
Nach Proposition 3.16 ist dann γ̃ homotop zum Lift des konstanten Wegs γx0 mit
Anfangspunkt y0, also zu γy0 ⇒ [γ̃] = e

b) Sei d = deg p, p−1(x0) = { y0, y1, . . . , yd−1 }. Für einen geschlossenen Weg γ in X um
x0 sei γ̃ die Liftung mit γ̃(0) = y0.

γ̃(1) ∈ { y0, . . . , yd−1 } hängt nur von [γ] ∈ π1(X,x0) ab.

Es gilt:

γ̃0(1) = γ̃1(1)

⇔ [γ̃0 ∗ γ̃1
−1] ∈ π1(Y, y0)

⇔ [γ0 ∗ γ−1
1 ] ∈ p∗(π1(Y, y0))

Zu i ∈ { 0, . . . , d− 1 } gibt es Weg δi in Y mit δi(0) = y0 und σi(1) = yi
⇒ p ∗ δi ist geschlossener Weg in X um x0.
⇒ σi = p̃ ∗ δi
⇒ Jedes yi mit i = 0, . . . , d− 1 ist γ̃(1) für ein [γ] ∈ π1(X,x0)

Korollar 3.18
Sei p : Y → X Überlagerung und X einfach zusammenhängend.

Dann ist p ein Homöomorphismus.

Beweis: Wegen Korollar 48.a ist auch Y einfach zusammenhängend und wegen Korollar 48.b
ist deg(p) = 1, p ist also bijektiv.

Nach 12.2 ist p offen ⇒ p−1 ist stetig. � Was
ist
das?

Was
ist
das?
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Definition 49
Eine Überlagerung p : X̃ → X heißt universell, wenn X̃ einfach zusammenhängend ist.

Beispiel 33
R→ S1, t 7→ (cos 2πt, sin 2πt)

R2 → T 2 = R2/Z2

Sn → Pn(R) für n ≥ 2

Satz 3.19
Sei p : X̃ → X eine universelle Überlagerung, q : Y → X weitere Überlagerung.

Sei x0 ∈ X, x̃0 ∈ X̃, y0 ∈ Y mit q(y1) = x0, p(x̃0) = x0.

Dann gibt es genau eine Überlagerung p̃ : X̃ → Y mit p̃(x̃0) = y0.

Beweis: Sei z ∈ X̃, yz : I → X̃ ein Weg von x̃0 nach z.

Sei δZ die Liftung von p ◦ γz nach y mit δ2(0) = y0.

Setze p̃(z) = δZ(1).

Da X̃ einfach zusammenhängend ist, hängt p̃(z) nicht vom gewählten yz ab.

Offensichtlich ist q(p̃(z)) = p(z).

p̃ ist stetig (in z ∈ X̃). Sei W ⊆ Y offene Umgebung von p̃(z).
q offen
====⇒ q(W ) ist offene Umgebung von p(z) · d(p̃(z)).

Sei U ⊆ q(W ) offen wie in Definition 45 und V ⊆ q−1(U) die Komp. die p̃(z) enthält. Was?Was?

O. B. d. A. sei V ⊆W .

Sei Z := p−1(U). Für u ∈ Z sei δ ein Weg in Z von z nach u.

⇒ γZ ∗ δ ist Weg von x0 nach u
⇒ p̃(u) ∈ V
⇒ Z ⊆ ˜p−1(W )
⇒ p̃ ist stetig

Korollar 3.20
Sind p : X → X und y : Ỹ → X universelle Überlagerungen, so sind X̃ und Ỹ homöomorph. Hier

stimmt
was
mit
den
Til-
den
nicht

Hier
stimmt
was
mit
den
Til-
den
nicht

Beweis: Seien x0 ∈ X, x̃0 ∈ X̃ mit p(x̃0) = x0 und ỹ0 ∈ q−1(x0) ⊆ Ỹ .

Nach Satz 3.19 gibt es genau eine Überlagerung

f : X̃ → Ỹ mit f(x0) = Ỹ0 und q ◦ f = p

und genau eine Überlagerung

g : Ỹ → X̃ mit g(ỹ0) = x̃0 und p ◦ g = q

Damit gilt: p ◦ q ◦ f = q ◦ f = p, q ◦ f ◦ g = p ◦ g = q. Also ist g ◦ f : X̃ → X̃ Lift von
p : X̃ → X mit (g ◦ f)(x̃0) = x̃0.
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Da auch idx̃ diese Eigenschaft hat, folgt mit Korollar 3.13: g ◦ f = idX̃ . Analog f ◦ g = idỸ .
�

Die Frage, wann es eine universelle Überlagerung gibt, beantwortet der folgende Satz:

Satz 3.21
Es sei X ein wegzusammenhängender topologischer Raum in dem jeder Punkt eine
Umgebungsbasis aus einfach zusammenhängenden Mengen hat.

Dann gibt es eine universelle Überlagerung.

Beweis: Sei x0 ∈ X und X̃ := { (x, [γ]) | x ∈ X, γ Weg von xo nach x } und p : X̃ → X, (x, [γ]) 7→
x.

Die Topologie auf X̃ ist folgende: Definiere eine Umgebungsbasis von (x, [γ]) wie folgt: Es
sei U eine einfach zusammenhängende Umgebung von x und

Ũ = Ũ(x, [γ]) := { (y, [γ ∗ α]) | y ∈ U,α Weg in U von x nach y }

p ist Überlagerung: p|Ũ : Ũ → U bijektiv. p ist stetig und damit p|Ũ ein Homöomorphismus.

Sind γ1, γ2 Wege von x0 nach x und γ1 ∼ γ2, so ist Ũ(x, [γ1]) ∩ Ũ(x, [γ2]) = ∅, denn: Ist
γ1 ∗ α ∼ γ2 ∗ α, so ist auch γ1 ∼ γ2. Also ist p eine Überlagerung.

X̃ ist einfach zusammenhängend: Es sei x̃0 := (x0, e) und γ̃ : I → X̃ ein geschlossener Weg
um x̃0.

Sei γ := p(γ̃).

Annahme: [γ̃] 6= e

Mit Korollar 48.a folgt dann: [γ] 6= e.

Dann ist der Lift von γ nach x̃ mit Anfangspunkt x̃0 ein Weg von x̃0 nach (x0, [γ]). Wider-
spruch.

Definition 50
Es sei p : Y → X eine Überlagerung und f : Y → Y ein Homöomorphismus.

f heißt Decktransformation von p :⇔ p ◦ f = p.

Ist p eine Decktransformation und |Deck(Y/X)| = deg p, so heißt p regulär.

