
Programmierparadigmen

0. Auflage, 1. Februar 2014 Martin Thoma

Vorwort

Dieses Skript wird/wurde im Wintersemester 2013/2014 von Mar-
tin Thoma geschrieben. Das Ziel dieses Skriptes ist vor allem in der
Klausur als Nachschlagewerk zu dienen; es soll jedoch auch vorher
schon für die Vorbereitung genutzt werden können und nach der
Klausur als Nachschlagewerk dienen.

Was ist Programmierparadigmen?

TODO

Erforderliche Vorkenntnisse

Grundlegende Kenntnisse vom Programmieren, insbesondere mit
Java, wie sie am KIT in „Programmieren“ vermittelt werden, wer-
den vorausgesetzt.

Inhaltsverzeichnis

1 Programmiersprachen 3
1.1 Paradigmen . 3
1.2 Typisierung . 4
1.3 Kompilierte und interpretierte Sprachen 4
1.4 Dies und das . 5

2 Programmiertechniken 7
2.1 Rekursion . 7
2.2 Backtracking . 7

3 Haskell 9
3.1 Erste Schritte . 9
3.2 Syntax . 10

3.2.1 Klammern 10
3.2.2 if / else . 10
3.2.3 Rekursion 11

3.3 Beispiele . 11
3.3.1 Hello World 11
3.3.2 Fibonacci 11
3.3.3 Quicksort 12

3.4 Weitere Informationen 12

4 Prolog 13
4.1 Syntax . 13
4.2 Beispiele . 13

4.2.1 Humans . 13
4.2.2 Zebrarätsel 14

4.3 Weitere Informationen 15

Inhaltsverzeichnis 1

5 Scala 17
5.1 Syntax . 17
5.2 Beispiele . 17

6 X10 19
6.1 Syntax . 19
6.2 Beispiele . 19

7 C 21
7.1 Datentypen . 21
7.2 ASCII-Tabelle . 23
7.3 Syntax . 23
7.4 Beispiele . 23

7.4.1 Hello World 23

8 MPI 25
8.1 Syntax . 25
8.2 Beispiele . 25

Bildquellen 27

Abkürzungsverzeichnis 29

Symbolverzeichnis 31

Stichwortverzeichnis 32

1 Programmiersprachen

Im folgenden werden einige Begriffe definiert anhand derer Pro-
grammiersprachen unterschieden werden können.

1.1 Paradigmen

Die grundlegendste Art, wie man Programmiersprachen unterschei-
den kann ist das sog. „Programmierparadigma“, also die Art wie
man Probleme löst.

Definition 1 (Imperatives Paradigma)
In der imperativen Programmierung betrachtet man Program-
me als eine folge von Anweisungen, die vorgibt auf welche Art
etwas Schritt für Schritt gemacht werden soll.

Definition 2 (Prozedurales Paradigma)
Die prozeduralen Programmierung ist eine Erweiterung des
imperativen Programmierparadigmas, bei dem man versucht
die Probleme in kleinere Teilprobleme zu zerlegen.

Definition 3 (Funktionales Paradigma)
In der funktionalen Programmierung baut man auf Funktionen
und ggf. Funktionen höherer Ordnung, die eine Aufgabe ohne
Nebeneffekte lösen.

Haskell ist eine funktionale Programmiersprache, C ist eine nicht-
funktionale Programmiersprache.

Wichtige Vorteile von funktionalen Programmiersprachen sind:

4 1. PROGRAMMIERSPRACHEN

• Sie sind weitgehend (jedoch nicht vollständig) frei von Sei-
teneffekten.

• Der Code ist häufig sehr kompakt und manche Probleme
lassen sich sehr elegant formulieren.

Definition 4 (Logisches Paradigma)
In der logischen Programmierung baut man Unifikation.genauer!genauer!

1.2 Typisierung

Eine weitere Art, Programmiersprachen zu unterscheiden ist die
stärke ihrer Typisierung.

Definition 5 (Dynamische Typisierung)
Bei dynamisch typisierten Sprachen kann eine Variable ihren
Typ ändern.

