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Was ist Topologie?

Die Kugeloberfliche S? lisst sich durch strecken, stauchen und umformen zur Wiirfeloberfliiche
oder der Oberfliche einer Pyramide verformen, aber nicht zum R? oder zu einem Torus 72. Fiir
den R? miisste man die Oberfliche unendlich ausdehnen und fiir einen Torus miisste man ein
Loch machen.

Erforderliche Vorkenntnisse

Es wird ein sicherer Umgang mit den Quantoren (V, 3), Mengenschreibweisen (U, N, \, 0, R, P(M))
und ganz allgemein formaler Schreibweise vorausgesetzt. Auch die Beweisfithrung mittels Wider-
spruchsbeweisen sollte bekannt sein und der Umgang mit komplexen Zahlen C, deren Betrag,
Folgen und Héaufungspunkten nicht weiter schwer fallen. Diese Vorkenntnisse werden vor allem
in ,,Analysis I vermittelt.


http://martin-thoma.com/geotopo/
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Abbildung 0.1: Beispiele fiir verschiedene Formen

Aufierdem wird vorausgesetzt, dass (affine) Vektorrdume, Faktorrdume, lineare Unabhéngigkeit,
der Spektralsatz und der projektive Raum P(R) aus ,Lineare Algebra I bekannt sind. In ,Lineare
Algebra 11 wird der Begriff der Orthonormalbasis eingefiihrt.

Obwohl es nicht vorausgesetzt wird, konnte es von Vorteil sein ,Einfiithrung in die Algebra und
Zahlentheorie’ gehort zu haben.
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1 Topologische Grundbegriffe

1.1 Topologische Raume

Definition 1
Ein topologischer Raum ist ein Paar (X, ¥) bestehend aus einer Menge X und T C P(X)
mit folgenden Eigenschaften

i) 0, Xe%
(ii) Sind Uy,Us € ¥, 80 ist Uy NUs € T

(iii) Ist I eine Menge und U; € ¥ fiir jedes i € I, so ist U U e%
el
Die Elemente von ¥ heiften offene Teilmengen von X.

A C X heifit abgeschlossen, wenn X \ A offen ist.

Es gibt auch Mengen, die weder abgeschlossen, noch offen sind wie z. B. [0,1). Auch gibt es
Mengen, die sowohl abgeschlossen als auch offen sind.

Bemerkung 1 (Mengen, die offen & abgeschlossen sind, ex.)
Betrachte ) und X mit der trivialen Topologie T, = {0, X }.

Es gilt: X € Tund § € T, d. h. X und () sind offen. Auerdem X¢ = X\ X = () € T und
X\0=Xe%, d h X und 0 sind als Komplement offener Mengen abgeschlossen. [ ]

Beispiel 1 (Topologien)
1) X = R™ mit der von der euklidischen Metrik erzeugten Topologie Tgykiiq:

U C R" offen < fiir jedes z € U gibt es r > 0,
sodass B, (z) ={y e R" | d(z,y) <r} CU

Diese Topologie wird auch ,Standardtopologie des R™* genannt. Sie beinhaltet unter
anderem alle offenen Kugeln, aber z. B. auch Schnitte zweier Kugeln mit unterschiedli-
chem Mittelpunkt (vgl. Definition 1.ii).

2) Jeder metrische Raum (X, d) ist auch ein topologischer Raum.
3) Fiir eine Menge X heift Tpiskret = P(X) diskrete Topologie.

4) X =R, T7:={U CR|R\U endlich } U{ 0} heift Zariski-Topologie
Beobachtungen:

e Uec%y; < 3f e R[X],sodass R\U=V(f)={zeR| f(x)=0}

e Es gibt keine disjunkten offenen Mengen in Ty.
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5) X :=R", T, = {U C R"|Es gibt Polynome fi,..., f, € R[X1,...,X,] sodass
R*"\U =V (f1,..., fr)}

6) X :={0,1},T={0,{0,1},{0}} heift Sierpinskiraum.
0,{0,1},{1} sind dort alle abgeschlossenen Mengen.

Definition 2
Sei (X, %) ein topologischer Raum und z € X.

Eine Teilmenge U C X heifst Umgebung von x, wenn es ein Uy € ¥ gibt mit « € Uy und

Uy CU.

Gilt eine Eigenschaft in einer Umgebung, so sagt man, dass die Eigenschaft lokal gilt.
Definition 3

Sei (X, T) ein topologischer Raum und M C X eine Teilmenge.

a) M° := {xz € M | M ist Ungebung von = } = U U heift Inneres oder offener

UCM
Ue%

Kern von M.

b) M := ﬂ A heift abgeschlossene Hiille oder Abschluss von M.

MCA
A abgeschlossen

c) OM := M \ M° heikt Rand von M.

d) M heift dicht in X, wenn M = X ist.
Beispiel 2 o
1) Sei X = R mit euklidischer Topologie und M = Q. Dann gilt: M = R und M° = ()
2) Sei X = R und M = (a,b). Dann gilt: M = [a, b]
3) Sei X =R, T =%, und M = (a,b). Dann gilt: M =R

Definition 4
Sei (X, %) ein topologischer Raum.

a) B C T heilt Basis der Topologie T, wenn jedes U € T Vereinigung von Elementen
aus ‘B ist.

b) S C T heikt Subbasis der Topologie T, wenn jedes U € T Vereinigung von endlichen
Durchschnitten von Elementen aus S ist.

Beispiel 3 (Basis und Subbasis)
1) Jede Basis ist auch eine Subbasis, z.B.
S ={(a,b) | a,beR,a<b} ist fiir R mit der Standardtopologie sowohl Basis als
auch Subbasis.

2) Gegeben sei X = R"™ mit euklidischer Topologie ¥. Dann ist
B={B(x)|reQs,zecQ"}

ist eine abzahlbare Basis von ¥.

3) Sei (X, T) ein topologischer Raum mit X = {0,1,2 }und T ={0,{0},{0,1},{0,2},X }.
Dann ist S = {0,{0,1},{0,2} } eine Subbasis von ¥, da gilt:
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e SCT

e ),{0,1} und {0,2} €S
e {0}={0,1}n{0,2}

e X={0,11U{0,2}

Allerings ist S keine Basis von (X, ¥), da { 0 } nicht als Vereinigung von Elementen
aus S erzeugt werden kann.

Bemerkung 2
Sei X eine Menge und § C P(X). Dann gibt es genau eine Topologie ¥ auf X, fiir die S
Subbasis ist.

Definition 5
Sei (X, T) ein topologischer Raum und Y C X.
Ty :={UNY | U € ¥} ist eine Topologie auf Y.

Ty heift Teilraumtopologie und (Y, ¥y ) heift ein Teilraum von (X, ¥).

Die Teilraumtopologie wird auch Spurtopologie oder Unterraumtopologie genannt.

Definition 6
Seien X7, X5 topologische Raume.
U C X; x Xg sei offen, wenn es zu jedem z = (z1,22) € U Umgebungen U; um x; mit
i = 1,2 gibt, sodass Uy x Uy C U gilt.

T ={U C X1 x Xa | U offen } ist eine Topologie auf X; x Xs. Sie heift Produkttopologie.
B ={U; xUy| U, offen in X;,i = 1,2} ist eine Basis von ¥.

Xo

U, {xg °

X1

Abbildung 1.1: Zu x = (21, z2) gibt es Umgebungen Uj, Uy mit Uy x Us C U

Beispiel 4 (Produkttopologien)
1) X; = X9 = R mit euklidischer Topologie.
= Die Produkttopologie auf R x R = R? stimmt mit der euklidischen Topologie auf
R? iiberein.

2) X; = X3 = R mit Zariski-Topologie. T Produkttopologie auf R?: Uy x Us
(Siehe Abbildung 1.2)
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N\ =2

Uy =R\N

Abbildung 1.2: Zariski-Topologie auf R?

Definition 7 o
Sei X ein topologischer Raum, ~ eine Aquivalenzrelation auf X, X = X/ sei die Menge
der Aquivalenzklassen, 7: X — X, x> [7].

Sy::{UQY‘Tr_l(U)G‘ZX}

(X, %) heift Quotiententopologie.

Beispiel 5
X=Ra~b:sa—-beZ
a(w)y----- - aq
} X : —F
1 0 1 2 3,4 5R
[ It
ARRRETEE
0

0~1,d h[0] = [1]

Beispiel 6
Sei X = R? und (1, y1) ~ (22,12) < 21 — 22 € Z und 3 — yo € Z. Dann ist X/ ein Torus.

Beispiel 7 (Projektiver Raum)

X=R"\{0}, z~ye IR  mity= >\
< x und y liegen auf der gleichen

Ursprungsgerade

X = P"(R)
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Also fir n = 1:
4 s
2 s
4 -2 2 4 6 8
_2 1
_4 1

1.2 Metrische Raume

Definition 8
Sei X eine Menge. Eine Abbildung d : X x X — Rg heifst Metrik, wenn gilt:
(i) Definitheit: dlz,y) =0 z=y Vr,ye X
(ii) Symmetrie: d(z,y) =d(y,x) Vz,ye X
(iii) Dreiecksungleichung: d(zx,z) < d(z,y)+d(y,z) Vz,y,z€ X
Das Paar (X, d) heifst ein metrischer Raum.

Bemerkung 3
Sei (X, d) ein metrischer Raum und

B, (r):={ye€ X |dxy) <r} firreX,reR"

B={B,(r) CP(X)|ze€ X,r € R} ist Basis einer Topologie auf X.
Definition 9
Seien (X,dx) und (Y, dy) metrische Rdume und ¢ : X — Y eine Abbildung mit

Vi, 20 € X tdx (21, 22) = dy (¢(1), ¢(22))

Dann heifst ¢ eine Isometrie von X nach Y.

Beispiel 8 (Skalarprodukt erzeugt Metrik)
Sei V ein euklidischer oder hermitescher Vektorraum mit Skalarprodukt (-, -). Dann wird V'

durch d(z,y) := v/(z — y,x — y) zum metrischen Raum.

Beispiel 9 (diskrete Metrik)
Sei X eine Menge. Dann heifst

0 fallsx=y
d(z,y) = {

1 fallsz #y

die diskrete Metrik. Die Metrik d induziert die diskrete Topologie.
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(a) B,-(0) (b) Euklidische Topologie

Abbildung 1.3: Veranschaulichungen zur Metrik d

Beispiel 10
X =R? und d ((z1,1), (22, 92)) := max(||z1 — z2||, |y1 — o) ist Metrik.

Beobachtung: d erzeugt die euklidische Topologie.

Beispiel 11 (SNCF-Metrik!)
X =R?

Definition 10
Ein topologischer Raum X heifit hausdorffsch, wenn es fiir je zwei Punkte z # y in X
Umgebungen U, um z und U, um y gibt, sodass U, N U, = 0.

Bemerkung 4 (Trennungseigenschaft)
Metrische Rdume sind hausdorffsch, wegen

d(z,y) >0=3e>0:B.(x)NB.(y) =0

Beispiel 12 (Topologische Rdume und Hausdorff-Riaume)
1) (R,%z) ist ein topologischer Raum, der nicht hausdorffsch ist.

2) (R, %gukid) ist ein topologischer Hausdorff-Raum.

'Diese Metrik wird auch ,,franzosische Eisenbahnmetrik* genannt.


https://de.wikipedia.org/wiki/Franz%C3%B6sische_Eisenbahnmetrik
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Bemerkung 5 (Eigenschaften von Hausdorff-Ridumen)
Seien X, X7, X9 Hausdorff-Rdume.

a) Jeder Teilraum von X ist hausdorffsch.

b) X; x Xy ist hausdorffsch.

»

JISIII SIS SIS 7777777

FAS S X S S S S S S S S
S S S S
S S S S

5

1,111) 27y2)

//////////{?/////////
ST

A A A S A A

Xi

S
N ///////////é

xy

Ui x Xo Us x X5

Abbildung 1.4: Wenn X1, X5 hausdorffsch sind, dann auch X; x Xo

Definition 11
Sei X ein topologischer Raum und (z),en eine Folge in X. x € X heift Grenzwert oder
Limes von (z,), wenn es fiir jede Umgebung U von z ein ng gibt, sodass x,, € U fiir alle
n > ng.

Bemerkung 6
Ist X hausdorffsch, so hat jede Folge in X hochstens einen Grenzwert.

Beweis: Sei (x,) eine konvergierende Folge und x und y Grenzwerte der Folge.

Da X hausdorffsch ist, gibt es Umgebungen U, von x und U, von y mit U, N U, = 0 falls
x #y. Da (x,) gegen x und y konvergiert, existiert ein ng mit x,, € U, N U,y fiir alle n > ng
==y [ ]

1.3 Stetigkeit

Definition 12
Seien (X, %Tx), (Y, %Ty) topologische Rdume und f : X — Y eine Abbildung.

a) f heift stetig := VU € Ty : f~1(U) € Tx.

b) f heit Homdomorphismus, wenn f stetig ist und es eine stetige Abbildung g :
Y — X gibt, sodass go f =idx und fog =idy.

Bemerkung 77
Seien X, Y metrische Rdume und f: X — Y eine Abbildung.

Dann gilt: f ist stetig < zu jedem x € X und jedem e > 0 gibt es §(z,¢) > 0, sodass fiir
alle y € X mit d(z,y) <0 gilt dy(f(x), f(y)) <e.