Korollar 3.22
a) Die Decktransformationen von p bilden eine Gruppe, die sog. Decktransformations-

gruppe Deck(p) = Deck(Y/X) = Deck(Y → X)

b) Ist f ∈ Deck(Y/X) und f 6= id, dann hat f keinen Fixpunkt.

c) |Deck(Y/X)| ≤ deg p

d) Ist p eine reguläre Decktransformation, dann gilt: ∀x ∈ X : Deck(Y/X) operiert
transitiv auf der Menge der Urbilder p−1(x).

Beweis:
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a) Es gilt:

• idY ∈ DeckY/X,

• f, g ∈ DeckY/X ⇒ p ◦ (f ◦ g) = (p ◦ f) ◦ g = p ◦ g ⇒ f ◦ g ∈ DeckY/X

• f ∈ DeckY/X ⇒ p ◦ f = p ⇒ p ◦ f−1 = (p ◦ f) ◦ f−1 = p ◦ (f ◦ f−1) = p ⇒
f−1 ∈ DeckY/X

b) Die Menge
Fix(f) = { y ∈ Y | f(y) = y }

ist abgeschlossen als Urbild der Diagonale ∆ ⊆ Y × Y unter der stetigen Abbildung
y 7→ (f(y), y). Außerdem ist Fix(f) offen, denn ist y ∈ Fix(f), so sei U eine Umgebung
von p(y) ∈ X wie in Definition 45 und U ⊆ p−1(U) die Komponente, die y enthält;
also p : V → U ein Homöomorphismus. Dann ist W := f−1(V ) ∩ V offene Umgebung
von y.

Für z ∈ W ist f(z) ∈ V und p(f(z)) = p(z). Da p injektiv auf V ist, folgt f(z) = z,
d. h. Fix(f) 6= ∅.
Da Y zusammenhängend ist, folgt aus Fix(f̃) 6= ∅ schon Fix(f) = Y , also f = idY .

c) Es sei x0 ∈ X, deg(p) = d und p−1(x0) = { y0, . . . , yd−1 }. Für f ∈ Deck(Y/X) ist
f(y0) = { y0, . . . , yd−1 }.
Zu i ∈ { 0, . . . , d− 1 } gibt es höchstens ein f ∈ Deck(Y/X) mit f(y0) = y1, denn ist
f(y0) = g(y0), so ist (g−1 − f)y0 = y0, also nach 50.c g−1 ◦ f = idY . Was

steht
hier?

Was
steht
hier?

Beispiel 34
1) p : R→ S1 : Deck(R/S1) = { t 7→ t+ n | n ∈ Z } ∼= Z

2) p : R2 → T 2 : Deck(R2/T 2) ∼= Z× Z = Z2

3) p : Sn → Pn(R) : Deck(gn/Pn(R)) = { x 7→ ±x } ∼= Z/2Z

Nun werden wir eine Verbindung zwischen der Decktransformationsgruppe und der Fundamen-
talgruppe herstellen:

Satz 3.23
Ist p : X̃ → X eine universelle Überlagerung, so gilt:

Deck(X̃/X) ∼= π1(X,x0) ∀x0 ∈ X

Beweis: Wähle x̃0 ∈ p−1(x0). Es sei ρ : Deck(x̃/x)→ π1(X,x0) die Abbildung, die f auf [p(γf )]
abbildet, wobei γf ein Weg von x̃0 nach f(x̃0) sei. Da x̃ einfach zusammenhängend ist, ist
γf bis auf Homotopie eindeutig bestimmt und damit auch ρ wohldefiniert.

• ρ ist Gruppenhomomorphismus: Seien f, g ∈ Deck(X̃/X) ⇒ γg◦f = γg ∗ g(γf ) ⇒
p(γg◦f ) = p(γg) ∗ (p ◦ g)︸ ︷︷ ︸

=p

(γf ) = ρ(g) 6= ρ(f)

• ρ ist injektiv: ρ(f) = e⇒ p(γf ) ∼ γx0
3.15
==⇒ γf ∼ γx̃0 ⇒ f(x0) = x̃0

50.c
==⇒ f = idx̃.
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• ρ ist surjektiv: Sei [γ] ∈ π1(X,x0), γ̃ Lift von γ nach x̃ mit Anfangspunkt x̃0. Der
Endpunkt von γ̃ sei x̃1.

p ist reguläre Überlagerung: Seien x̃0, x̃1 ∈ X̃ mit p(x̃0) = p(x̃1). Nach Satz 3.19 gibt
es genau eine Überlagerung p̃ : X̃ → X mit p = p ◦ p̃ und p̃(x̃0) = x̃1. Somit ist p̃ eine
Decktransformation und damit p eine reguläre Überlagerung.

Da p reguläre Überlagerung ist, gibt es ein f ∈ Deck(X̃/X) mit f(x̃0) = x̃1.

Aus der Definition von ρ folgt: ρ(f) = p(γf ) = γ

�

Beispiel 35 (Bestimmung von π1(S
1))

p : R→ S1, t 7→ (cos 2πt, sin 2πt) ist universelle Überlagerung, da R zusammenhängend ist.

Für n ∈ Z sei fn : R→ R, t 7→ t+ n die Translation um n.

Es gilt: (p ◦ fn)(t) = p(fn(t)) = p(t) ∀t ∈ R, d. h. fn ist Decktransformation.

Ist umgekehrt g irgendeine Decktransformation, so gilt insbesondere für t = 0:

(cos(2πg(0)), sin(2πg(0))) = (p ◦ g)(0) = p(0) = (1, 0)

Es existiert n ∈ Z mit g(0) = n. Da auch fn(0) = 0 + n = n gilt, folgt mit Korollar 50.c
g = fn. Damit folgt:

Deck(R/S1) = { fn | n ∈ Z } ∼= Z

Nach Satz 3.23 also π1(S1) ∼= Deck(R/S1) ∼= Z

3.4 Gruppenoperationen

Definition 51
Sei (G, ·) eine Gruppe und X eine Menge.

Eine Gruppenoperation von G auf X ist eine Abbildung ◦:

◦ : G×X → X, (g, x) 7→ g · x,

für die gilt:

(i) 1G ◦ x = x ∀x ∈ X
(ii) (g · h) ◦ x = g ◦ (h ◦ x) ∀g, h ∈ G∀x ∈ X

Beispiel 36
1) G = (Z,+), X = R, nx = x+ n

2) G operiert auf X = G durch g ◦ h := g · h
3) G operiert auf X = G durch g ◦ h := g · h · g−1, denn

i) 1G ◦ h = 1G · h · 1−1
G = h
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ii)

(g1 · g2) ◦ h = (g1 · g2) · h · (g · g2)−1

= g1 · (g2 · h · g−1
2 ) · g−1

1

= g1 ◦ (g2 ◦ h)

Definition 52
Sei G eine Gruppe, X ein topologischer Raum und ◦ : G×X → X eine Gruppenoperation.

a) G operiert durch Homomorphismen, wenn für jedes g ∈ G die Abbildung

mg : X → X,x 7→ g ·X

ein Homöomorphismus ist.

b) Ist G eine topologische Gruppe, so heißt die Gruppenoperation ◦ stetig, wenn ◦ :
G×X → X stetig ist.