Beispiele sind Python und PHP.

Definition 6 (Statische Typisierung)
Bei statisch typisierten Sprachen kann eine niemals ihren Typ
ändern.

Beispiele sind C, Haskell und Java.

1.3 Kompilierte und interpretierte Sprachen

Sprachen werden überlicherweise entweder interpretiert oder kompi-
liert, obwohl es Programmiersprachen gibt, die beides unterstützen.

C und Java werden kompiliert, Python und TCL interpretiert.

1.4. DIES UND DAS 5

1.4 Dies und das

Definition 7 (Seiteneffekt)
Seiteneffekte sind Veränderungen des Zustandes. Das

geht
besser

Das
geht
besserManchmal werden Seiteneffekte auch als Nebeneffekt oder Wirkung

bezeichnet.

Definition 8 (Unifikation)

Was ist das?

2 Programmiertechniken

2.1 Rekursion

Tail-Recursion

2.2 Backtracking

3 Haskell

Haskell ist eine funktionale Programmiersprache, die von Haskell
Brooks Curry entwickelt wurde und 1990 in Version 1.0 veröffent-
licht wurde.

Wichtige Konzepte sind:

1. Funktionen höherer Ordnung

2. anonyme Funktionen (sog. Lambda-Funktionen)

3. Pattern Matching

4. Unterversorgung

5. Typinferenz

Haskell kann mit „Glasgow Haskell Compiler“ mittels ghci inter-
pretiert und mittels

3.1 Erste Schritte

Haskell kann unter www.haskell.org/platform/ für alle Platt-
formen heruntergeladen werden. Unter Debian-Systemen ist das
Paket ghc bzw. haskell-platform relevant.

http://www.haskell.org/platform/

10 3. HASKELL

3.2 Syntax

3.2.1 Klammern

Haskell verzichtet an vielen Stellen auf Klammern. So werden
im Folgenden die Funktionen f(x) := sinx

x und g(x) := x · f(x2)
definiert:

f x = sin x / x
g x = x * (f (x*x))

3.2.2 if / else

Das folgende Beispiel definiert den Binomialkoeffizienten(
n

k

)
:=

{
1 falls k = 0 ∨ k = n(
n−1
k−1

)
+
(
n−1
k

)
sonst

für n, k ≥ 0:

binom n k =
if (k==0) || (k==n)
then 1
else binom (n-1) (k-1) + binom (n-1) k

$ ghci binomialkoeffizient.hs
GHCi, version 7.4.2: http://www.haskell.org/ghc/ :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
[1 of 1] Compiling Main (binomialkoeffizient.hs, interpreted)
Ok, modules loaded: Main.
*Main> binom 5 2
10

Guards

3.3. BEISPIELE 11

3.2.3 Rekursion

Die Fakultätsfunktion wurde wie folgt implementiert:

fak(n) :=

{
1 falls n = 0

n · fak(n) sonst

fak n = if (n==0) then 1 else n * fak (n-1)

Diese Implementierung benötigt O(n) rekursive Aufrufe und hat

einen Speicherverbrauch von O(n). Durch einen Akkumulator
kann dies verhindert werden:

fakAcc n acc = if (n==0) then acc else fakAcc (n-1) (n*acc)
fak n = fakAcc n 1

3.3 Beispiele

3.3.1 Hello World

Speichere folgenden Quelltext als hello-world.hs:

hello-world.hs
1 main = putStrLn "Hello, World!"

Kompiliere ihn mit ghc -o hello hello-world.hs. Es wird eine
ausführbare Datei erzeugt.

3.3.2 Fibonacci

fibonacci.hs
1 fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

12 3. HASKELL

3.3.3 Quicksort

3.4 Weitere Informationen

• haskell.org/hoogle: Suchmaschine für das Haskell-Manual

• wiki.ubuntuusers.de/Haskell: Hinweise zur Installation
von Haskell unter Ubuntu

http://www.haskell.org/hoogle/
http://wiki.ubuntuusers.de/Haskell

4 Prolog

Prolog ist eine Programmiersprache, die das logische Programmier-
paradigma befolgt.