?Es wird die Aquivalenz von Stetigkeit im Sinne der Analysis und Topologie auf metrischen Riumen gezeigt.
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Beweis: = Sei x € X,e > 0 gegeben und U := B.(f(x)).
Dann ist U offen in Y.
Lub 124 f7YU) ist offen in X. Dann ist = € f~1(U).

= 3§ > 0, sodass Bs(z) C f~1(U)
= f(Bs(z)) CU
= {ye X |dx(z,y) <} = Beh.

,<“ Sei U CY offen, X € f~1(U).
Dann gibt es € > 0, sodass B.(f(x))

cU
Yor, g gibt § > 0, sodass f(’B(;( ) CB(f(x)))
= B;(z) € fH(B(f(x)) € (V) u

Bemerkung 8
Seien XY topologische Rdume und f : X — Y eine Abbildung. Dann gilt:

f ist stetig
& fiir jede abgeschlossene Teilmenge A C Y gilt : f~1(A) C X ist abgeschlossen.

Beispiel 13 (Stetige Abbildungen und Homdomorphismen)
1) Fiir jeden topologischen Raum X gilt: idx : X — X ist Homdomorphismus.

2) Ist (Y,Ty) trivialer topologischer Raum, d. h. ¥y = Ty, so ist jede Abbildung
f: X =Y stetig.

3) Ist X diskreter topologischer Raum, so ist f: X — Y stetig fiir jeden topologischen
Raum Y und jede Abbildung f.

4) Sei X =[0,1),Y =S'={2€C| 2] =1} und f(t) = >

Abbildung 1.5: Beispiel einer stetigen Funktion f, deren Umkehrabbildung g nicht stetig ist.

Die Umkehrabbildung g ist nicht stetig, da ¢g~*(U) nicht offen ist (vgl. Abbildung 1.5).

Bemerkung 9 (Verkettungen stetiger Abbildungen sind stetig)
Seien X, Y, Z topologische Raume, f: X — Y und ¢g: Y — Z stetige Abbildungen.

X ! Y
S
Z

Beweis: Sei U C Z offen = (go f)"Y(U) = f~1 (g7 (U)). g71(U) ist offen in Y weil g stetig
ist, f~1(g71(U)) ist offen in X, weil f stetig ist. [ |

Dann ist go f : X — Z stetig.

Bemerkung 10
a) Fiir jeden topologischen Raum ist

Homéo(X) :={ f: X — X | f ist Hombomorphismus }

eine Gruppe.
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b) Jede Isometrie f: X — Y zwischen metrischen Radumen ist ein Homéomorphismus.

c) Iso(X) := {f: X — X | f ist Isometrie } ist eine Untergruppe von Homoo(X) fiir
jeden metrischen Raum X.

Bemerkung 11 (Projektionen sind stetig)
Seien X, Y topologische Rdume. 7x : X XY — X und 71y : X x Y — Y die Projektionen

wx ¢ (x,y) = xund 7y : (x,y) =y

Wird X X Y mit der Produkttopologie versehen, so sind mx und my stetig.

Beweis: Sei U C X offen
= 75 (U) =U x Y ist offen in X x Y. [ |

Bemerkung 12
Sei X ein topologischer Raum, ~ eine Aquivalenzrelation auf X, X = X /~ der Bahnenraum
versehen mit der Quotiententopologie, m: X — X, x — [x]~.

Dann ist 7 stetig.

Beweis: Nach Definition ist U C X offen < 7= }(U) C X offen. |

Beobachtung: Die Quotiententopologie ist die feinste Topologie, sodass 7 stetig wird.

Beispiel 14 (Stereographische Projektion)
R™ und S™\ { N } sind hom6omorph fiir beliebiges N € S™. Es gilt:

" ={zeR"™ ||z =1}

n+1
:{xeR”H Zm?zl}

i=1
O.B.d. A.sei N = 0 . Die Gerade durch N und P schneidet die Ebene H in genau

1
einem Punkt P. P wird auf P abgebildet.

f:S"\{N}—>R"
genau ein Punkt

——
P— LpNH

x1
wobei R* = H = : cR"! | 2,,1 =0 % und Lp die Gerade in R"*! durch N

Tn+1
und P ist.
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Abbildung 1.6: Visualisierung der stereographischen Projektion

€1
Sei P = : , 80 ist xp41 < 1, also ist Lp nicht parallel zu H. Also schneiden sich Lp

Tn+1
und H in genau einem Punkt P.

Es gilt: f ist bijektiv und die Umkehrabbildung ist ebenfalls stetig.

1.4 Zusammenhang

Definition 13

a) Ein Raum X heift zusammenh&ngend, wenn es keine offenen, nichtleeren Teilmengen
Ui,Us von X gibt mit Uy NUs =0 und U; UU; = X.

b) Eine Teilmenge Y C X heift zusammenhéngend, wenn Y als topologischer Raum mit
der Teilraumtopologie zusammenhéangend ist.

Bemerkung 13
X ist zusammenhéngend < Es gibt keine abgeschlossenen, nichtleeren Teilmengen Aq, Ao

mit AlﬂAgzﬂundAlLJ/b:X.

Beispiel 15 (Zusammenhang von Riumen)
1) (R™, Tguklia) ist zusammenhéngend, denn:

Annahme: R" = Uy U Uy mit () # Uy, Us € Tgukiq existieren.
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Sei € Uy,y € Up und [z,y] die Strecke zwischen = und y. Sei V = [z,y]. Nun
betrachten wir V' C R™ als (metrischen) Teilraum mit der Teilraumtopologie Ty .
Somit gilt Uy N [z, y] € Ty wegen der Definition der Teilraumtopologie.

Dann gibt es z € [z,y] mit z € (U1 N [z,y]), aber z ¢ Uy = z € Us. In jeder
Umgebung von z liegt ein Punkt von U; = Widerspruch zu Us offen.

2) R\ {0} ist nicht zusammenhéngend, denn R\ {0 } = Ro UR>

3) R?2\ {0} ist zusammenhingend.

4) Q C R ist nicht zusammenhéngend, da (QNR_ 5)U(QNR, 5)=Q
5)

{z } ist zusammenhéngend fiir jedes x € X, wobei X ein topologischer Raum ist.

6) R mit Zariski-Topologie ist zusammenhéangend.

Bemerkung 14

Sei X ein topologischer Raum und A C X zusammenhingend. Dann ist auch A zusammen-
hangend.

Beweis: durch Widerspruch
Annahme: A = Ay U Ay, A; abgeschlossen, A; #0, A1 N Ay =10

= A= (AﬂAl) U (AQAQ)
——

abgeschlossen  abgeschlossen

disjunkt

Wire ANA; =0
jAgZ:A1UA2

= AC Ay :>ZQA2

:>A1:@

= Widerspruch zu Ay # ()

= AN A; # () und analog AN Ay # 0

= Widerspruch zu A ist zusammenhéngend. ]

Bemerkung 15
Sei X ein topologischer Raum und A, B C X zusammenhéngend.

Ist AN B # (), dann ist A U B zusammenhéngend.

Beweis: Sei AU B = Uy UUs, U; # () offen

2B AR 4= (ANU;) U(ANTy) offen
%AQUHZQ)
ANB#()

B = (BNU;)U(BNU,) ist unerlaubte Zerlegung.
T T
—U, =



14 1.5. KOMPAKTHEIT

Definition 14
Sei X ein topologischer Raum.

Fir z € X sei Z(z) C X definiert durch
Z(x) = UA

ACXzhed.
z€EA

Z(z) heift Zusammenhangskomponente.

Bemerkung 16 (Eigenschaften von Zusammenhangskomponenten)
Sei X ein topologischer Raum. Dann gilt:

a) Z(x) ist die grofite zusammenhéngende Teilmenge von X, die = enthélt.
b) Z(z) ist abgeschlossen.
¢) X ist disjunkte Vereinigung von Zusammenhangskomponenten.

Beweis:
a) Sei Z(x) = A; U As mit A; # () abgeschlossen.

O.B.d. A.sei z € A; und y € As. y liegt in einer zusammehéngenden Teilmenge A,
die auch = enthélt. = A = (AN A1) U (AN Ag) ist unerlaubte Zerlegung.
—_—— ~——

Sz oY

b) Nach Bemerkung 14 ist Z(z) zusammenhéngend = Z(z) C Z(z) = Z(z) = Z(x)

Bem. 15

c) Ist Z(y) N Z(x) # ) =——= Z(y) U Z(x) ist zusammenhangend.

Bemerkung 17
Sei f: X — Y stetig. Ist A C X zusammenhéngend, so ist f(A4) C Y zusammenhéngend.

Beweis: Sei f(A) = Uy UU,, U; # 0, offen, disjunkt.
= [ (f(A) = 1) U fH(T)
= A= (AnfH)uAn 1)) |
20 £0

1.5 Kompaktheit

Definition 15
Sei X eine Menge und 4 C P(X).

$1 heikt eine Uberdeckung von X, wenn gilt:

Vee X:AMell:xe M
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Definition 16
Ein topologischer Raum X heifit kompakt, wenn jede offene Uberdeckung von X

U={U };c; mit U; offen in X
eine endliche Teiliiberdeckung

JUi =X mit |J| eN
i€eJCI

besitzt.

Bemerkung 18
Das Einheitsintervall I := [0, 1] ist kompakt beziiglich der euklidischen Topologie.

Beweis: Sei (U;);c. eine offene Uberdeckung von 1.

Es geniigt zu zeigen, dass es ein § > 0 gibt, sodass jedes Teilintervall der Lénge § von [ in
einem der U; enthalten ist. Wenn es ein solches § gibt, kann man I in endlich viele Intervalle
der Linge 6 unterteilen und alle U; in die endliche Uberdeckung aufnehmen, die Teilintervalle
enthalten.

Angenommen, es gibt kein solches 6. Dann gibt es fiir jedes n € N ein Intervall I,, C [0, 1]
der Lange 1/n sodass I, C U; fur alle i € J.

=

Sei x,, der Mittelpunkt von I,,. Die Folge (z,) hat einen Haufungspunkt z € [0, 1]. Dann
gibt es i € J mit x € U;. Da Uj; offen ist, gibt es ein ¢ > 0, sodass (r —e,x +¢) C Uj;.
Dann gibt es ng, sodass gilt: 1/ny < €/2 und fiir unendlich viele® n > ng : |z — x,,| < /2, also
I, C (z — &,z +¢) C U; fiir mindestens ein n € N.*

= Widerspruch

Dann iiberdecke [0, 1] mit endlich vielen Intervallen Iy, ..., I; der Lénge 6. Jedes I; ist in
U;j enthalten.

= Uj,,...,Uj, ist endliche Teiliiberdeckung von U. |

Beispiel 16 (Kompakte Raume)
1) R ist nicht kompakt.

2) (0,1) ist nicht kompakt.
Un = (t/n, 1 =Vn) = UpenUn = (0,1)
3) R mit der Zariski-Topologie ist kompakt und jede Teilmenge von R ist es auch.

Bemerkung 19
Sei X kompakter Raum, A C X abgeschlossen. Dann ist A kompakt.

Beweis: Sei (V;);er offene Uberdeckung von A.
Dann gibt es fiir jedes i € I eine offene Teilmenge U; C X mit V; = U; N A.

iel
=U={U;|icT}U{X\ A} ist offene Uberdeckung von X

3Dies gilt nicht fiir alle n > ng, da ein Haufungspunkt nur eine konvergente Teilfolge impliziert.
4Sogar fiir unendlich viele.
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X kompakt es gibt 71,...,i, € I, sodass UUijU(X\A):X

=1

= U, U(X\A)|nA=A

<.
NG

= O(Uij NA)U((X\A)NA)=A
—_—

J=1 Y -
=V, =0

= Vi,,...,V;, tiberdecken A.

Bemerkung 20
Seien X,Y kompakte topologische Rdume. Dann ist X x Y mit der Produkttopologie
kompakt.

Beweis: Sei (W;);es eine offene Uberdeckung von X x Y. Fiir jedes (z,y) € X x Y gibt es
offene Teilmengen U, , von X und V., von Y sowie ein i € I, sodass U, , x V., C W;.

X

Abbildung 1.7: Die blaue Umgebung ist Schnitt vieler Umgebungen

Die offenen Mengen Uy, , x V4, 4 fiir festes ¢ und alle y € Y iiberdecken { ¢ } x y. Da Y
kompakt ist, ist auch { zg } X Y kompakt. Also gibt es y1,. .., Y () mit U:-i(lzo) Usoy; X
Vaows 2 {xo} x Y.
Sei Uy, := ﬂ;i(f) Uso,y;- Da X kompakt ist, gibt es z1,...,2, € X mit Jj_, Uy; = X
= Uj'::1 Ug(lmj) (Ua:j,yi x Va:j,yi) 2 X xY

Ein grimoranges Késtehen

:>Uj UZWZ(JI],yZ) =XxY ]

Bemerkung 21
Sei X ein Hausdorffraum und K C X kompakt. Dann ist K abgeschlossen.

Beweis: z. Z.. Komplement ist offen

Ist X = K, so ist K abgeschlossen in X. Andernfalls sei y € X \ K. Fiir jedes x € K seien
U, bzw. V,, Umgebungen von = bzw. von y, sodass U, NV, = 0.