Korollar 3.24
Jede stetige Gruppenoperation ist eine Gruppenoperation durch Homöomorphismen.

Beweis: Nach Voraussetzung ist ◦|{ g }×X : X → X,x 7→ g ◦ x stetig.

Die Umkehrabbildung zu mg ist mg−1 :

(mg−1 ◦mg)(x) = mg−1(mg(x))

= mg−1(g ◦ x)

= g−1 ◦ (g ◦ x)

51.ii
= (g−1 · g) ◦ x

= 1G ◦ x
51.i
= x

Beispiel 37
In Beispiel 36.1 operiert Z durch Homöomorphismen.

Korollar 3.25
Sei G eine Gruppe und X eine Menge.

a) Die Gruppenoperation vonG aufX entsprechen bijektiv den Gruppenhomomorphismen
% : G→ Perm(X) = Sym(X) = { f : X → X | f ist bijektiv }

b) Ist X ein topologischer Raum, so entsprechen dabei die Gruppenoperationen durch
Homöomorphismus den Gruppenhomomorphismen G→ Homöo(X)

Beweis:

Sei ◦ : G × X → X eine Gruppenoperation von G auf X. Dann sei % : G → Perm(X)
definiert durch %(g)(X) = g · x ∀g ∈ G, x ∈ X, also %(g) = mg.

% ist Homomorphismus: %(g1 · g2) = mg1·g2 = mg1 ◦mg2 = %(g1) ◦ %(g2), denn für x ∈ X :
%(g1 · g2)(x) = (g1 · g2) ◦ x = g1 ◦ (g2 ◦ x) = %(g1)(%(g2)(x)) = (%(g1) ◦ %(g2))(x)

Umgekehrt: Sei % : G → Perm(X) Gruppenhomomorphismus. Definiere ◦ : G × X → X
durch g ◦ x = %(g)(x).
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z. Z. 51.ii:

g1 ◦ (g2 ◦ x) = %(g1)(g2 ◦ x)

= %(g1)(%(g2)(x))

= (%(g1) ◦ %(g2))(x)

%ist Hom.
= %(g1 · g2)(x)

= (g1 · g2) ◦ x

z. Z. 51.i: 1G · x = %(1G)(x) = idX(x) = x, weil % Homomorphismus ist.

Beispiel 38
Sei X ein wegzusammenhängender topologischer Raum, p : X̃ → X eine universelle Überla-
gerung, x0 ∈ X, x̃0 ∈ X̃ mit p(x̃0) = x0.

Dann operiert π1(X,x0) auf X̃ durch Homöomorphismen wie folgt:

Für [γ] ∈ π1(X,x0) und x̃ ∈ X̃ sei [γ] ◦ x̃ = ˜γ ∗ %(1) wobei γ̃ ein Weg von x̃0 nach x̃ in X̃
sei, % := p(δ̃) = p ◦ δ.

Also: δ ist ein Weg in X von x0 nach x = p(x̃) und γ̃ ∗ δ die Liftung von γ ∗ δ mit
Anfangspunkt x̃0.

[γ] · x̃ hängt nicht von der Wahl von γ̃ ab; ist γ̃′ ein anderer Weg von x̃0 nach x̃, so sind δ̃
und δ̃′ homotop, also auch γ̃ ∗ δ und γ̃ ∗ δ′ homotop.

Gruppenoperation, denn:

i) [e] ◦ x̃ = ẽ ∗ δ = x̃

ii) ˜γ1 ∗ γ2 ∗ δ(1) = [γ1 ∗ γ2] ◦ x̃ = ([γ1] ∗ [γ2]) ◦ x̃
γ1 ∗ γ2 ∗ δ(1) = [γ1] ◦ ( ˜γ2 ∗ δ)(1) = [γ1] ◦ ([γ2] ◦ x̃)

Erinnerung:Die Konstruktion aus Korollar 3.25 induziert zu der Gruppenoperation π1(X,x0)
aus Beispiel 38 einen Gruppenhomomorphismus % : π1(X,x0)→ Homöo(X). Nach Satz 3.23 ist
%(π1(X,x0)) = Deck(X̃/X) =

{
f : X̃ → X̃ Homöomorphismus

∣∣∣ p ◦ f = p
}

Beispiel 39
Sei X := S2 ⊆ R3 und τ die Drehung um die z-Achse um 180◦.

g = 〈τ〉 = { id, τ } operiert auf S2 durch Homöomorphismen.

Frage: Was ist S2/G? Ist S2/G eine Mannigfaltigkeit?



4 Euklidische und nichteuklidische
Geometrie

4.1 Axiome für die euklidische Ebene

Axiome bilden die Grundbausteine jeder mathematischen Theorie. Eine Sammlung aus Axiomen
nennt man Axiomensystem. Da der Begriff des Axiomensystems so grundlegend ist, hat man
auch ein paar sehr grundlegende Forderungen an ihn: Axiomensysteme sollen widerspruchsfrei
sein, die Axiome sollen möglichst unabhängig sein und Vollständigkeit wäre auch toll. Mit
Unabhängigkeit ist gemeint, dass kein Axiom sich aus einem anderem herleiten lässt. Dies scheint
auf den ersten Blick eine einfache Eigenschaft zu sein. Auf den zweiten Blick muss man jedoch
einsehen, dass das Parallelenproblem, also die Frage ob das Parallelenaxiom unabhängig von
den restlichen Axiomen ist, über 2000 Jahre nicht gelöst wurde. Ein ganz anderes Kaliber ist
die Frage nach der Vollständigkeit. Ein Axiomensystem gilt als Vollständig, wenn jede Aussage
innerhalb des Systems verifizierbar oder falsifizierbar ist. Interessant ist hierbei der Gödelsche
Unvollständigkeitssatz, der z. B. für die Arithmetik beweist, dass nicht alle Aussagen formal
bewiesen oder widerlegt werden können.

Kehren wir nun jedoch zurück zur Geometrie. Euklid hat in seiner Abhandlung „Die Elemente“
ein Axiomensystem für die Geometrie aufgestellt.