Eine interaktive Prolog-Sitzung startet man mit swipl.

In Prolog definiert man Terme.

4.1 Syntax

4.2 Beispiele

4.2.1 Humans

Erstelle folgende Datei:

human.pro
1 human(bob).
2 human(socrates).
3 human(antonio).

Kompiliere diese mit

$ swipl -c human.pro
% library(swi_hooks) compiled into pce_swi_hooks
% 0.00 sec, 2,224 bytes
% human.pro compiled 0.00 sec, 644 bytes
% /usr/lib/swi-prolog/library/listing compiled into
% prolog_listing 0.00 sec, 21,648 bytes

14 4. PROLOG

Dabei wird eine a.out Datei erzeugt, die man wie folgt nutzen
kann:

$./a.out
Welcome to SWI-Prolog (Multi-threaded, 32 bits, Version 5.10.4)
Copyright (c) 1990-2011 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free
software, and you are welcome to redistribute it under certain
conditions. Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?- human(socrates).
true.

4.2.2 Zebrarätsel

Folgendes Rätsel wurde von https://de.wikipedia.org/w/index.
php?title=Zebrar%C3%A4tsel&oldid=126585006 entnommen:

1. Es gibt fünf Häuser.

2. Der Engländer wohnt im roten Haus.

3. Der Spanier hat einen Hund.

4. Kaffee wird im grünen Haus getrunken.

5. Der Ukrainer trinkt Tee.

6. Das grüne Haus ist direkt rechts vom weißen Haus.

7. Der Raucher von Altem-Gold-Zigaretten hält Schnecken als
Haustiere.

8. Die Zigaretten der Marke Kools werden im gelben Haus
geraucht.

9. Milch wird im mittleren Haus getrunken.

https://de.wikipedia.org/w/index.php?title=Zebrar%C3%A4tsel&oldid=126585006
https://de.wikipedia.org/w/index.php?title=Zebrar%C3%A4tsel&oldid=126585006

4.3. WEITERE INFORMATIONEN 15

10. Der Norweger wohnt im ersten Haus.

11. Der Mann, der Chesterfields raucht, wohnt neben dem Mann
mit dem Fuchs.

12. Die Marke Kools wird geraucht im Haus neben dem Haus
mit dem Pferd.

13. Der Lucky-Strike-Raucher trinkt am liebsten Orangensaft.

14. Der Japaner raucht Zigaretten der Marke Parliaments.

15. Der Norweger wohnt neben dem blauen Haus.

Wer trinkt Wasser? Wem gehört das Zebra?

zebraraetsel.pro
1 Street=[Haus1,Haus2,Haus3],
2 mitglied(haus(rot,_,_),Street),
3 mitglied(haus(blau,_,_),Street),
4 mitglied(haus,(grün,_,_),Street),
5 mitglied(haus(rot,australier,_),Street),
6 mitglied(haus(_,italiener,tiger),Street),
7 sublist(haus(_,_,eidechse),haus(_,chinese,_),Street),
8 sublist(haus(blau,_,_),haus(_,_,eidechse),Street),
9 mitglied(haus(_,N,nilpferd),Street).

4.3 Weitere Informationen

• wiki.ubuntuusers.de/Prolog: Hinweise zur Installation von
Prolog unter Ubuntu

http://wiki.ubuntuusers.de/Prolog

5 Scala

Scala ist eine funktionale Programmiersprache, die auf der JVM
aufbaut und in Java Bytecode kompiliert wird.

5.1 Syntax

5.2 Beispiele

6 X10

6.1 Syntax

6.2 Beispiele

7 C

C ist eine imperative Programmiersprache. Sie wurde in vielen
Standards definiert. Die wichtigsten davon sind: Wo

sind
unter-
schie-
de?

Wo
sind
unter-
schie-
de?

• C89

• C99

• ANSI C

• C11

7.1 Datentypen

Die grundlegenden C-Datentypen sind

Typ Größe
char 1 Byte
int 4 Bytes
float 4 Bytes
double 8 Bytes
void 0 Bytes

zusätzlich kann man char und int noch in signed und unsigned
unterscheiden.