Da K kompakt ist, gibt es endlich viele z1,...,z, € K, sodass | J;" | U, 2 K.
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Sei V := ﬁ Ve,

i=1
=VnN (U U%.) =0

i=1
=VNK=10
= V ist Uberdeckung von v, die ganz in X \ K enthalten ist.
= X \ K ist offen

Damit ist K abgeschlossen.

Bemerkung 22
Seien X, Y topologische Raume, f: X — Y stetig.

Ist K C X kompakt, so ist f(K) C Y kompakt.

Beweis: Sei (V;);es offene Uberdeckung von f(K)

fs_ﬂ‘; (f~Y(Vi))ser ist offene Uberdeckung von K

Kompalt o gibt i1,...,i,, sodass f~1(Vi,),..., f~5(Vi,) Uberdeckung von K ist.

= f(f~Y(Vi), ..., f(f~5(V;,)) iiberdecken f(K).
Es gilt: f(f~Y(V)) =V N f(X)

Satz 1.1 (Heine-Borel)
Eine Teilmenge von R™ oder C" ist genau dann kompakt, wenn sie beschrankt und

abgeschlossen ist.

Beweis: ,,=“ Sei K C R" (oder C"™) kompakt.

Da R™ und C" hausdorffsch sind, ist K nach Bemerkung 21 abgeschlossen. Nach Vorausset-
zung kann K mit endlich vielen offenen Kugeln von Radien 1 iiberdeckt werden = K ist

beschrankt.
»<="Sei A CR" (oder C") beschrénkt und abgeschlossen.
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Dann gibt es einen Wiirfel W = [-N, N| x --- X [N, N] mit A C W bzw. ,Polyzylinder*

n mal

Z={(z1,...,2p)€C" |z < Nfiri=1,...,n}

Nach Bemerkung 20 und Bemerkung 18 ist W kompakt, also ist A nach Bemerkung 19 auch
kompakt. Genauso ist Z kompakt, weil

{zeC| 2 <1}
homdéomorph zu

{(z.y) € B |||(2,y)| <1}
ist. -

1.6 Wege und Knoten

Definition 17
Sei X ein topologischer Raum.

a) Ein Weg in X ist eine stetige Abbildung + : [0, 1] — X.
b) v heift geschlossen, wenn (1) = v(0) gilt.
c) 7 heift einfach, wenn 7|(g ) injektiv ist.
Beispiel 17
Ist X diskret, so ist jeder Weg konstant, d. h. von der Form
Ve e [0,1] :y(x)=¢, c€X

Denn ([0, 1]) ist zusammenhéngend fiir jeden Weg .

Definition 18
Ein topologischer Raum X heift wegzusammenhingend, wenn es zu je zwei Punkten
z,y € X einen Weg 7 : [0,1] — X gibt mit v(0) = z und (1) = y.

Bemerkung 23
Sei X ein topologischer Raum.

a) X ist wegzusammenhéngend = X ist zusammenhéangend

b) X ist wegzusammenhéngend ¢ X ist zusammenhéngend

Beweis:

a) Sei X ein wegzusammenhéngender topologischer Raum, Aj, A nichtleere, disjunkte,
abgeschlossene Teilmengen von X mit A; UAy = X. Sei x € Ay,y € Ag,v:[0,1] - X
ein Weg von x nach y.

Dann ist C':= 7([0, 1]) € X zusammenhéngend, weil v stetig ist.

C = (CﬁAl)U(CﬁAg)
o oY

ist Zerlegung in nichtleere, disjunkte, abgeschlossene Teilmengen = Widerspruch



19 1.6. WEGE UND KNOTEN

h | — {(z,sin(L)) € X x Y}
(_17 1) cY
L LIV
I
(a) Spirale S mit Kreis C (b) Sinus

Abbildung 1.8: Beispiele fiir Rdume, die zusammenhéngend, aber nicht wegzusammenhéngend
sind.

b) SeiX:{(:c,y) € R? ’3:2+y2:1\/y:1—|—2-e_%“" }
Abbildung 1.8a veranschaulicht diesen Raum.

Sei Uy UUy = X, Uy # Uy = (0, U; offen. X = CUS. Dann ist C C Uy oder C C Uy,
weil C und S zusammenhéngend sind.

Also ist C = U; und S = Us (oder umgekehrt).
Sei y € C =Uj,e >0 und B.(y) C Uy eine Umgebung von y, die in Uy enthalten ist.

Aber: B.(y) NS # 0 = Widerspruch = X U S ist zusammenhéngend, aber nicht
wegzusammenhéngend. ]

Beispiel 18 (Hilbert-Kurve)
Es gibt stetige, surjektive Abbildungen [0, 1] — [0, 1] x [0, 1]. Ein Beispiel ist die in Abbil-
dung 1.9 dargestellte Hilbert-Kurve.

Abbildung 1.9: Hilbert-Kurve

Definition 19
Sei X ein topologischer Raum. Eine (geschlossene) Jordankurve in X ist ein Homéomor-
phismus 7 : [0,1] = C C X bzw. y: S! - C C X.

Satz 1.2 (Jordanscher Kurvensatz)
Ist C = 7([0,1]) eine geschlossene Jordankurve in R?, so hat R? \ C genau zwei
Zusammenhangskomponenten, von denen eine beschrankt ist und eine unbeschrénkt.
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...... innen
—— Jordankurve

Abbildung 1.10: Die unbeschrinkte Zusammenhangskomponente wird hiufig inneres, die be-
schrankte dufseres genannt.

Beweis: ist technisch mithsam und wird hier nicht gefiihrt. Er kann in ,Algebraische Topologie:
Eine Einfiihrung* von R. Stocker und H. Zieschang auf S. 301f (ISBN 978-3519122265)

nachgelesen werden.
Idee: Ersetze Weg C' durch Polygonzug.

Definition 20
Eine geschlossene Jordankurve in R? heift Knoten.

Beispiel 19 (Knoten)

C&HGY

) Trivialer Knoten ) Kleeblattknoten ) Achterknoten d) 62-Knoten

Abbildung 1.11: Beispiele fiir verschiedene Knoten

Definition 21
Zwei Knoten 71,y : S' — R3 heiken Aquivalent, wenn es eine stetige Abbildung

H:S'x[0,1] - R?

gibt mit

=
—
N

o
~—

Il

y1(z) Vze St
Yo(z) Vze St

=
—
n
—_
SN—

I

und fiir jedes feste ¢ € [0,1] ist
H,:S' 5 R3 2+ H(z1t)

ein Knoten. Die Abbildung H heift Isotopie zwischen v; und ~s.
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Definition 22
Sei v : [0,1] — R3 ein Knoten, E eine Ebene und 7 : R® — E eine Projektion auf E.

7 heift Knotendiagramm von v, wenn gilt:

‘7771(:6)| <2 Vzemn(y)

Ist (7](oa7) (@) = { 1,52 }, so liegt y1 iiber ys, wenn gilt:

IN>1:(y1—x)=Ay2 — )

Satz 1.3 (Satz von Reidemeister)
Zwei endliche Knotendiagramme gehoren genau dann zu dquivalenten Knoten, wenn sie
durch endlich viele ,,Reidemeister-Ziige* ineinander tiberfithrt werden kénnen.

(a) (b) Q2
>< VAR
(c) Qs

Abbildung 1.12: Reidemeister-Ziige

Beweis: Durch sorgfiltige Fallunterscheidung.”

Definition 23
Ein Knotendiagramm heifst 3-farbbar, wenn jeder Bogen von D so mit einer Farbe gefarbt
werden kann, dass an jeder Kreuzung eine oder 3 Farben auftreten und alle 3 Farben
auftreten.

5Siehe ,;JKnot Theory and Its Applications® von Kunio Murasugi. ISBN 978-0817638177.
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Abbildung 1.13: Ein 3-gefiarber Kleeblattknoten
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Ubungsaufgaben
Aufgabe 1 (Sierpinskiraum)

Essei X :={0,1} und Tx :={0,{0},X }. Dies ist der sogenannte Sierpiniskiraum.
(a) Beweisen Sie, dass (X, ¥ x) ein topologischer Raum ist.
(b) Ist (X, Tx) hausdorffsch?

(c) Ist Tx von einer Metrik erzeugt?

Aufgabe 2

Es sei Z mit der von den Mengen U, := a+ bZ(a € Z,b € Z\ { 0 }) erzeugten Topologie
versehen.

Zeigen Sie:
(a) Jedes U,y und jede einelementige Teilmenge von Z ist abgeschlossen.
(b) { —1,1} ist nicht offen.

(c) Es gibt unendlich viele Primzahlen.

Aufgabe 3 (Cantorsches Diskontinuum)

Fiir jedes i € N sei P; := { 0,1 } mit der diskreten Topologie. Weiter Sei P := [[;cx Bi-
(a) Wie sehen die offenen Mengen von P aus?

(b) Was konnen Sie iiber den Zusammenhang von P sagen?

Aufgabe 4 (Kompaktheit)

(a) Ist GL,(R) ={ A € R™"™ | det(A) # 0 } kompakt?
(b) Ist SL,(R) = { A € R™™" | det(A) = 1 } kompakt?

(c) Ist P(R) kompakt?

Aufgabe 5 (Begriffe)

Definieren sie die Begriffe ,Homomorphismus“ und ,,Homéomorphismus®.

Geben Sie, falls moglich, ein Beispiel fiir folgende Félle an. Falls es nicht moglich ist,
begriinden Sie warum.

1) Ein Homomorphismus, der zugleich ein Homéomorphismus ist,

2) ein Homomorphismus, der kein Homéomorphismus ist,
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3) ein Homéomorphismus, der kein Homomorphismus ist

Aufgabe 6 (Begriffe)

Definieren sie die Begriffe , Isomorphismus®, ,Isotopie” und ,Isometrie®.



2 Mannigfaltigkeiten und
Simplizialkomplexe

2.1 Topologische Mannigfaltigkeiten

Definition 24
Sei (X, T) ein topologischer Raum und n € N.

a) Eine n-dimensionale Karte auf X ist ein Paar (U, ¢), wobei U € Tund ¢ : U —» V
Homdéomorphismus von U auf eine offene Teilmenge V' C R™.

b) Ein n-dimensionaler Atlas A auf X ist eine Familie (Uj, ¢;);er von Karten auf X,
sodass | J;c; Ui = X.

¢) X heifst (topologische) n-dimensionale Mannigfaltigkeit, wenn X hausdorffsch ist,
eine abzédhlbare Basis der Topologie hat und einen n-dimensionalen Atlas besitzt.

Anschaulich ist also ein n-dimensionale Mannigfaltigkeit lokal dem R™ &dhnlich.

Bemerkung 24 (Méichtigkeit von Mannigfaltigkeiten)
Jede n-dimensionale Mannigfaltigkeit mit n > 1 ist mindestens so méchtig wie R.

Beweis: Sei (X, %) ein topologischer Raum und (U, ¢) mit U € T und ¢ : U — V C R", wobei
V offen und ¢ ein Homéomorphismus ist, eine Karte auf X.

Da jede offene Teilmenge des R™ genauso méchtig ist wie der R™, ¢ als Homéomorphismus
insbesondere bijektiv ist und Mengen, zwischen denen eine Bijektion existiert, gleich méchtig
sind, ist U genauso méchtig wie der R™. Da jede Mannigfaltigkeit mindestens eine Karte
hat, muss jede Mannigfaltigkeit X mindestens so méchtig sein wie der R™. ]

Hinweis: Es gibt auch noch 0-dimensionale Mannigfaltigkeiten. Diese Mannigfaltigkeiten konnen
beliebig viele Elemente haben.

Bemerkung 25
a) Es gibt surjektive, stetige Abbildungen [0, 1] — [0, 1] x [0, 1]

b) Fiir n # m sind R"™ und R™ nicht homéomorph. Zum Beweis benutzt man den ,Satz
von der Gebietstreue (Brouwer):

Ist U C R"™ offen und f : U — R” stetig und injektiv, so ist f(U) offen.

Ist n < m und R homoéomorph zu R", so wére
fR" - R™ = R" (21,...,2,) — (z1,22,...,2p,0,...,0)

eine stetige injektive Abbildung. Also miisste f(R") offen sein = Widerspruch
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Beispiel 20 (Mannigfaltigkeiten)
1) Jede offene Teilmenge U C R™ ist eine n-dimensionale Mannigfaltigkeit mit einem
Atlas aus einer Karte.

2) C™ ist eine 2n-dimensionale Mannigfaltigkeit mit einem Atlas aus einer Karte:

(21, s 2n) = (R(21),S(21), - - -, R(2n), S(2n))

3) P(R) = (R"*1\ {0})/~ = 8"/~ und P*(C) sind Mannigfaltigkeiten der Dimension
n bzw. 2n, da gilt:

Sei Uy :={(xo: - :an) € P"(R) |2; #0} Vi €0,...,n. Dann ist P*"(R) = J;_, Us
und die Abbildung

U, — R"
(zg: - :xp) — (m,...,%,...,xn>
(o ryimr Loy yn) <4 (Was o Un)
ist bijektiv.
Die U; mit ¢ = 0,...,n bilden einen n-dimensionalen Atlas:
r=(1:0:0) €Uy — R x +— (0,0)
y=(0:1:1) € Uy — R? y— (0,1)

Umgebung: B1(0,1) = { (1:u:v) | [(w,0)|| <1} =W
Umgebung: B1(0,1) — { (w: z:1) ’ w+22<1} =V,

VinVy =07
(a:b:c)eVinV,

= Widerspruch
4) S™ = { x € Rl ‘ lz|| =1 } ist n-dimensionale Mannigfaltigkeit.