Euklids Axiome

• Strecke zwischen je zwei Punkten

• Jede Strecke bestimmt genau eine Gerade

• Kreis (um jeden Punkt mit jedem Radius)

• Je zwei rechte Winkel sind gleich (Isometrie, Bewegung)

• Parallelenaxiom von Euklid:
Wird eine Gerade so von zwei Geraden geschnitten, dass die Summe der Innenwinkel zwei
Rechte ist, dann schneiden sich diese Geraden auf der Seite dieser Winkel.

Man mache sich klar, dass das nur dann nicht der Fall ist, wenn beide Geraden par-
allel sind und senkrecht auf die erste stehen.

Definition 53
Eine euklidische Ebene ist ein metrischer Raum (X, d) zusammen mit einer Teilmenge
G ⊆ P(X), sodass die Axiome §1 - §4 erfüllt sind:

§1) Inzidenzaxiome:

(i) Zu P 6= Q ∈ X gibt es genau ein g ∈ G mit { P,Q } ⊆ g.
(ii) |g| ≥ 2 ∀g ∈ G

56
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(iii) X ∈ G

§2) Abstandsaxiom: Zu P,Q,R ∈ X gibt es genau dann ein g ∈ G mit { P,Q,R } ⊆ g,
wenn gilt:

• d(P,R) = d(P,Q) + d(Q,R) oder

• d(P,Q) = d(P,R) + d(R,Q) oder

• d(Q,R) = d(Q,P ) + d(P,R)

Definition 54
a) P,Q,R liegen kollinear, wenn es g ∈ G gibt mit { P,Q,R } ⊆ g.

b) Q liegt zwischen P und R, wenn d(P,R) = d(P,Q) + d(Q,R)

c) Strecke PR := {Q ∈ X | Q liegt zwischen P und R }

d) Halbgeraden:
PR+ := {Q ∈ X | Q liegt zwischen P und R oder R liegt zwischen P und Q }
PR− := {Q ∈ X | P liegt zwischen Q und R }

P R

PR− PR

PR+

Abbildung 4.1: Halbgeraden

Korollar 4.1
(i) PR+ ∪ PR− = PR

(ii) PR+ ∩ PR− = { P }
Beweis:

(i) „⊆“ folgt direkt aus der Definition von PR+ und PR−

„⊇“: Sei Q ∈ PR⇒ P,Q,R sind kollinear.

2⇒


Q liegt zwischen P und R⇒ Q ∈ PR
R liegt zwischen P und Q⇒ Q ∈ PR
P liegt zwischen Q und R⇒ Q ∈ PR

(ii) „⊇“ ist offensichtlich
„⊆“: Sei PR+ ∩ PR−. Dann ist d(Q,R) = d(P,Q) + d(P,R) weil Q ∈ PR− und{

d(P,R) = d(P,Q) + d(Q,R) oder
d(P,Q) = d(P,R) + d(R,Q)

}
⇒ d(Q,R) = 2d(P,Q) + d(Q,R)

⇒ d(P,Q) = 0

⇒ P = Q

d(P,Q) = 2d(P,R) + d(P,Q)

⇒ P = R

⇒Widerspruch
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Definition 55
§3) Anordnungsaxiome

(i) Zu jedem P ∈ X jeder Halbgerade H mit Anfangspunkt P und jedem r ∈ R≥0

gibt es genau ein Q ∈ H mit d(P,Q) = r.

(ii) Jede Gerade zerlegt X \g = H1 ∪̇H2 in zwei nichtleere Teilmengen H1, H2, sodass
für alle A ∈ Hi, B ∈ Hj mit i, j ∈ { 1, 2 } gilt: AB ∩ g 6= ∅ ⇔ i 6= j.

Diese Teilmengen Hi heißen Halbebenen bzgl. g.

§4) Bewegungsaxiome: Zu P,Q, P ′, Q′ ∈ X mit d(P,Q) = d(P ′, Q′). Isometrien ϕ1, ϕ2

mit ϕi(P ) = P ′ und $i(Q) = Q′, i = 1, 2 (Spiegelung an der Gerade durch P und Q
ist nach Identifizierung von P ∼= P ′ und Q ∼= Q′ eine weitere Isometrie.)

§5) Parallelenaxiom: Für jedes g ∈ G und jedes P ∈ X \ g gibt es höchstens ein h ∈ G
mit h ∩ g = ∅.1

Satz 4.2 (Satz von Rasch)
Seien P , Q, R nicht kollinear, g ∈ G mit g ∩ { P,Q,R } = ∅ und g ∩ PQ 6= ∅.

Dann ist g ∩ PR 6= ∅ oder g ∩QR 6= ∅.

Dieser Satz besagt, dass Geraden, die eine Seite eines Dreiecks (also nicht nur eine Ecke)
schneiden, auch eine weitere Seite scheiden.

Beweis: g ∩ PQ 6= ∅
3(ii)⇒ P und Q liegen in verschiedenen Halbebenen bzgl. g
⇒ o. B. d. A. R und P liegen in verschieden Halbebenen bzgl. g
⇒ g ∩RP 6= ∅

Korollar 4.3
Sei P,Q ∈ X mit P 6= Q sowie A,B ∈ X \ PQ mit A 6= B. Außerdem seien A und B in der
selben Halbebene bzgl. PQ sowie Q und B in der selben Halbenebe bzgl. PA.

Dann gilt: PB+ ∩AQ 6= ∅

P
P ′

Q

A B

C

Abbildung 4.2: Situation aus Korollar 4.3

Auch Korollar 4.3 lässt sich Umgangssprachlich sehr viel einfacher ausdrücken: Die Diagonalen
eines konvexen Vierecks schneiden sich.

1h heißt „Parallele zu g durch P “.
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Beweis: Sei P ′ ∈ PQ−, P ′ 6= P
Satz 4.2⇒ PB schneidet AP ′ ∪AQ

Sei C der Schnittpunkt. Dann gilt:

(i) C ∈ PB+, denn A und B liegen in derselben Halbebene bzgl. PQ = P ′Q, also auch
AP ′ und AQ.

(ii) C liegt in derselben Halbebene bzgl. PA wie B, weil das für Q gilt.

AP ′ liegt in der anderen Halbebene bzgl. PA⇒ C /∈ P ′A⇒ C ∈ AQ
Da C ∈ PB+ und C ∈ AQ folgt nun direkt: ∅ 6= { C } ⊆ PB+ ∩AQ �

Korollar 4.4
Seien P,Q ∈ X mit P 6= Q und A,B ∈ X \PQ in der selben Halbebene bzgl. PQ. Außerdem
sei d(A,P ) = d(B,P ) und d(A,Q) = d(B,Q).