22 7. C

Dez. Zeichen Dez. Zeichen Dez. Zeichen Dez. Zeichen
0 31 64 @ 96 ’
1 65 A 97 a
2 66 B 98 b
3 C 99 c
4 D 100 d
5 E
6 F
7 G
8 H
9 I
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
31 127

7.2. ASCII-TABELLE 23

7.2 ASCII-Tabelle

7.3 Syntax

7.4 Beispiele

7.4.1 Hello World

Speichere den folgenden Text als hello-world.c:

hello-world.c
1 #include <stdio.h>
2

3 int main(void)
4 {
5 printf("Hello, World\n");
6 return 0;
7 }

Compiliere ihn mit gcc hello-world.c. Es wird eine ausführbare
Datei namens a.out erzeugt.

8 MPI

Message Passing Interface (kurz: MPI) ist ein Standard, der den
Nachrichtenaustausch bei parallelen Berechnungen auf verteilten
Computersystemen beschreibt.

8.1 Syntax

8.2 Beispiele

Bildquellen

Abb. ?? S2: Tom Bombadil, tex.stackexchange.com/a/42865

http://tex.stackexchange.com/a/42865/5645

Abkürzungsverzeichnis

Beh. Behauptung

Bew. Beweis

bzw. beziehungsweise

ca. circa

d. h. das heißt

etc. et cetera

ggf. gegebenenfalls

sog. sogneannte

Vor. Voraussetzung

z. B. zum Beispiel

z. z. zu zeigen

Symbolverzeichnis

Mengenoperationen

AC Komplement der Menge A
P(M) Potenzmenge von M
M Abschluss der Menge M
∂M Rand der Menge M
M◦ Inneres der Menge M
A × B Kreuzprodukt zweier
Mengen
A ⊆ B Teilmengenbeziehung
A (B echte Teilmengenbezie-
hung
A \B A ohne B
A ∪B Vereinigung
A ∪̇B Disjunkte Vereinigung
A ∩B Schnitt

Geometrie

AB Gerade durch die Punkte
A und B
AB Strecke mit Endpunkten
A und B
4ABC Dreieck mit Eckpunk-
ten A,B,C

Stichwortverzeichnis

Akkumulator, 11

C, 21–23
char, 21

Datentypen, 21

Haskell, 9–12

int, 21

MPI, 25

Nebeneffekt, 5

Programmierung
funktionale, 3
imperative, 3
logische, 4
prozedurale, 3

Prolog, 13–15

Scala, 17
Seiteneffekt, 5
signed, 21

Typisierung
dynamische, 4
statische, 4

Unifikation, 5
unsigned, 21

Wirkung, 5

X10, 19

	1 Programmiersprachen
	1.1 Paradigmen
	1.2 Typisierung
	1.3 Kompilierte und interpretierte Sprachen
	1.4 Dies und das

	2 Programmiertechniken
	2.1 Rekursion
	2.2 Backtracking

	3 Haskell
	3.1 Erste Schritte
	3.2 Syntax
	3.2.1 Klammern
	3.2.2 if / else
	3.2.3 Rekursion

	3.3 Beispiele
	3.3.1 Hello World
	3.3.2 Fibonacci
	3.3.3 Quicksort

	3.4 Weitere Informationen

	4 Prolog
	4.1 Syntax
	4.2 Beispiele
	4.2.1 Humans
	4.2.2 Zebrarätsel

	4.3 Weitere Informationen

	5 Scala
	5.1 Syntax
	5.2 Beispiele

	6 X10
	6.1 Syntax
	6.2 Beispiele

	7 C
	7.1 Datentypen
	7.2 ASCII-Tabelle
	7.3 Syntax
	7.4 Beispiele
	7.4.1 Hello World

	8 MPI
	8.1 Syntax
	8.2 Beispiele

	Bildquellen
	Abkürzungsverzeichnis
	Symbolverzeichnis
	Stichwortverzeichnis