Karten:
D; = {(z1,...,Znt1) € S™z; > 0} — B1(0,...,0)
R
E n
Ci :={(z1,...,2p41) € S"|z; <0} = B41(0,...,0)
(131,...,$n+1)i—)(xl,...,%,...,$n+1)1

(1, @) = (@1, @14/ = D T2, TG,y - .., @), oder —y/1 =30 a2 fiir C;

St= U?:f(ci U D;)
Als kompakte Mannigfaltigkeit wird S™ auch ,geschlossene Mannigfaltigkeit” genannt.

5) 10, 1] ist keine Mannigfaltigkeit, denn:
Es gibt keine Umgebung von 0 in [0, 1], die homéomorph zu einem offenem Intervall
ist.

La; wird rausgenommen



27

2.1. TOPOLOGISCHE MANNIGFALTIGKEITEN

6)

9)

Vi ={(z,y) € R? ‘ z -y =0} ist keine Mannigfaltigkeit.

Das Problem ist (0,0). Wenn man diesen Punkt entfernt, zerfillt der Raum in 4
Zusammenhangskomponenten. Jeder R" zerfallt jedoch in hochstens zwei Zusammen-
hangskomponenten, wenn man einen Punkt entfernt.

Vo ={ (z,y) € R? ‘ z® = y? } ist eine Mannigfaltigkeit.
X =R\{0})U(01,02)

Uoffen in R\ {0}, falls0; ¢ U,00€U

U C X offen &

Je>0:(—,e) CU falls0; €U,0,€U
Insbesondere sind (R\ {0})U{0; } und (R\ {0})U{02} offen und homéomorph
zu R.

Aber: X ist nicht hausdorffsch! Denn es gibt keine disjunkten Umgebungen von 0
und 0s.

2

GL,(R) ist eine Mannigfaltigkeit der Dimension n*, weil offene Teilmengen von R"’

eine Mannigfaltigkeit bilden.

Definition 25
Seien X, Y n-dimensionale Mannigfaltigkeiten, U C X und V C Y offen, ® : U — V ein Ho-
moomorphismus Z = (X UY)/~ mit der von u ~ ®(u) Vu € U erzeugten Aquivalenzrelation
und der von ~ induzierten Quotiententopologie.

Z heift Verklebung von X und Y langs U und V. Z besitzt einen Atlas aus n-dimensionalen
Karten. Falls Z hausdorffsch ist, ist Z eine n-dimensionale Mannigfaltigkeit.

Bemerkung 26
Sind X, Y Mannigfaltigkeiten der Dimension n bzw. m, so ist X x Y eine Mannigfaltigkeit
der Dimension n + m.

Beweis:

Produkte von Karten sind Karten. [ |

Beispiel 21
Mannigfaltigkeiten mit Dimension 1:

1) Offene Intervalle, R, (0,1) sind alle homéomorph
2) St

Mannigfaltigkeiten mit Dimension 2:
1) R?
2) 5% (0 Henkel)

3) T? (1 Henkel)

4) oder mehr Henkel, wie z.B. der Zweifachtorus in Abbildung 2.1

Bemerkung 27
Sein € N, F : R" — R stetig differenzierbar und X = V(F) := {z € R" | F(x) =0 } das

,vanishing set.

Dann gilt:
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‘e
a

Abbildung 2.1: Durch Verklebung zweier Tori entsteht ein Zweifachtorus.

a) X ist abgeschlossen in R”
b) Ist grad(F)(X) #0 Vz € X, so ist X eine Mannigfaltigkeit der Dimension n — 1.

Beweis:

a) Sei y € R™\ V(F). Weil F stetig ist, gibt es § > 0, sodass F(Bs(y)) C B.(F(y)) mit
e = 3||F(y)||. Folgt Bs(y) NV (F) =0 = R™\ V(F) ist offen.

b) Sei z € X mit grad(F)(z) # 0, also o. B. d. A. g—)?l(x) #0, z = (z1,...,2Tp),
x' = (29,...,7,) € R"L Der Satz von der impliziten Funktion liefert nun: Es
gibt Umgebungen U von 2’ und differenzierbare Funktionen g : U — R, sodass

G:U —R", ur (g(u),u) eine stetige Abbildung auf eine offene Umgebung V' von x
in X ist.

[ |
Beispiel 22

1) FiR3 SR, (2,9,2) > 22 +1y2+22—1, V(F) = S2, grad(F) = (2z, 2y, 22) 22

S™ ist n-dimensionale Mannigfaltigkeit in R™*!

2) F:R?2 =R, (z,y)— y>— 23 Es gilt: grad(F) = (=322, 2y). Also: grad(0,0) = (0,0).

2,

W)

)
7,

2%
0,
20

_5 | N
\ 1
\‘ a—g
\\ """ 0,21
~10 4 | --—-a=2
(a) F(z,y) = y* — 2® (b) y* —az® =0

Abbildung 2.2: Rechts ist die Neilsche Parabel fiir verschiedene Parameter a.

Daher ist Bemerkung 27.b nicht anwendbar, aber V' (F') ist trotzdem eine 1-dimensionale
topologische Mannigfaltigkeit.
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Definition 26
Sei X ein Hausdorffraum mit abzdhlbarer Basis der Topologie. X heifst n-dimensionale
Mannigfaltigkeit mit Rand, wenn es einen Atlas (U;, ;) gibt, wobei U; C X; offen und
©; ein Homdomorphismus auf eine offene Teilmenge von

Yo ={(r1,...,2n) €R" [, >0}
ist.

" o ist ein ,Halbraum®.

Hinweis: Mannigfaltigkeiten mit Rand sind keine Mannigfaltigkeiten.

) Halbraum

I

DofE

) Pair of pants (c) Sphére mit einem Loch

Abbildung 2.3: Beispiele fiir Mannigfaltigkeiten mit Rand

Definition 27
Sei X eine n-dimensionale Mannigfaltigkeit mit Rand und Atlas A. Dann heifst

U {ze€Ulp@) =0}
(Up)eA

Rand von X.

0X ist eine Mannigfaltigkeit der Dimension n — 1.

Definition 28
Sei X eine n-dimensionale Mannigfaltigkeit mit Atlas (U;, ¢;)ier

Fir¢,j € I mit U; NU; # () heiftt

Pij = pj 0t
ei(Ui NU;) = ¢;(U; N Uj)

Kartenwechsel oder Ubergangsfunktion.
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Abbildung 2.4: Kartenwechsel

2.2 Differenzierbare Mannigfaltigkeiten

Definition 29
Sei X eine n-dimensionale Mannigfaltigkeit mit Atlas (U;, ¢;)ier-

a) X heift differenzierbare Mannigfaltigkeit der Klasse C*, wenn jede Karten-
wechselabbildung ¢;;, ¢,j € I k-mal stetig differenzierbar ist.

b) X heift differenzierbare Mannigfaltigkeit, wenn X eine differenzierbare Mannig-
faltigkeit der Klasse C'*° ist.

Differenzierbare Mannigfaltigkeiten der Klasse C'*° werden auch glatt genannt.

Definition 30
Sei X eine differenzierbare Mannigfaltigkeit der Klasse C* (k € NU { oo }) mit Atlas

A= (Ui, ¢i)ier-

a) Eine Karte (U, ) auf X heift vertréglich mit A, wenn alle Kartenwechsel ¢ o gp;l
und ; 0 o~ ! (i € I mit U; N U # ) differenzierbar von Klasse C* sind.

b) Die Menge aller mit A vertréglichen Karten auf X bildet einen maximalen Atlas der
Klasse C*. Er heift C*-Struktur auf X.
Eine C°°-Struktur heifst auch differenzierbare Struktur auf X.

Bemerkung 28
Fiir n > 4 gibt es auf S™ mehrere verschiedene differenzierbare Strukturen, die sogenannten

,exotische Sphéaren®.

Definition 31
Seien XY differenzierbare Mannigfaltigkeiten der Dimension n bzw. m, x € X.

a) Eine stetige Abbildung f : X — Y heifit differenzierbar in z (von Klasse C*), wenn
es Karten (U,¢) von X mit z € U und (V,%) von Y mit f(U) C V gibt, sodass
Yo fop ! stetig differenzierbar von Klasse C* in o(z) ist.

b) f heift differenzierbar (von Klasse C*), wenn f in jedem z € X differenzierbar ist.

c¢) f heifst Diffeomorphismus, wenn f differenzierbar von Klasse C* ist und es eine
differenzierbare Abbildung g : ¥ — X von Klasse C*° gibt mit g o f = idx und

Jog=idy.
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Bemerkung 29
Die Bedingung in Definition 31.a héngt nicht von den gewéhlten Karten ab.

Beweis: Seien (U, ¢’) und (V’,4’) Karten von X bzw. Y um z bzw. f(z) mit f(U") C V"
= ofo()!
=y o(ptog)ofol(ptop)o(y)!
ist genau dann differenzierbar, wenn 1 o f o o1 differenzierbar ist.

Beispiel 23
f:R—= R, x+ 23 ist kein Diffeomorphismus, aber Homdomorphismus, da mit g(x) := ¢/z
gilt: fog=1idgr, go f=1idgr

Bemerkung 30
Sei X eine glatte Mannigfaltigkeit. Dann ist

Diffeo(X) :={ f : X — X | f ist Diffeomorphismus }

eine Untergruppe von Homoo(X).

Definition 32
S C R? heift reguliire Fliiche :< Vs € S 3 Umgebung V(s) C R? 3U C R? offen:
3 differenzierbare Abbildung F': U — V N S: Rg(Jp(u)) =2 Vu e U,

F heifst (lokale) regulére Parametrisierung von S.

F(u, U) = (m(u,v),y(u, U)?'Z(u?v))
g%(p) %(p)
Jr(u,v) = g%(p) g%(p)
() 32(p)

Beispiel 24
1) Rotationsflichen: Sei r : R — R+ eine differenzierbare Funktion.

F:R2 5 R3 (u,v)— (r(u)cos(u),r(v)sin(u),v)

—r(v)sinu 7’/ (v)cosu
Jr(u,v) = | r(v)cosu r'(v)sinu
0 1

hat Rang 2 fiir alle (u,v) € R
2) Kugelkoordinaten: F : R? — R3,

(u,v) — (Rcosvcosu, Rcosvsinu, Rsinv)
Es gilt: F(u,v) € S%, denn
R? cos?(v) cos®(u) + R? cos?(v) sin?(u) + R? sin?(v)
=R?(cos®(v) cos?(u) + cos®(v) sin(u) + sin?(v))
=R? (cos®(v)(cos®(u) + sin®(u)) + sin®*(v))
=R? (cos®(v) + sin®(v))
—R2
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32

2404
2247,
k\s@\\\\\\\\\
=22

il
______,_,___________,_,,,

2

=

(b) Rotationskérper

(a) Kugelkoordinaten

ARl

smax
- COST

0.5 1

~0.5

(c) Sinus und Kosinus haben keine gemeinsame Nullstelle
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Die Jacobi-Matrix

—Rcosvsinu —Rsinvcosu
Jrp(u,v) = | Rcosvcosu —Rsinvsinu
0 Rcoswv

hat Rang 2 fiir cosv # 0. In N und S ist cosv = 0.

Bemerkung 31
Jede regulire Fliche S C R3 ist eine 2-dimensionale, differenzierbare Mannigfaltigkeit.

Beweis:

S C R3 ist als regulire Fliche eine 2-dimensionale Mannigfaltigkeit. Aus der Definition von
reguléiren Flichen folgt direkt, dass Karten (U;, F;) und (U; C R?, F; : R? — R3) von S mit
U; NU; # 0 existieren, wobei F; und F; nach Definition differenzierbare Abbildungen sind.

2.7 F;l o F; ist ein Diffeomorphismus.

Abbildung 2.5: Regulére Flache S zum Beweis von Bemerkung 31

Idee: Finde differenzierbare Funktion F ]71 in Umgebung W von s, sodass F' ]71| snw = F ].71.
Ausfiihrung: Sei ug € U;, vg € U; mit Fj(ug) = s = Fj(vp).
Da Rg(JF;(vo)) = 2 ist, ist 0. B. d. A.

Oz Oz
et (G 4 ) (w) #0
ou Ov

und Fj(u,v) = (z(u,v),y(u,v), 2(u,v)).
Definiere E :Uj x R — R3 durch

Fj(u,v,t) :== (z(u,v),y(u,v), z(u, v) +t)

Offensichtlich: Fj|y7,x (0} = Fj

gz dz
U v
JF~] = 7? % 0] = det JE(?)(),O) #0
du o0 1

Anabys 1L g gibt Umgebungen W von F} von E(UQ, 0) = Fjj(vp) = s, sodass E auf W eine

differenzierbar Inverse F' ]71 hat.
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Weiter gilt:

—~—1 _
Ej lwns = Fj 1|WmS

—1 —1
= Fy o Filpvgwngy = Iy © Fil p-1vng)

ist differenzierbar.

Definition 33
Sei G eine Mannigfaltigkeit und (G, o) eine Gruppe.

a) G heifst topologische Gruppe, wenn die Abbildungen o : GXxG - Gund ¢t : G — G
definiert durch

goh:=g-hund i(g) ::gf1

stetig sind.

b) Ist G eine differenzierbare Mannigfaltigkeit, so heift G Lie-Gruppe, wenn (G, o) und
(G, 1) differenzierbar sind.