Dann ist A = B.

P

Q

A

B

Abbildung 4.3: Korollar 4.4: Die beiden roten und die beiden blauen Linien sind gleich lang.
Intuitiv weiß man, dass daraus folgt, dass A = B gilt.

Beweis: durch Widerspruch
Annahme: A 6= B

Dann ist B /∈ (PA ∪QA) wegen §2.

P Q

B

C

A

(a) 1. Fall

P

Q

AB

(b) 2. Fall

Abbildung 4.4: Fallunterscheidung aus Korollar 4.4

1. Fall: Q und B liegen in derselben Halbebene bzgl. PA
Korollar 4.3⇒ PB+ ∩AQ 6= ∅.
Sei C der Schnittpunkt vom PB und AQ.
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Dann gilt:

(i) d(A,C) + d(A,Q) = d(B,Q) < d(B,C) + d(C,Q)⇒ d(A,C) < d(B,C)

(ii) a) B liegt zwischen P und C.

d(P,A)+d(A,C) > d(P,C) = d(P,B)+d(B, c) = d(P,A)+d(B,C)⇒ d(A, c) >
d(B,C)⇒ Widerspruch zu (i)

b) C liegt zwischen P und B

d(P,C) + d(C,A) > d(P,A) = d(P,B) = d(P,C) + d(C,B)
⇒ d(C,A) > d(C,B)
⇒ Widerspruch zu (i)

2. Fall: Q und B liegen auf verscheiden Halbebenen bzgl. PA.

Dann liegen A und Q in derselben Halbebene bzgl. PB.

Tausche A und B ⇒ Fall 1 �

Proposition 4.5
In einer Geometrie, die §1 - §3 erfüllt, gibt es zu P, P ′, Q,Q′ mit d(P,Q) = d(P ′, Q′)
höchstens zwei Isometrien mit ϕ(P ) = P ′ und ϕ(Q) = Q′

Aus den Axiomen folgt, dass es in den Situation §4 höchstens zwei Isometrien mit
ϕi(P ) = P ′ und ϕi(Q) = Q′ gibt.

Beweis: Seien ϕ1, ϕ2, ϕ3 Isometrien mit ϕi(P ) = P ′, ϕi(Q) = Q′, i = 1, 2, 3

Beh.: (1) ∃R ∈ X \ PQ mit ϕ1(R) = ϕ2(R).

Beh.: (2) Hat ϕ 3 Fixpunkte, die nicht kollinear sind, so ist ϕ = idX .

Beh.: (2’) (ϕ(P ) = P ∧ ϕ(Q) = Q)⇒ (ϕ(S) = S ∀S ∈ PQ)

Aus Beh. 1 und Beh. 2 folgt, dass ϕ−1
2 ◦ ϕ1 = idX , also ϕ2 = ϕ1. Wieso?Wieso?

Beweis:

Beh.: Sind P 6= Q Fixpunkte einer Isometrie, so ist ϕ(R) = R für jedes R ∈ PQ.

Beweis: (von Beh. 2 mit Beh. 2’) Seien P , Q und R Fixpunkte von ϕ, R ∈ PG
und A /∈ PQ∪PR∪QR. Sei B ∈ PQ \ { P,Q }. Dann ist ϕ(B) = B wegen Beh. 2’.

Ist R ∈ AB, so enthält AB 2 Fixpunkte von ϕ Beh. 2′⇒ ϕ(A) = A.

Ist R /∈ AB, so ist AB∩PR 6= ∅ oder AB ∈ RQ 6= ∅ nach Satz 4.2. Der Schnittpunkt
C ist dann Fixpunkt von ϕ′ nach Beh. 2’ ⇒ ϕ(A) = A.

Beweis: (von Beh. 1) Sei R ∈ X \ PQ. Von den drei Punkten ϕ1(R), ϕ2(R), ϕ3(R)
liegen zwei in der selben Halbebene bzgl. P ′Q′ = ϕi(PQ).

O. B. d. A. seien ϕ1(R) und ϕ2(R) in der selben Halbebene.
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P B Q

C

RA

Abbildung 4.5: P,Q,R sind Fixpunkte, B ∈ PQ \ { P,Q }, A /∈ PQ ∪ PR ∪QR

Es gilt:

d(P ′, ϕ1(R)) = d(ϕ1(P ), ϕ1(R)) (4.1)
= d(P,R) (4.2)
= d(ϕ2(P ), ϕ2(R)) (4.3)
= d(P ′, ϕ2(R)) (4.4)
= d(Q′, ϕ2(R)) (4.5)

und analog d(Q′, ϕ1(R)) = d(Q′, ϕ2(R))

Bemerkung 17
Mit 4.4 lassen sich die Kongruenzsätze für Dreiecke, wie man sie aus der Schule kennt,
beweisen.

Proposition 4.6
Sei (X, d,G) eine Geometrie mit den Axiomen §1 - §4.

Dann gibt es zu jedem g ∈ G und jedem P ∈ X \ g ein h ∈ G mit P ∈ h und g ∩ h 6= ∅.

Q

h

f

g

P

Abbildung 4.6: Situation aus Proposition 4.6

Beweis: Sei f ∈ G mit P ∈ f . Ist f ∩ g = ∅, so setze h := f . Andernfalls sei {Q } := f ∩ g.
Sei ϕ die eindeutige Isometrie mit ϕ(Q) = P , ϕ(P ) = P ′, die die Halbebenen bzgl. f nicht
vertauscht.

Setze h := ϕ(g).
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Z. Z.: h ∩ g = ∅.
Andernfalls sei {R } = h ∩ g.

Bemerkung 18
Jeder Innenwinkel eines Dreiecks ist kleiner als alle nicht-anliegenden Außenwinkel.

Beweis: Sei ϕ die Isometrie, die Q auf P und P auf P ′ mit P ′ ∈ f, d(P, P ′) = d(P,Q) abbildet
und die Halbebenen bzgl. f erhält.

Beh.: (Herz) ϕ(g) ∩ g = ∅

Beweis: Ist ϕ(g) ∩ g 6= ∅, so ist R der Schnittpunkt.

α

β

R

Q P

Abbildung 4.7: Skizze zu Behauptung 5

Definition 56
a) Ein Winkel ist ein Punkt P ∈ X zusammen mit 2 Halbgeraden mit Anfangspunkt P .