Beispiel 25 (Lie-Gruppen)
1) Alle endlichen Gruppen sind 0-dimensionale Lie-Gruppen.

_ .. det(A;;
(A1) (i, j) = 2eilds)

a;1 ... Qgp
Aij — " e R(nfl)x(nfl)

apl .. Qpp

ist differenzierbar.

det A;; kann 0 werden, da:

6) SLn(R) = { A € GL,(R) | det(4) =1}

Bemerkung 32
Ist G eine Lie-Gruppe und g € G, so ist die Abbildung

ly:G—G
h—g-h

ein Diffeomorphismus.
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2.3 Simplizialkomplex

Definition 34
Seien vy, ..., v € R™ Punkte.

a) vp,...,v sind in allgemeiner Lage
< es gibt keinen (k—1)-dimensionalen affinen Untervektorraum, der vy, . . ., v enthélt
& v — g, .- -, Uk — Yo sind linear unabhangig.

b) conv(vg,...,vx) := { Zf:o Aiv;
Voy .-y Uk

Definition 35
a) Sei A" = conv(ep,...,e,) C R""! die konvexe Hiille der Standard-Basisvektoren

€0y..-5En.

A >0, Zf:o Ai=1 } heifit die konvexe Hiille von

Dann heiftt A™ Standard-Simplex und n die Dimension des Simplex.

b) Fiir Punkte vy, ..., vt im R™ in allgemeiner Lage heifst A(v, ..., vx) = conv(vp, ..., vk)
ein k-Simplex in R"™.

c) Ist A(vo,...,v;) ein k-Simplex und I = {ig,... i } C{0,...,k}, soist sj,,. i, :=

conv(vjg, ..., v;, ) ein r-Simplex und heift Teilsimplex oder Seite von A.

o
(a) 0-Simplex A°

3 3 e
X €1 b
2 2 €2
i | €2
1 1
| €0 | €0
T X T T T
1 2 3 1 2 3 €0 €1
(b) 1-Simplex A' (c) 2-Simplex A? (d) 3-Simplex A?

Abbildung 2.6: Beispiele fiir k-Simplexe

Definition 36
a) Eine endliche Menge K von Simplizes im R™ heifst (endlicher) Simplizialkomplex,
wenn gilt:

(i) Fir A € K und S C A Teilsimplex ist S € K.

(ii) Fir A1, Ag € K ist A; N Ay leer oder ein Teilsimplex von Aj und von A,.
b) [K|:=Upaecx A (mit Teilraumtopologie) heift geometrische Realisierung von K.

c) Ist d = max{ k € Ny | K enthélt k-Simplex }, so heifit d die Dimension von K.
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O L L

(a) 1D Simplizialkomplex (b) 2D Simplizialkomplex ) 2D Simplizialkomplex
(ohne untere Fliche!)

(d) 1D Simplizialkomplex (e) 2D Simplizialkomplex

(f) P ist kein Teilsimplex, da Eigen- (g) Simplizialkomplex
schaft Punkt b.ii verletzt ist

Abbildung 2.7: Beispiele fiir Simplizialkomplexe

Definition 37
Seien K, L Simplizialkomplexe. Eine stetige Abbildung

foK] =L
heifst simplizial, wenn fiir jedes A € K gilt:
a) f(A)eL
b) fla : A — f(A) ist eine affine Abbildung.
Beispiel 26 (Simpliziale Abbildungen)

1) ¢(e1) := b1, p(e2) := by

 ist eine eindeutig bestimmte lineare Abbildung
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0

) Folgende Abbildung ¢ : A™ — A"~ ! ist simplizial:

A%%’

) Tori kénnen simplizial auf Sphéren abgebildet werden (vgl. Abbildung 2.8)

A
74

N
AN

Abbildung 2.8: Abbildung eines Torus auf eine Sphére

Definition 38
Sei K ein endlicher Simplizialkomplex. Fiir n > 0 sei a,,(K) die Anzahl der n-Simplizes in
K.

Dann heift

n=0
Eulerzahl (oder Euler-Charakteristik) von K.

Beispiel 27
1) x(Ahy=2-1=1
A?)=3-3+1=1
A)=4-6+4-1=1

Oktaeder-Oberflache) =6 — 12 + 8 = 2

X(

X(

2) x(
X(Rand des Tetraeders) = 2

(

(

(

X (Ikosaeder) = 12 — 30 + 20 = 2

3) x(Wiirfel) =8 —124+6 =2
X (Wiirfel, unterteilt in Dreiecksflachen) =8 — (12 +6) + (6-2) =2

Bemerkung 33
X(A™) =1 fiir jedes n € Ny
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Beweis: A" ist die konvexe Hiille von (e, ..., e,) in R**1. Jede (k + 1)-elementige Teilmenge
von { eg, ..., e, } definiert ein k-Simplex.
= ap(A") = (Zﬁ), k=0,...,n

= X(A") = S r (=R (1)

Binomischer

f(flf) _ (.%' + 1)n+1 Lehrsatz Z,-:i-(l) (n—]i—l)xk

0= S () (DF = (AT - 1
= x(A™") =1 [ |

Definition 39
a) Ein 1D-Simplizialkomplex heifst Graph.

b) Ein Graph, der homéomorph zu S ist, heifit Kreis.

¢) Ein zusammenhéngender Graph heift Baum, wenn er keinen Kreis enthélt.

(a) Dies wird haufig auch als(b) Planare Einbettung des Te-
Multigraph bezeichnet. traeders

(c) Ks (

Abbildung 2.9: Beispiele fiir Graphen

d) K33

Bemerkung 34
Fiir jeden Baum T gilt x(T') = 1.

Beweis: Induktion iiber die Anzahl der Ecken.

Bemerkung 35

a) Jeder zusammenhingende Graph I' enthélt einen Teilbaum 7', der alle Ecken von I"
enthélt.?

b) Ist n =a1(I") —a1(T), so ist x(I') =1 —n.
Beweis:

a) Siehe ,Algorithmus von Kruskal®.

2T wird ,Spannbaum® genannt.
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Bemerkung 36
Sei A ein n-Simplex und x € A° C R™. Sei K der Simplizialkomplex, der aus A durch
sUnterteilung® in z entsteht. Dann ist x(K) = x(A) = 1.

A A

) A, das aus K durch Unter-
teilung entsteht

Abbildung 2.10: Beispiel fiir Bemerkung 36.

Beweis: \(K) = y(A) — (=1)" +Z ( >:X(A) |

n—Slmplex

(14+(~1)ynt1

Definition 40
Sei X ein topologischer Raum, K ein Simplizialkomplex und

h:|K|—X

ein Homoomorphismus von der geometrischen Realisierung | K| auf X. Dann heifst h eine
Triangulierung von X.

Beispiel 28 (Triangulierung des Torus)
Fiir eine Triangulierung des Torus werden mindestens 14 Dreiecke benétigt. Beispiele fiir
fehlerhafte , Triangulierungen* sind in Beispiel 28 zu sehen. Korrekte Triangulierungen sind
in Beispiel 28.

Satz 2.1 (Eulersche Polyederformel)
Sei P ein konvexes Polyeder in R?, d. h. 9P ist ein 2-dimensionaler Simplizialkomplex,
sodass gilt:
Va,y € OP : [x,y] C P

Dann ist x(0P) = 2.

Beweis:
1) Die Aussage ist richtig fiir den Tetraeder.

2) O.B.d. A.sei 0 € Pund P C %B1(0). Projeziere 9P von 0 aus auf 981(0) = S2.
Erhalte Triangulierung von S2.
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’ ’

(a) Die beiden markierten Dreiecke schneiden sich im(b) Die beiden markierten Dreiecke schneiden sich im
Mittelpunkt und in einer Seite. Mittelpunkt und aufien.

Abbildung 2.11: Fehlerhafte Triangulierungen

’

Y

N\
N\
/4

(a) Einfache Triangulierung (b) Minimale Triangulierung

Abbildung 2.12: Triangulierungen des Torus
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3) Sind P; und P, konvexe Polygone und T3, 75 die zugehorigen Triangulierungen von
52, so gibt es eine Triangulierung 7', die sowohl um 7} als auch um 75 Verfeinerung
ist (vgl. Abbildung 2.13).

—T
T
— T

Abbildung 2.13: T ist eine Triangulierung, die fiir 77 und 75 eine Verfeinerung ist.

Nach Bemerkung 36 ist x(0P1) = x(T1) = x(T') = x(T2) = x(0P) = 2, weil 0. B. d. A.
P5 ein Tetraeder ist.

Bemerkung 37 (Der Rand vom Rand ist 0)
Sei K ein endlicher Simplizialkomplex mit Knotenmenge V und < eine Totalordnung auf V.

Sei A,, die Menge der n-Simplizes in K, d. h.

Ap(K):={oce K |dim(oc)=n} firn=0,...,d=dim(K)

und C,(K) der R-Vektorraum mit Basis A, (K), d. h.

CH(K): Z Co O CUER
c€AL(K)
Sei 0 = A(xg,...,x,) € Ap(K), sodass xg < 21 < -+ < Zp.

Firi=0,...,n sei 0jc := A(xg,...,Ti,...,zy) die i-te Seite von ¢ und d, = d,o =
Y ico(=1)0ic € Cp_1(K) und d,, : Cp(K) — Cn_1(K) die dadurch definierte lineare
Abbildung.

Dann gilt: d,—1 0d, =0

a €3 b
Abbildung 2.14: Simplizialkomplex mit Totalordnung

Beispiel 29
Sei a < b < ¢. Dann gilt:

dyo =e1 — ez +e3
di(e1 —ea+e3)=(c—b)—(c—a)+ (b—a)
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=0

Sei a < b < ¢ < d. Dann gilt fiir Tetraeder:

d3(A(a,b,c,d)) = A(b,c,d) — A(a, ¢, d) + Aa, b, d) —
do( A(byc,d)) = Alc,d)—A(b,d) +
do(—A(a,c,d)) = —Ale,d) + A(a,d)—Ala, o)
da( Aa,b,d)) = A(b,d)—A(a,d) +
da(—A(a,b,c)) = + Ala,c)

= da(d3(A(a,b,c,d))) =0

Beweis: Sei 0 € A,,. Dann gilt:

n

dn-1(dno) = dn_1 (D> _(~1)'0i0)
=0
= Z

= g(_l
= Z(_

0<i<j<n—1
=0

dp—1(0;0)

)iZai(aja)(—
)+ (-1

0<5j<i<n

H—ja

A(a, b, c), wobei:

H']& 1(0j0)

weil jeder Summand aus der ersten Summe auch in der zweiten Summe vorkommt, aber mit

umgekehrten Vorzeichen.

Definition 41
Sei K ein Simplizialkomplex, Z,, := Kern(d

n) € Cp und By, := Bild(d,,1+1) C Cy,.

a) H, = H,(K,R) := Z,,/B,, heift n-te Homologiegruppe von K.

b) b,(K) := dimg H,, heikt n-te Betti-Zahl von K.
Bemerkung 38

Nach Bemerkung 37 ist B,, C Z,,, denn d,,11(C) € Kern(d,) fir C € Cy4;.

Satz 2.2
Fiir jeden endlichen Simplizialkomplex K der Dimension d gilt:

k=0 k=0

= x(K)

Bemerkung 39
Es gilt nicht ap = by Vk € Np.
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Beweis:
e Dimensionsformel fiir d,,: a,, = dim Z,, + dim B,,_1 firn > 1
e Dimensionsformel fir Z,, - H,, = Z,,/B,, : dim Z,, = b,, + dim B,,
e dim Z; = by, da dim Z; = by + dim By, wobei dim By =0, da agy.1 =0

ag — dim By = by, da ag — dim By = ag — dim Zy + by und ag = dim Zy, weil a—1 = 0

d d
=Y (=D*ax = ag+ >_(—1)¥(dim Z; + dim By_)
k=0 k=1

d d—1
=ao+ Y (1" dim Z; + Y _(~1)""" dim By,
k=1 k=0

d d—1
=ag+ Y _(~1)FdimZ, — Y (~1)" dim By
k=1 k=0
d—1
— ag+ 3 (—1)*by + (~1)% dim Z, — dim By
k=1 by
d—1
_ k d
=bo+ » (—1)"bx + (—1)%a
k=1
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Ubungsaufgaben

Aufgabe 7 (Zusammenhang)

(a) Beweisen Sie, dass eine topologische Mannigfaltigkeit genau dann wegzusammenhén-
gend ist, wenn sie zusammenhéngend ist

(b) Betrachten Sie nun wie in Beispiel 20.8 den Raum X := (R\{ 0 })U{ 01,02 } versehen
mit der dort definierten Topologie. Ist X wegzusammenhéngend?



3 Fundamentalgruppe und Uberlagerungen

3.1 Homotopie von Wegen

71 71
a b a b
72 72
(a) 71 und 72 sind homotop, (b) 1 und v sind wegen dem
da man sie ,zueinander ver- Hindernis nicht homotop.

schieben* kann.

Abbildung 3.1: Beispiele fiir Wege 1 und 7

Definition 42
Sei X ein topologischer Raum, a,b € X, 71,72 : I — X Wege von a nach b, d. h. 71(0) =

72(0) = a, (1) = 72(1) = b
~1 und 2 heifen homotop, wenn es eine stetige Abbildung H : I x I — X mit

H(t,0) =y (t) Ve T
H(t,1) = () Ve T

und H(0,s) = a und H(1,s) = b fiir alle s € I gibt. Dann schreibt man: v; ~ 7

H heifst Homotopie zwischen ~; und ~s.

Bemerkung 40
Sei X ein topologischer Raum, a,b € X, 71,7 : I = X Wege von a nach b und H eine
Homotopie zwischen ~; und ~e.

Dann gilt: Der Weg
vs: L — X, ~s(t) = H(t,s)
ist Weg in X von a nach b fiir jedes s € 1.

Beweis: H ist stetig, also ist H(t, s) insbesondere fiir jedes feste s stetig. Da H(0,s) = a und
H(1,s) =0 fiir alle s € I und 5 eine Abbildung von I auf X ist, ist 75 ein Weg in X von a
nach b fiir jedes s € I. [ |

Bemerkung 41
Durch Homotopie wird eine Aquivalenzrelation auf der Menge aller Wege in X von a nach b
definiert.

Beweis:
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o reflexiv: H(t,s) = ~(t) fir alle (¢,s) € I x I
e symmetrisch: H'(t,s) = H(t,1 — s) fiir alle (¢,s) € I x I
e transitiv: Seien H' bzw. H” Homotopien von 71 nach 2 bzw. von 72 nach 3.

H'(t,2 fall
Dann sei H (¢, s) ::{ (t,2s) a s(l)
2

H"(t,2s —1) falls

= H ist stetig und Homotopie von 7; nach ~s.

Beispiel 30
1) Sei X = S'. 4, und v, aus Abbildung 3.3a nicht homotop.

2) Sei X = T2 ~1,7 und 3 aus Abbildung 3.3b sind paarweise nicht homotop.
3) Sei X =R? und a = b = (0,0).

Je zwei Wege im R? mit Anfangs- und Endpunkt (0, 0) sind homotop.

Abbildung 3.2: Zwei Wege im R? mit Anfangs- und Endpunkt (0,0)

Sei g : I — R? der konstante Weg 7o (t) = (0,0) V¢ € I. Sei v(0) = (1) = (0,0).
H(t,s) :== (1 —s)y(t) ist stetig, H(t,0) =~(t) Vt € I und H(t,1) = (0,0) Vt € I.

Bemerkung 42

Sei X ein topologischer Raum, v : I — X ein Weg und ¢ : I — I stetig mit ¢(0) =

(1) = 1. Dann sind v und 7 o ¢ homotop.

Beweis: Sei H(t,s) =v((1 —s)t + s - p(t)).

Dann ist H stetig, H(t,0) = v(t), H(t,1) = vy(e(t)), H(0,s) = ~(0) und H(1,s)

(1= s+s) = 5(1)
= H ist Homotopie.

0,



47 3.1. HOMOTOPIE VON WEGEN

b
g2
a
(a) Kreis mit zwei Wegen (b) Torus mit drei Wegen

Abbildung 3.3: Beispiele fiir (nicht)-Homotopie von Wegen

Definition 43
Seien 71,72 Wege in X mit y1(1) = 42(0). Dann ist

() = ~1(2t) falls 0 < ¢t < %
= (2t —1) fallsi<t<1

ein Weg in X. Er heifst zusammengesetzter Weg und man schreibt v = 1 * vs.
Bemerkung 43

Das Zusammensetzen von Wegen ist nur bis auf Homotopie assoziativ, d. h.:

Y1* (v2 % 73) # (71 % 72) * 73
Y1 x (v2 % 73) ~ (71 ¥ 72) * )3
mit 71(1) = 72(0) und y2(1) = 73(0).
| | | |
| Y1 I Y3 !
0 1/2 3/4 1

(a) 71 % (v2 *73)

0 1/4 1/ 1

(b) (71 *7y2) * 73

Abbildung 3.4: Das Zusammensetzen von Wegen ist nicht assoziativ

Beweis: Das Zusammensetzen von Wegen ist wegen Bemerkung 42 bis auf Homotopie assoziativ.
Verwende dazu

%t fallsO§t<%
o(t) = t—% falls%§t<%
2t—1 falls 2 <t<1

Bemerkung 44

Sei X ein topologischer Raum, a,b,c € X, v1,v; Wege von a nach b und vz, v, Wege von b
nach c.

Sind 1 ~ 7} und 2 ~ 75, 80 ist Y1 * Y2 ~ Y] * V5.
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Abbildung 3.5: Situation aus Bemerkung 44

Beweis: Sei H; eine Homotopie zwischen v; und ~/, i = 1,2.

Dann ist
Hy (2t falls 0 <t <l vser
Hits) = 1(2t, s) asl_ <5 Vse
Hy(2t —1,s) falls 5 <t <1

eine Homotopie zwischen ~; * v und ~] * 5.

Eine spezielle Homotopiedquivalenz sind sog. Deformationsretraktionen:

Definition 44
Sei X ein topologischer Raum, A C X, r: X — A eine stetige Abbildung und ¢ = (idx)|4.

a) t: A — X mit ¢(z) = z heift die Inklusionsabbildung und man schreibt: ¢ : A — X.
b) r heit Retraktion, wenn r|4 = id4 ist.

c) A heift Deformationsretrakt, wenn es eine Retraktion r auf A mit tor ~ idy gibt.
Beispiel 31 (Zylinder auf Kreis)
Sei X = S! x R ein topologischer Raum und
r:STxR—=S'x{0}=s!
mit
r(z,y) = (z,0)
eine Abbildung. r ist eine Retraktion, da r|q1 = idg, .
tor: ST xR — ST xR
(z,y) = (,0)
H:(S'xR)xI—S'xR

3.2 Fundamentalgruppe

Fiir einen Weg 7 sei [y] seine Homotopieklasse.

Definition 45
Sei X ein topologischer Raum und x € X. Sei aufserdem

m (X, x) == {[7] | v ist Weg in X mit v(0) =~(1) =z }
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Durch [y1] ¢ [v2] := [11 * 2] wird 71(X, z) zu einer Gruppe. Diese Gruppe heift Funda-
mentalgruppe von X im Basispunkt x.

Bemerkung 45
Im R? gibt es nur eine Homotopieklasse.

Beweis: (Fundamentalgruppe ist eine Gruppe)
a) Abgeschlossenheit folgt direkt aus der Definition von ¢
b) Assoziativitéit folgt aus Bemerkung 43
¢) Neutrales Element e = [y],70(t) =2 Vtel.ex[y]=[y]=[7]*e,dayxy~r
d) Inverses Element [y]™' = [§] = [y(1 —t)], denn vy ~ 79 ~ 7 * ¥
Beispiel 32
1) S'={zeC||z=1}={(cosp,sing) e R? | 0 < p <27 }

T (84, 1) = { (V"] | k € Z } = Z. Dabei ist v(t) = €*™" = cos(27t) + i sin(27t) und
W= gkxy
———

k mal
[Y¥] + k ist ein Isomorphismus.
2) 7 (R%,0) = 7 (R?,x) = { e} fiir jedes z € R?
3) m(R™ x) ={e} fir jedes z € R"
4) G C R™ heift sternférmig bzgl. z € G, wenn fiir jedes y € G auch die Strecke
[z,y] C G ist.
Fiir jedes sternformige G C R™ ist m(G,z) = { e}

Abbildung 3.6: Sternférmiges Gebiet

5) m1(5?%,z0) = { e}, da im R? alle Wege homotop zu { e } sind. Mithilfe der stereogra-
phischen Projektion kann von S? auf den R? abgebildet werden.

Dieses Argument funktioniert nicht mehr bei flachenfiillenden Wegen, d. h. wenn
v : T — S? surjektiv ist.
Bemerkung 46
Sei X ein topologischer Raum, a,b € X, § : I — X ein Weg von a nach b.

Dann ist die Abbildung

a:m(X,a) = m(X,0) [y]— [0 %y ]

ein Gruppenisomorphismus.
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Abbildung 3.7: Situation aus Bemerkung 46

Beweis:

a(ly] * [y2]) = [0 % (71 72) * ]

= [0y %6 %0 %yg % 0]

= [0 % vy % 6] * [0 % yo * 0]
a([ml) * a([re])

Definition 46
Ein wegzusammenhéngender topologischer Raum X heift einfach zusammenhingend,
wenn 71 (X,x) = { e} fir ein z € X.

Wenn 7 (X, z) = { e} fiir ein z € X gilt, dann wegen Bemerkung 46 sogar fiir alle x € X.

Bemerkung 47
Es seien X,Y topologische Rdume, f : X — Y eine stetige Abbildung, =z € X,y := f(z) € Y.

a) Dann ist die Abbildung f, : m1(X,z) — m(Y,y), [y] = [f o 7] ein Gruppenhomomor-
phismus.

b) Ist Z ein weiterer topologischer Raum und ¢g : Y — Z eine stetige Abbildung z := g(y).
Dann ist (go f)s = gs 0 fu : m(X,2) = m(Z, 2)
Beweis:

a) f. ist wohldefiniert: Seien 71,72 homotope Wege von x. z.Z.: fo~vy; ~ f o~y Nach
Voraussetzung gibt es stetige Abbildungen H : I x I — X mit

H(t,0) = (1),
)

H(t,1) =t
H(0,s) = H(1,s) = x.

)

=

Dannist foH : I xI — Y stetig mit (foH)(t,0) = f(H(t,0)) = f(7(t)) = (foy1)(¢)
etc. = foy ~ foms.

Fellm] * [v2]) = [f o (1 #72)] = [(f oy1)] * [(f 0 72)] = ful[m]) * fu([2])
b) (go f«([V]) =[(gof)ovl=Ilgo (foy)]=g«(f o)) = g«(fu([7]) = (gs © f)([7])

Beispiel 33
1) f:S' < R? ist injektiv, aber f, : 71(S%,1) 2 Z — 71(R?,1) = { e } ist nicht injektiv.

2) f:R — St (cos2nt,sin 2nt) ist surjektiv, aber fi : m(R,0) = { e} — m (S, 1) =
7 ist nicht surjektiv.
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Bemerkung 48
Sei f: X — Y ein Hom6éomorphismus zwischen topologischen Rdumen X, Y. Dann gilt:

form(X ) = m(Y, f(z))
ist ein Isomorphismus fiir jedes z € X.
Beweis: Sei g: Y — X die Umkehrabbildung, d. h. g ist stetig und fog=1idy, go f =idx
= faoge = (fog)e = (ldy )« = idr (v,r(x) und gx © fi = idr (x,0)-

Definition 47
Seien X,Y topologische Rédume, zg € X,yo € Y, f,9: X — Y stetig mit f(zo) = yo = g(zo).

f und g heifen homotop (f ~ g), wenn es eine stetige Abbildung H : X x I — Y mit

H(z,0) = f(z) Ve e X

gibt.

Bemerkung 49
Sind f und g homotop, so ist f, = g« : (X, x0) = ™1 (Y, y0)-

Beweis: Sei 7 ein geschlossener Weg in X um g, d. h. [y] € m1(X, zg).
Z.z.. foy~gony
Sei dazu Hy : I x I =Y, (t,s) — H(7(t),s). Dann gilt:
H,(t,0) = H(y(t),0) = (foy)(t) Vt € I
(v(1),8) = H(zxo,5) =yo Vs € I
(v(®),1) = g(v(t)) vt € I

Beispiel 34
f: X—=>Y g:Y > Xmitgof~idyx, fog~idy

= f, ist Isomorphismus. Konkret: f : R> = {0}, g: {0} — R?

= fog=id{g}, go f:R* 5 R? z 0 fiir alle z.

go f ~ idg2 mit Homotopie: H : R? x I — R? H(z,s) = (1 — s)x (stetig!)
= H(z,0) =z = idg2(z), H(x,1) =0, H(0,s) =0Vs € I.

Satz 3.1 (Satz von Seifert und van Kampen ,light*)
Sei X ein topologischer Raum, U,V C X offen mit U UV = X und U NV wegzusam-
menhangend.

Dann wird 71(X, z) fiir x € U NV erzeugt von geschlossenen Wegen um z, die ganz in
U oder ganz in V verlaufen.
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Beweis: Sei v : I — X ein geschlossener Weg um z. Uberdecke I mit endlich vielen offenen
Intervallen Iy, I, ..., I,, die ganz in v~1(U) oder ganz in v~1 (V) liegen.

O.B. d. A.sei y(I1) CU,v(I2) CV, etc.

Wiahle t; € I; N I;4+1, also y(t;) € UNV. Sei 0; Weg in U NV von xy nach v(t;) = = ist
homotop zu

Y1k TL*k O] % Y2 % Tg k- -+ % Op_1 % Y2 Mit ;1= 7|y,

—_—— ———

in U inV

aq b

X

Abbildung 3.8: Topologischer Raum X

Beispiel 35 (Satz von Seifert und van Kampen)
1) Sei X wie in Abbildung 3.8. 71 (X, z) wird ,frei* erzeugt von a und b, weil m (U, x) =

~

(a) = Z,m(V,z) = (b) = Z, insbesondere ist a * b nicht homotop zu b * a.

2) Torus: 71(T?, X) wird erzeugt von a und b.
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Abbildung 3.9: axb=bxa < axbxaxb~e

3.3 Uberlagerungen

Definition 48
Es seien X, Y zusammenhéngende topologische Rdume und p : Y — X eine stetige Abbil-
dung.

p heikt Uberlagerung, wenn jedes 2 € X eine offene Umgebung U = U(z) C X besitzt,
sodass p~(U) disjunkte Vereinigung von offenen Teilmengen V; C Y ist (j € I) und
p\Vj : V; = U ein Hom6omorphismus ist.