Man schreibt: ∠R1PR2 bzw. ∠R2PR1
2

b) Zwei Winkel sind gleich, wenn es eine Isometrie gibt, die den einen Winkel auf den
anderen abbildet.

c) ∠R′1P ′R′2 heißt kleiner als ∠R1PR2, wenn es eine Isometrie ϕ gibt, mit ϕ(P ) = P ′,
ϕ(PR′1+) = P ′R1+ und ϕ(R′2) liegt in der gleichen Halbebene bzgl. PR1 wie R2 und
in der gleichen Halbebene bzgl. PR2 wie R1

d) Im Dreieck 4PQR gibt es Innenwinkel und Außenwinkel.

P R′1 R1

R′2

R2

(a) ∠R′1P ′R′2 ist kleiner als ∠R1PR2,
vgl. Punkt c

P

Q R

(b) Innenwinkel und Außenwin-
kel in 4PQR, vgl. Punkt d
(Bild 5)

Abbildung 4.8: Situation aus Definition 56

Korollar 4.7
In einem Dreieck ist jeder Innenwinkel kleiner als jeder nicht anliegende Außenwinkel.
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Q M

A

P

R

Abbildung 4.9: Situation aus Korollar 4.7

Beweis: Zeige ∠PRQ < ∠RQP ′.

Sei M der Mittelpunkt der Strecke QR. Sei A ∈MP− mit d(P,M) = d(M,A).

Es gilt: d(Q,M) = d(M,R) und d(P,M) = d(M,A) sowie ∠PMR = ∠AMQ ⇒ 4MRQ
ist kongruent zu 4AMQ, denn eine der beiden Isometrien, die ∠PMR auf ∠AMQ abbildet,
bildet R auf Q und P auf A ab.

⇒ ∠MQA = ∠MRP = ∠QRP = ∠PRQ.

Noch zu zeigen: ∠MQA < ∠RQP ′, denn A liegt in der selben Halbebene bzgl. PQ wie M .

Beweis: (von Proposition 4.6) Wäre ϕ(g) nicht parallel zu g, so gäbe es einen Schnittpunkt
R. Dann ist ∠QPR < ∠RQP− nach Korollar 4.7 und ∠QPR = ∠RQP−, weil ϕ(∠RQP ′) =
∠RPQ

Folgerung 4.8
Die Summe zweier Innenwinkel in einem Dreieck ist kleiner als π, d. h. es gibt eine Isometrie
ϕ mit ϕ(Q) = P und ϕ(QP+) = PR+, sodass ϕ(R) in der gleichen Halbebene bzgl. PQ
liegt wie R.

Beweis: Die Summe eines Innenwinkels mit den anliegenden Außenwinkeln ist π, d. h. die
beiden Halbgeraden bilden eine Gerade.

TODO

Abbildung 4.10: In der sphärischen Geometrie gibt es, im Gegensatz zur euklidischen Geometrie,
Dreiecke mit drei 90◦-Winkeln.

Proposition 4.9
In einer Geometrie mit den Axiomen §1 - §4 ist in jedem Dreieck die Summe der
Innenwinkel ≤ π.

2Für dieses Skript gilt: ∠R1PR2 = ∠R2PR1. Also sind insbesondere alle Winkel ≤ 180◦.
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Sei im Folgenden „IWS“ die „Innenwinkelsumme“.

Beweis: Sei 4 ein Dreieck mit IWS(4) = π + ε

α
β

γ

P

(a) Summe der Winkel α, β und
γ

α

β

A B

C D

(b) Situation aus Proposition 4.9

Abbildung 4.11: Situation aus Proposition 4.9

Sei α ein Innenwinkel von 4.

Beh.: Es gibt ein Dreieck 4′ mit cos(4′) = IWS(4) und einem Innenwinkel α′ ≤ α
2 . Was

steht
hier?

Was
steht
hier?

Dann gibt es für jedes n ein 4n mit IWS(4n) = IWS(4) und Innenwinkel ≤ α
2n . Für

α
2n < ε ist dann die Summe der anderen Innenwinkel um4n größer als π ⇒Widerspruch

Was
steht
hier?

Was
steht
hier?

zu Folgerung 4.8.

Beweis: (der Behauptung) Sei M der Mittelpunkt RC und A′ ∈MA− mit d(A′,M) =
d(A,M) ⇒ 4(MA′C) und 4(MAB) sind kongruent. ⇒ ∠ABM = ∠A′CM und
∠MA′C = ∠MAB. ⇒ α + β + γ = IWS(4ABC) = IWS(4AA′C) und α1 + α2 = α,
also o. B. d. A. α1 ≤ α

2



Lösungen der Übungsaufgaben

Lösung zu Aufgabe 1

Teilaufgabe a) Es gilt:

(i) ∅, X ∈ TX .

(ii) TX ist offensichtlich unter Durchschnitten abgeschlossen, d. h. es gilt für alle U1, U2 ∈
TX : U1 ∩ U2 ∈ TX .

(iii) Auch unter beliebigen Vereinigungen ist TX abgeschlossen, d. h. es gilt für eine
beliebige Indexmenge I und alle Ui ∈ TX für alle i ∈ I :

⋃
i∈I Ui ∈ TX

Also ist (X,TX) ein topologischer Raum.

Teilaufgabe b) Wähle x = 1, y = 0. Dann gilt x 6= y und die einzige Umgebung von x
ist X. Da y = 0 ∈ X können also x und y nicht durch offene Mengen getrennt werden.
(X,TX) ist also nicht hausdorffsch.

Teilaufgabe c) Nach Bemerkung 3 sind metrische Räume hausdorffsch. Da (X,TX) nach
(b) nicht hausdorffsch ist, liefert die Kontraposition der Trennungseigenschaft, dass (X,TX)
kein metrischer Raum sein kann.

Lösung zu Aufgabe 2

Teilaufgabe a)

Beh.: ∀a ∈ Z : { a } ist abgeschlossen.
Sei a ∈ Z beliebig. Dann gilt:

Hat jemand diesen Beweis?

Teilaufgabe b)

Beh.: { −1, 1 } ist nicht offen
Bew.: durch Widerspruch

Annahme: { −1, 1 } ist offen.
Dann gibt es T ⊆ B, sodass

⋃
M∈T M = { −1, 1 }. Aber alle U ∈ B haben unendlich viele

Elemente. Auch endlich viele Schnitte von Elementen in B haben unendlich viele Elemente
⇒ keine endliche nicht-leere Menge kann in dieser Topologie offen sein ⇒ {−1, 1 } ist
nicht offen. �

Teilaufgabe c)

Beh.: Es gibt unendlich viele Primzahlen.