Beispiel 36
1) siehe Abbildung 3.10
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p

Sl

x

Abbildung 3.10: R — S,
t +— (cos27t, sin 27t)

2) siehe Abbildung 3.11

3) R" - T =R"/Z"

4) S" — P*"(R)

5) St — 81 2+ 22 siehe Abbildung 3.12
6
4
3

—
2
1
()() 1 2 3 4 ) 6

Abbildung 3.11: R? — T? = R? /7?2

Bemerkung 50
Uberlagerungen sind surjektiv.

Beweis: Sei p : Y — X eine Uberlagerung und € X beliebig. Dann existiert eine offene
Umgebung U(z) € X und offene Teilmengen V; C X mit p~*(U) = JV; und ply; : V; = U
ist Hom6omorphismus.

D. h. es existiert ein y € Vj}, so dass p|y;(y) = x. Da x € X beliebig war und ein y € Y

existiert, mit p(y) = z, ist p surjektiv. [ |
Definition 49

Seien (X, Tx), (Y,%y) topologische Raume und f: X — Y eine Abbildung.

f heifst offen : =< VU € Tx : f(U) € Ty.
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O

Abbildung 3.12: ¢ — (cos4rt, sin4mt)

Beispiel 37 (Offene und stetige Abbildungen)
Sei X ein topologischer Raum und seien f; : R — R mit i € {1,2,3} und g : R — St =
{z€C||z|| =1} Abbildungen.

1) f1:=idp ist eine offene und stetige Abbildung.
2) g(x) := ¥ ist eine offene, aber keine stetige Abbildung (vgl. Abbildung 1.5).
3) fa(x) := 42 ist eine stetige, aber keine offene Abbildung.

0 fallszeQ

SREICE P falls 2 € R\ Q
ist weder stetig noch offen.

Bemerkung 51
Uberlagerungen sind offene Abbildungen.

Beweis: Seiy € V und z € p(V), sodass © = p(y) gilt. Sei weiter U = U,, eine offene Umgebung
von x wie in Definition 48 und V; die Komponente von p~!(U), die y enthilt.

Dann ist V' N'Vj offene Umgebung von y.

= p(V NVj) ist offen in p(V;), also auch offen in X. Auferdem ist p(y) = z € p(V NV;) und
p(V-NnVj) S p(V).

= p(V) ist offen.

Definition 50
Sei X ein topologischer Raum und M C X.

M heifst diskret in X, wenn M in X keinen Haufungspunkt hat.

Bemerkung 52
Sei p: Y — X Uberlagerung, = € X.

a) X hausdorffsch = Y hausdorffsch
b) p~!(x) ist diskret in Y fiir jedes x € X.
Beweis:
a) Seien y1,y2 € Y.
L Fall: p(y1) = p(y2) = =

Sei U Umgebung von z wie in Definition 48, V}, bzw. V}, die Komponente von p~1(U),
die y; bzw. y2 enthalt.

Dann ist Vj, # Vj,, weil beide ein Element aus p~!(z) enthalten.
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= V;, NV}, = 0 nach Voraussetzung.

2. Fall: p(y1) # p(y2)-
Dann seien U; und Uj disjunkte Umgebungen von p(y;1) und p(ys).
= p~1(U1) und p~1(Us) sind disjunkte Umgebungen von 3; und ys.
b) Sei x € X beliebig, aber fest.
Zu zeigen: Vy; € p~t(z) : IV; € Ty mit y; € V;, sodass giltii # j = V;NV; = 0.
Die V; existieren wegen der Definition einer Uberlagerung: p heit Uberlagerung

= Vr e XU =U(x) € Tx :p H(U) = UVZ‘ETY Vi und ply; ist Homéomorphismus.

= (plv)) "' (@) ={wi }
= Alle y; liegen diskret in Y, da Haufungspunkte unendlich viele Elemente in jeder
Umgebung benotigen. [ ]

Bemerkung 53

Sei p: Y — X Uberlagerung, 1,22 € X.
Dann ist [p~(z1)| = [p~ 1 (22)].!

Beweis: Sei U Umgebung von 1 wie in Definition 48, x € U. Dann enthalt jedes Vj,j € Ix
genau ein Element von p~!(z)

= |p~1(x)| ist konstant auf U

Xrhed, |p~1(z)]| ist konstant auf X

Definition 51
Es seien X, Y, Z topologische Rédume, p: Y — X eine Uberlagerung und f : Z — X stetig.

Eine stetige Abbildung f: Z — Y heift Liftung von f, wenn p o f = f ist.

YfZ
L

Bemerkung 54 (Eindeutigkeit der Liftung)
Sei Z zusammenhéngend und fy, f1 : Z — Y Liftungen von f.

Jz20 € Z : fo(20) = fi(20) = fo = hi
Beweis: Sei T ={z¢€ Z| fo(z) = fi(2) }.
Z. z.: T ist offen und Z \ T ist auch offen.

Sei z € T,z = f(2),U Umgebung von x wie in Definition 48, V' die Komponente von p~1(U),
die y := fo(2) = f1(z) enthalt.

Sei g : U — V die Umkehrabbildung zu p|y.
Sei W := f~H{U) N fo 1 (V) N f; (V). W ist offene Umgebung in Z von z.
Behauptung: W C T

Hp~!(z1)| = oo ist erlaubt!
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6

ot

T Liften RQ/ZQ

Abbildung 3.13: Beim Liften eines Weges bleiben geschlossene Wege im allgemeinen nicht ge-
schlossen

Denn fiir w € Wist ¢(f(w)) = q((po fo))(w) = ((gop) © fo)(w) = fo(w) = ¢(f(w)) = fr(w)

= T ist offen.

Analog: Z \ T ist offen.

Satz 3.2
Sei p: Y — X Uberlagerung, v: I — X ein Weg, y € Y mit p(y) = v(0) =: z.

Dann gibt es genau einen Weg 4 : I — Y mit 4(0) = y und po 5y = .

p: Y — X Uberlagerung, X,Y wegzusammenhingend. p stetig und surjektiv, zu x € X3
Umgebung U, so dass p~1(U) = JV;

ply; : V; = U Homéomorphismus.

Bemerkung 55
Wege in X lassen sich zu Wegen in Y liften.

Zu jedem y € p~1(7(0)) gibt es genau einen Lift von +.

Proposition 3.3

Seien p : Y — X eine Uberlagerung, a,b € X, 70,7 : I — X homotope Wege von a
nach b, @ € p~!(a), o, 71 Liftungen von g bzw. 1 mit ;(0) = a.

Dann ist ¥p(1) = v1(1) und 5o ~ 1.

Beweis: Sei H : I x I — X Homotopie zwischen ~y; und ~s.
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FirseIseivs: I — X, t— H(t,s).
Sei 75 Lift von 7, mit v,(0) = a

Sei H:IxI—Y, H(ts):=(Jt),s)
Dann gilt:

(i) H ist stetig (Beweis wie fiir Bemerkung 54)

(ii) H(t,0) =7o(1), ﬁ( 1) =7(t)
(iii) H(0,s) = 7,(0) =
(iv) H(1,s) € 1(b)

Da p~ ( )) diskrete Teilmenge von Y ist

= b, =H(l,s) = H(1,0) Vs € I

= bo = b1 und H ist Homotopie zwischen +y und ;.

Folgerung 3.4
Sei p:Y — X eine Uberlagerung, zo € X, yo € p~ (o)
a) px:m(Y,y0) = m (X, zo) ist injektiv

b) [mi (X, zo) : pa(mi (Y, 90))] = deg(p)

Beweis:

a) Sei 4 ein Weg in Y um yp und p.([7]) = e, also po§ ~ v,

Nach Proposition 3.3 ist dann 4 homotop zum Lift des konstanten Wegs v,, mit

Anfangspunkt o, also zu v, = [y] =€

b) Sei d = degp und p~'(x9) = { yo,y1,---,Yq_1 }. Fiir einen geschlossenen Weg 7 in X

um z¢ sei 4 die Liftung mit 4(0) = yo.

4(1) € { yo,--.,yq—1 } hdngt nur von [y] € (X, zg) ab.

Fiir geschlossene Wege ~g,y1 um x gilt:

Yo(1) = 7(1)
<o 717" € m(Y, o)
Sho*1 '] € pe(m (Y, 90))

<[v0] und [y1]liegen in der selben Nebenklasse bzgl. p.(m1 (Y, yo0))

Zuie{0,....,d—1} gibt es Weg §; in Y mit 6;(0) = yo und 6;(1) = y;

= p U J; ist geschlossener Weg in X um .

= Jedes y; mit i =0,...,d — 1 ist (1) fiir ein [y] € m (X, zo).

Bemerkung 56

Sei p: Y — X Uberlagerung und X einfach zusammenhiingend.

Dann ist p ein Hom6omorphismus.

Beweis: Wegen Bemerkung 55.a ist auch Y einfach zusammenhéngend und wegen Bemer-

kung 55.b ist deg(p) = 1, p ist also bijektiv.

Nach Bemerkung 51 ist p offen = p~!

ist stetig. = p ist HomGomorphismus. |
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Definition 52 3 3
Eine Uberlagerung p : X — X heift universell, wenn X einfach zusammenhéngend ist.

Beispiel 38 (Universelle Uberlagerungen)
R — S, ¢+ (cos2nt,sin 27t)

R2 — T2 = R2/72
S" — PM(R) fiir n > 2

Satz 3.5
Sei p: X — X eine universelle Uberlagerung, ¢ : Y — X weitere Uberlagerung.

Sei zg € X, 29 € X,yo € Y mit q(yo) = X :p(fo).

Dann gibt es genau eine Uberlagerung p: X — Y mit $(z) = yo.

Beweis: Sei z € X, Yo i L — X ein Weg von £y nach z.
Sei 6, die eindeutige Liftung von p o 7, nach Y mit §,(0) = yo.
Setze p(z) = d,(1).
Da X einfach zusammenhingend ist, hingt p(2) nicht vom gewahlten Weg . ab.
Offensichtlich ist ¢(p(z)) = p(z).
7 zeigen: p ist stetig in z € X:
Sei W C Y offene Umgebung von p(z).

q Offeng q(W) ist offene Umgebung von p(z) - d(p(z)).

Sei U C q(W) offen wie in Definition 48 und V C ¢~ }(U) die Komponente, die (z) enthiilt.
O.B.d. A.seiVCW.
Sei Z :=p~1(U). Fiir u € Z sei § ein Weg in Z von z nach u.

= 7, % 0 ist Weg von xy nach u
= p(u) €V

= Z Cp L (W)

= p ist stetig

Folgerung 3.6 3 . 3
Sind p: X — X und ¢ : Y — X universelle Uberlagerungen, so sind X und ¥ homéomorph.

Beweis: Seien 2y € X,z € X mit p(zp) = o und o € ¢~ H(xo) C Y.

Nach Satz 3.5 gibt es genau eine Uberlagerung
f:X =Y mit f(zo) =Yy und go f =p
und genau eine Uberlagerung

g:?—)Xmitg(’tjo)Zfo und pog =gq
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Damit gilt: pogo f =qof=p,gofog=pog=gq. Also ist go f : X — X Lift von
p: X — X mit (go f)(zp) = 2p.

Da auch id; diese Eigenschaft hat, folgt mit Bemerkung 53: go f =id ;.
Analog gilt fog=idy. |

Die Frage, wann es eine universelle Uberlagerung gibt, beantwortet der folgende Satz:

Satz 3.7
Es sei X ein wegzusammenhéngender topologischer Raum in dem jeder Punkt eine
Umgebungsbasis aus einfach zusammenhéngenden Mengen hat.

Dann gibt es eine universelle Uberlagerung.

Beweis: Scizg € X und X := { (z,[]) | # € X,y Weg von z, nach z } undp: X = X, (,[7]) —
.

Die Topologie auf X ist folgende: Definiere eine Umgebungsbasis von (z, [y]) wie folgt: Es
sei U eine einfach zusammenhéngende Umgebung von x und

U=0U(z,1) :={ (y,[y*al) | y € U, Weg in U von x nach y }
p ist Uberlagerung: plg - U — U bijektiv. p ist stetig und damit p[; ein Hom6omorphismus.

Sind 41,72 Wege von g nach x und v, ~ 72, so ist U(x, [v1]) N U(z, [2]) = 0, denn: Ist
Y1 % e ~ g % a, S0 ist auch y; ~ ¥o. Also ist p eine Uberlagerung.

X ist einfach zusammenhéngend: Es sei £ := (z9,¢e) und 4 : I — X ein geschlossener Weg
um .

Sei v := p(%).
Annahme: [§] # e
Mit Bemerkung 55.a folgt dann: [y] # e.

Dann ist der Lift von v nach & mit Anfangspunkt @y ein Weg von #y nach (zg, [7]). Wider-
spruch.

Definition 53
Es sei p:Y — X eine Uberlagerung und f : Y — Y ein Homdomorphismus.

a) f heifst Decktransformation von p :< po f = p.
b) p heift regulér, wenn | Deck(Y/X)| = degp gilt.