65
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Bew.: durch Widerspruch

Annahme: Es gibt nur endlich viele Primzahlen p ∈ P

Dann ist
Z \ { −1,+1 } FS d. Arithmetik

=
⋃
p∈P

U0,p

endlich. Das ist ein Widerspruch zu |Z| ist unendlich und | { −1, 1 } | ist endlich. �

Lösung zu Aufgabe 3

(a) Beh.: Die offenen Mengen von P sind Vereinigungen von Mengen der Form∏
j∈J

Uj ×
∏

i∈N,i 6=j
Pi

wobei J ⊆ N endlich und Uj ⊆ Pj offen ist.

Beweis: Nach Definition der Produkttopologie bilden Mengen der Form∏
i∈J

Uj ×
∏
i∈N
i/∈J

Pi, wobei J ⊆ N endlich und Uj ⊆ Pjoffen ∀j ∈ J

eine Basis der Topologie. Damit sind die offenen Mengen von P Vereinigungen
von Mengen der obigen Form. �

(b) Beh.: Die Zusammenhangskomponenten von P sind alle einpunktig.

Beweis: Es seinen x, y ∈ P und x sowie y liegen in der gleichen Zusammenhangs-
komponente Z ⊆ P . Da Z zusammenhängend ist und ∀i ∈ I : pi : P → Pi ist
stetig, ist pi(Z) ⊆ Pi zusammenhängend für alle i ∈ N. Die zusammenhängenden
Mengen von Pi sind genau { 0 } und { 1 }, d. h. für alle i ∈ N gilt entweder
pi(Z) ⊆ { 0 } oder pi(Z) ⊆ { 1 }. Es sei zi ∈ { 0, 1 } so, dass pi(Z) ⊆ { zi } für
alle i ∈ N. Dann gilt also:

pi(x)︸ ︷︷ ︸
=xi

= zi = pi(y)︸ ︷︷ ︸
=yi

∀i ∈ N

Somit folgt: x = y �

Lösung zu Aufgabe 4

(a) Beh.: GLn(R) ist nicht kompakt.
Bew.: det : GLn(R) → R \ { 0 } ist stetig. Außerdem ist det(GLn(R)) = R \ { 0 }
nicht kompakt. 1.15⇒ GLn(R) ist nicht kompakt. �

(b) Beh.: SL1(R) ist nicht kompakt, für n > 1 ist SLn(R) kompakt.
Bew.: Für SL1(R) gilt: SL1(R) =

{
A ∈ R1×1

∣∣ detA = 1
}

=
(
1
) ∼= { 1 }. 1.15⇒ SL1(R)

ist kompakt.
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SLn(R) ⊆ GLn(R) lässt sich mit einer Teilmenge des Rn2 identifizieren. Nach Satz 1.16
sind diese genau dann kompakt, wenn sie beschränkt und abgeschlossen sind. Definiere
nun für für n ∈ N≥2,m ∈ N : Am = diagn(m, 1

m , . . . , 1). Dann gilt: detAm = 1, d. h.
Am ∈ SLn(R), und Am ist unbeschränkt, da ‖Am‖∞ = m −−−−→

m→∞
∞. �

(c) Beh.: P(R) ist kompakt.
Bew.: P(R) ∼= Sn/x∼−x. Per Definition der Quotiententopologie ist die Klassenabbil-
dung stetig. Da Sn als abgeschlossene und beschränkte Teilmenge des Rn+1 kompakt
ist 1.15⇒ P(R) ist kompakt. �

Lösung zu Aufgabe 5

(a) Vor.: Sei M eine topologische Mannigfaltigkeit.
Beh.: M ist wegzusammehängend ⇔M ist zusammenhängend

Beweis: „⇒“: Da M insbesondere ein topologischer Raum ist folgt diese Richtung
direkt aus Korollar 1.17.

„⇐“: Seien x, y ∈M und

Z := { z ∈M | ∃Weg von x nach z }

Es gilt:

(i) Z 6= ∅, da M lokal wegzusammenhängend ist

(ii) Z ist offen, da M lokal wegzusammenhängend ist

(iii) ZC := { z̃ ∈M | @Weg von x nach z̃ } ist offen
Da M eine Mannigfaltigkeit ist, existiert zu jedem z̃ ∈ ZC eine offene und
wegzusammenhängende Umgebung Uz̃ ⊆M .

Es gilt sogar Uz̃ ⊆ ZC , denn gäbe es ein Uz̃ 3 z ∈ Z, so gäbe es Wege γ2 :
[0, 1] → M,γ2(0) = z, γ2(1) = x und γ1 : [0, 1] → M,γ1(0) = z̃, γ1(1) = z.
Dann wäre aber

γ : [0, 1]→M, γ(x) =

{
γ1(2x) falls 0 ≤ x ≤ 1

2

γ2(2x− 1) falls 1
2 < x ≤ 1

ein stetiger Weg von z̃ nach x ⇒ Widerspruch.

DaM zusammenhängend ist undM = Z︸︷︷︸
offen

∪ ZC︸︷︷︸
offen

, sowie Z 6= ∅ folgt ZC = ∅.

Also ist M = Z wegzusammenhängend. �

(b) Beh.: X ist wegzusammenhängend.

Beweis: X := (R \ { 0 }) ∪ { 01, 02 } und (R \ { 0 }) ∪ { 02 } sind homöomorph zu R.
Also sind die einzigen kritischen Punkte, die man nicht verbinden können könnte
01 und 02.

Da (R\{ 0 })∪{ 01 } homöomorph zu R ist, exisitert ein Weg γ1 von 01 zu einem
beliebigen Punkt a ∈ R \ { 0 }.
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Da (R \ { 0 }) ∪ { 02 } ebenfalls homöomorph zu R ist, existiert außerdem ein
Weg γ2 von a nach 02. Damit existiert ein (nicht einfacher) Weg γ von 01 nach
02. �



Bildquellen

Alle Bilder, die hier nicht aufgeführt sind, wurden selbst erstellt.

Teilweise wurden die im folgenden aufgelisteten Bilder noch leicht modifiziert.

Abb. 0.1a S2: Tom Bombadil, tex.stackexchange.com/a/42865

Abb. 0.1b Würfel: Jan Hlavacek, tex.stackexchange.com/a/12069

Abb. 0.1e T 2: Jake, tex.stackexchange.com/a/70979/5645

Abb. 1.6 Stereographische Projektion: texample.net/tikz/examples/map-projections

Abb. 1.11 Knoten von Jim.belk aus der „Blue knots“-Serie:

– Trivialer Knoten: commons.wikimedia.org/wiki/File:Blue_Unknot.png

– Kleeblattknoten: commons.wikimedia.org/wiki/File:Blue_Trefoil_Knot.png

– Achterknoten: commons.wikimedia.org/wiki/File:Blue_Figure-Eight_Knot.png

– 62-Knoten: commons.wikimedia.org/wiki/File:Blue_6_2_Knot.png

Abb. 1.12 Reidemeister-Züge: YAMASHITA Makoto (1, 2, 3)

Abb. 1.13 Kleeblattknoten, 3-Färbung: Jim.belk, commons.wikimedia.org/wiki/File:Tricoloring.png

Abb. 2.1 Doppeltorus: Oleg Alexandrov, commons.wikimedia.org/wiki/File:Double_torus_illustration.png

Abb. 3.3b 3 Pfade auf Torus: Charles Staats, tex.stackexchange.com/a/149991

Abb. 3.10 Überlappung vom S1 mit R: Alex, tex.stackexchange.com/a/149706
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Symbolverzeichnis

Mengenoperationen

AC Komplement der Menge A
P(M) Potenzmenge von M
M Abschluss der Menge M
∂M Rand der Menge M
M◦ Inneres der Menge M
A×B Kreuzprodukt zweier Mengen
A ⊆ B Teilmengenbeziehung
A ( B echte Teilmengenbeziehung
A \B A ohne B
A ∪B Vereinigung
A ∪̇B Disjunkte Vereinigung
A ∩B Schnitt

Zahlenmengen

N Natürliche Zahlen ({ 1, 2, 3, . . . })
Z Ganze Zahlen (N ∪ { 0,−1,−2, . . . })
Q Rationale Zahlen (Z ∪

{
1
2 ,

1
3 ,

2
3

}
)

R Reele Zahlen (Q ∪
{√

2,− 3
√

3, . . .
}
)

R+ Echt positive reele Zahlen
R× Einheitengruppe von R (R \ { 0 })
C Komplexe Zahlen ({ a+ ib | a, b ∈ R })
P Primzahlen (2, 3, 5, 7, . . . )

Weiteres

B Basis einer Topologie
Bδ(x) δ-Kugel um x
T Topologie

P Projektiver Raum
〈·, ·〉 Skalarprodukt
X/∼ X modulo ∼
[x]∼ Äquivalenzklassen von x bzgl. ∼
‖x‖ Norm von x
|x| Betrag von x

Sn Sphäre
Tn Torus

[γ] Homotopieklasse eines Weges γ
πX Projektion auf X
f |U f eingeschränkt auf U
f−1(M) Urbild von M
Rg(M) Rang von M
χ(K) Euler-Charakteristik von K
∆k Standard-Simplex
X#Y Verklebung von X und Y
γ1 ∗ γ2 Zusammenhängen von Wegen

Gruppen

Homöo(X) Homöomorphismengruppe
Iso(X) Isometriengruppe
GLn(K) Allgemeine lineare Gruppe (general linear group)
Perm(X) Permutationsgruppe
Sym(X) Symmetrische Gruppe

f : S1 ↪→ R2 Einbettung der Kreislinie in die Ebene
π1(X,x) Fundamentalgruppe im topologischen Raum X um x ∈ X
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Stichwortverzeichnis

Abbildung
differenzierbare, 26
homotope, 43
offene, 45
simpliziale, 31
stetige, 8

abgeschlossen, 2
Abschluss, 3
Abstandsaxiom, 57
Achterknoten, 18
Aktion, siehe Gruppenoperation
Anordnungsaxiome, 58
Atlas, 21
Axiom, 56
Axiomensystem, 56

Basis, 3
Baum, 33
Belit-Zahl, 36
Bewegungsaxiome, 58

Cantorsches Diskontinuum, 20
Ck-Struktur, 26

Decktransformation, 51
reguläre, 51

Decktransformationsgruppe, 51
dicht, 3
Diffeomorphismus, 26
Dimension, 30
diskret, 46

Ebene
euklidische, 56

einfach zusammenhängend, 42
Euler-Charakteristik, siehe Eulerzahl
Eulersche Polyederformel, 34
Eulerzahl, 32

Färbbarkeit, 19
Faser, siehe Urbild
Fläche

reguläre, 26
Fundamentalgruppe, 41

Graph, 33
Grenzwert, 7
Gruppe

topologische, 29
Gruppenaktion, siehe Gruppenoperation
Gruppenoperation, 53, 53–55

stetige, 54

Halbebene, 58
Halbgerade, 57
Hilbert-Kurve, 17
Homöomorphismengruppe, 9
Homöomorphismus, 8
Homotopie, 38
Homotopiegruppe, 36
Homotopieklasse, 41

Inneres, 3
Inzidenzaxiome, 56
Isotopie, 18

Jordankurve, 17
geschlossene, 17

Karte, 21
Kartenwechsel, 25
Kern

offener, 3
Kleeblattknoten, 18
Klumpentopologie, siehe triviale Topologie
Knoten, 18, 16–19

äquivalente, 18
trivialer, 18

Knotendiagramm, 18
kollinear, 57
kompakt, 13
Kreis, 33

Lage
allgemeine, 30
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Lie-Gruppe, 29
liegt zwischen, 57
Liftung, 47
Limes, 7

Mannigfaltigkeit, 21
differenzierbare, 25
glatte, 25
mit Rand, 24

Metrik, 5
diskrete, 6
SNCF, 6

Neilsche Parabel, 24

offen, 2
Oktaeder, 30

Parallelenaxiom, 56
Polyzylinder, 16
Produkttopologie, 4
Projektion

stereographische, 9

Quotiententopologie, 4

Rand, 3, 24
Raum

hausdorffscher, 7
metrischer, 5
projektiver, 5, 20, 21, 45
topologischer, 2

Realisierung
geometrische, 30

Seite, 30
Sierpińskiraum, 3, 20
Simplex, 30
Simplizialkomplex, 30
Sphäre

exotische, 26
Spurtopologie, 3
Standard-Simplex, 30
Standardtopologie, 2
sternförmig, 41
Stetigkeit, 8–10
Strecke, 57
Struktur

differenzierbare, 26
Subbasis, 3

Teilraum, 3

Teilsimplex, 30
Topologie

diskrete, 2, 6
euklidische, 2
triviale, 2
Zariski, 2, 11, 13

Torus, ii
Total Unzusammenhängend, 66

Überdeckung, 13
Übergangsfunktion, siehe Kartenwechsel
Überlagerung, 44, 44–53

universelle, 50
Umgebung, 3

Verklebung, 23
verträglich, 26

Würfel, 30
Weg, 16

einfacher, 16
geschlossener, 16
homotope, 38
zusammengesetzter, 40

Wegzusammenhang, 16
Winkel, 62

zusammenhängend, 11
Zusammenhang, 11–12
Zusammenhangskomponente, 12
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