Bemerkung 57 (Eigenschaften der Decktransformation)
a) Die Decktransformationen von p : ¥ — X bilden mit der Verkettung eine Gruppe,

die sog. Decktransformationsgruppe. Man schreibt: Deck(p), Deck(Y/X) oder
Deck(Y — X).

b) Ist f € Deck(Y/X) und f # id, dann hat f keinen Fixpunkt.
c) | Deck(Y/X)| < degp
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d) Ist f eine regulire Uberlagerung, dann gilt: Vo € X : Deck(Y/X) operiert transitiv
auf der Menge der Urbilder f~!(z).

Beweis:
a) Es gilt:
o idy € DeckY/X,
e f,geDeckY/X = po(fog)=(pof)og=pog= fogeDeckY/X

° fEDeCkY/X:>pof:p:>pof_1:(pof)of_l:po(fof_l):p:>
f~l € DeckY/X

b) Die Menge
Fix(f) ={yeY [ fly) =y}

ist abgeschlossen als Urbild der Diagonale A CY x Y unter der stetigen Abbildung
y+— (f(y),y). Aukerdem ist Fix(f) offen, denn ist y € Fix(f), so sei U eine Umgebung
von p(y) € X wie in Definition 48 und U C p~!(U) die Komponente, die y enthilt;
also p : V — U ein Homomorphismus. Dann ist W := f~1(V) NV offene Umgebung
von y.

Fir z € Wist f(z) € V und p(f(z)) = p(z). Da p injektiv auf V ist, folgt f(z) = z,
d. h. Fix(f) # 0.

Da Y zusammenhéngend ist, folgt aus Fix(f) # 0 schon Fix(f) =Y, also f = idy.
c) Es sei 79 € X, deg(p) = d und p~!(x0) = {v0,...,y4_1 }. Fiir f € Deck(Y/X) ist
fyo) ={wo,- - ya—1}.

Zui€{0,...,d—1} gibt es hochstens ein f € Deck(Y/X) mit f(yo) = y1, denn ist
fwo) = g(yo), soist (g7 o £)(vo) = vo, also nach Bemerkung 57.c g~! o f =idy.

Beispiel 39 (Decktransformationen)
1) p:R— St :Deck(R/SY) ={t—t+n|necZ}=Z

2) p:R2 = T?: Deck(R?/T?) 27 x 7 = 7
3) p: 5™ = P"(R) : Deck(S™"/P"(R)) ={z+— +z } =Z/2Z

Nun werden wir eine Verbindung zwischen der Decktransformationsgruppe und der Fundamen-
talgruppe herstellen:

Satz 3.8
Ist p: X — X eine universelle Uberlagerung, so gilt:

Deck(X/X) = m(X,z0) Vo€ X

Beweis: Wihle 7y € p~*(z0). Es sei p : Deck(Z/x) — m1(X, z¢) die Abbildung, die f auf [p(vy)]
abbildet, wobei v ein Weg von #p nach f(2y) sei. Da & einfach zusammenhéngend ist, ist
s bis auf Homotopie eindeutig bestimmt und damit auch p wohldefiniert.

e p ist Gruppenhomomorphismus: Seien f,g € Deck(f( /X) = Ygor = V9 x9(vf) =
P(Vgof) = P(79) * (P 0 g)(vf) = p(g) # p(f)
~——

=p
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. .. . Satz 3.2 ~ Bem. 57.c
e pist injektiv: p(f) = e = p(Vf) ~ Vo == Vf ~ Vio = [(20) = Tp ———=

idz.

=

e p ist surjektiv: Sei [y] € m (X, o), ¥ Lift von v nach & mit Anfangspunkt zy. Der
Endpunkt von 4 sei x7.

p ist regulire Uberlagerung: Seien 2o, 21 € X mit p(y) = p(#1). Nach Satz 3.5 gibt

es genau eine Uberlagerung p : X — X mit p=pop und p(2y) = £1. Somit ist p eine
Decktransformation und damit p eine regulire Uberlagerung.

Da p regulire Uberlagerung ist, gibt es ein f € Deck(X/X) mit f(zo) = #1.
Aus der Definition von p folgt: p(f) = p(vr) = v

Beispiel 40 (Bestimmung von 71 (S?))
p:R = St (cos2rt,sin 2nt) ist universelle Uberlagerung, da R zusammenhiingend ist.

Firn € Z sei f, : R — R, +— t + n die Translation um n.
Es gilt: (po fn)(t) = p(fn(t)) =p(t) Vt € R, d. h. f, ist Decktransformation.

Ist umgekehrt g irgendeine Decktransformation, so gilt insbesondere fiir t = 0:
(cos(2mg(0)),sin(2mg(0))) = (p© 9)(0) = p(0) = (1,0)

Es existiert n € Z mit g(0) = n. Da auch f,(0) =0+ n = n gilt, folgt mit Bemerkung 57.c
g = fn. Damit folgt:
Deck(R/SY) ={f, | n€Z} =7

Nach Satz 3.8 also 71 (S1) 2 Deck(R/St) = Z

3.4 Gruppenoperationen

Definition 54
Sei (G, -) eine Gruppe und X eine Menge.

Eine Gruppenoperation von G auf X ist eine Abbildung o : G x X — X fiir die gilt:
a) lgox =2 VreX
b) (9-h)ox=go(hoxz) Vg,he GVzr € X

Beispiel 41
1) G=(Z,+),X =R,nox=z+n
2) G operiert auf X = G durch goh:=g-h
3) G operiert auf X = G durch goh:=g-h-g~!, denn
i) lgoh=1g-h-15' =h
i) (91-g2)oh=1(g91-92) h-(g-92)7"
=g1-(92-h-93") 91
=g10(g20h)
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Definition 55
Sei GG eine Gruppe, X ein topologischer Raum und o : G x X — X eine Gruppenoperation.

a) G operiert durch Homdomorphismen, wenn fiir jedes g € G die Abbildung
mg: X - X, x—gox
ein Hom6omorphismus ist.
b) Ist G eine topologische Gruppe, so heifit die Gruppenoperation o stetig, wenn
Vg € G : my ist stetig

gilt.
Bemerkung 58
Jede stetige Gruppenoperation ist eine Gruppenoperation durch Homéomorphismen.
Beweis: Nach Voraussetzung ist my :=o[;41xx : X = X,z — g oz stetig.

Die Umkehrabbildung zu my ist mg-1:

(my-1 0 myg)(2) = my-1 (mg (1))
= my-(gow)
—g ' o(goa)

Def. 54.b_
Lyt g)on

=lgox
Def. 54.a
=2

Beispiel 42
In Beispiel 41.1 operiert Z durch Homéomorphismen.

Bemerkung 59
Sei G eine Gruppe und X eine Menge.

a) Die Gruppenoperation von G auf X entsprechen bijektiv den Gruppenhomomorphismen
0:G — Perm(X)=Sym(X)={f:X — X | f ist bijektiv }

b) Ist X ein topologischer Raum, so entsprechen dabei die Gruppenoperationen durch
Homoomorphismus den Gruppenhomomorphismen G — Homéo(X)

Beweis:

Sei o : G x X — X eine Gruppenoperation von G auf X. Dann sei o : G — Perm(X)
definiert durch o(g)(X) =g-2 Vge G,z € X, also o(g) = my.

o ist Homomorphismus: o(g1 - g2) = mg,.g, = Mg, © Mg, = 0(g1) © 0(g2), denn fiir x € X :
o(g1 - 92)(x) = (91~ g2) o = g1 0 (92 0 x) = 0(g1)(e(92)()) = (e(g1) © 0(g2))(x)

Umgekehrt: Sei ¢ : G — Perm(X) Gruppenhomomorphismus. Definiere o : G x X — X
durch g oz = o(g)(x).

z. z. Definition 54.b:

g1o(g20z) = 0(g1)(g2 0 x)
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= 0(g91)(0(g2)(x))
= (o(g1) © 0(g2))(x)

ist Hom.
“P=""0(g1 - g2) ()
=(g91-g2)0x

z. z. Definition 54.a: 1g -z = o(1g)(z) = idx(z) = =, weil g ein Homomorphismus ist.

Beispiel 43
Sei X ein wegzusammenhéngender topologischer Raum, p : X — X eine universelle Uberla-

gerung, zo € X, Zp € X mit p(Zo) = xo.
Dann operiert 71 (X, xg) auf X durch Homoéomorphismen wie folgt:

Fiir [y] € m(X,z0) und ¥ € X sei [y] o & = v % o(1) wobei 4 ein Weg von 2 nach Z in X
sei, 0 :=p(d) =pod.

Also: 0 ist ein Weg in X von xg nach z = p(Z) und 7/;/5 die Liftung von v * § mit
Anfangspunkt .

[v] - Z hiangt nicht von der Wahl von 4 ab; ist 4/ ein anderer Weg von #y nach Z, so sind )
und & homotop, also auch v * 8 und ~ * & homotop.

Gruppenoperation, denn:
D) [Joi=exd=7

i) 7y %72 % 0(1) = [y * el 0 & = ([ % [1e]) 0 &

M xy2+0(1) = [nfo (2 x9)(1) = [n] o (2] 0 7)

Erinnerung:Die Konstruktion aus Bemerkung 59 induziert zu der Gruppenoperation 71 (X, zg)
aus Beispiel 43 einen Gruppenhomomorphismus ¢ : 71 (X, z9) — Homoo(X). Nach Satz 3.8 ist

o(m (X, x0)) = Deck(X /X)
= { f: X — X Homdomorphismus ‘ pof :p}
Beispiel 44
Sei X := S? C R? und 7 die Drehung um die z-Achse um 180°.
g = (1) = {id, 7 } operiert auf S? durch Homéomorphismen.

Frage: Was ist $2/G? Ist S?/G eine Mannigfaltigkeit?



4 Euklidische und nichteuklidische
Geometrie

Definition 56
Das Tripel (X, d, G) heifft genau dann eine Geometrie, wenn (X, d) ein metrischer Raum

und () # G C P(X) gilt. Dann heift G die Menge aller Geraden.

4.1 Axiome fur die euklidische Ebene

Axiome bilden die Grundbausteine jeder mathematischen Theorie. Eine Sammlung aus Axiomen

nennt man Axiomensystem. Da der Begriff des Axiomensystems so grundlegend ist, hat man
auch ein paar sehr grundlegende Forderungen an ihn: Axiomensysteme sollen widerspruchsfrei
sein, die Axiome sollen moglichst unabhéngig sein und Vollstidndigkeit wire auch toll. Mit
Unabhéngigkeit ist gemeint, dass kein Axiom sich aus einem anderem herleiten ldsst. Dies scheint
auf den ersten Blick eine einfache Eigenschaft zu sein. Auf den zweiten Blick muss man jedoch
einsehen, dass das Parallelenproblem, also die Frage ob das Parallelenaxiom unabhéingig von
den restlichen Axiomen ist, iiber 2000 Jahre nicht gelost wurde. Ein ganz anderes Kaliber ist
die Frage nach der Vollstdndigkeit. Ein Axiomensystem gilt als Vollstdndig, wenn jede Aussage
innerhalb des Systems verifizierbar oder falsifizierbar ist. Interessant ist hierbei der Gédelsche
Unvollstandigkeitssatz, der z. B. fiir die Arithmetik beweist, dass nicht alle Aussagen formal
bewiesen oder widerlegt werden kénnen.

Kehren wir nun jedoch zuriick zur Geometrie. Euklid hat in seiner Abhandlung ,,Die Elemente*
ein Axiomensystem fiir die Geometrie aufgestellt.

Euklids Axiome
e Strecke zwischen je zwei Punkten
e Jede Strecke bestimmt genau eine Gerade
e Kreis (um jeden Punkt mit jedem Radius)

e Je zwei rechte Winkel sind gleich (Isometrie, Bewegung)

e Parallelenaxiom von Euklid:
Wird eine Gerade so von zwei Geraden geschnitten, dass die Summe der Innenwinkel
kleiner als zwei Rechte ist, dann schneiden sich diese Geraden auf der Seite dieser Winkel.

Man mache sich klar, dass das nur dann nicht der Fall ist, wenn beide Geraden par-
allel sind und senkrecht auf die erste stehen.
Definition 57
Eine euklidische Ebene ist eine Geometrie (X, d, G), die Axiome §1 - §5 erfiillt:

§1) Inzidenzaxiome:
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(i) Zu P # Q € X gibt es genau ein g € G mit { P,Q } C g.
(i) [g| >2 VgeG
(iii) X ¢ G
§2) Abstandsaxiom: Zu P,Q, R € X gibt es genau dann ein g € G mit { P,Q, R } C g,
wenn gilt:
e d(P,R) =d(P,Q) + d(Q, R) oder
e d(P,Q) =d(P,R) + d(R,Q) oder
e d(Q,R) =d(Q,P)+d(P,R)

Definition 58
Sei (X, d,G) eine Geometrie und seien P,Q, R € X.

a) P, @, R liegen kollinear, wenn es g € G gibt mit { P,Q, R} C g.

b) Q liegt zwischen P und R, wenn d(P, R) = d(P,Q) + d(Q, R)

c) Strecke PR :={(Q € X | Q liegt zwischen P und R }
)

d) Halbgeraden:

PR :={Q € X | Q liegt zwischen P und R oder R liegt zwischen P und Q }
PR™ :={Q € X | P liegt zwischen @ und R }

P R
-------- L R Ry R R
PR~ PR
PR*

Abbildung 4.1: Halbgeraden

Bemerkung 60
a) PRTUPR™ = PR

b) PRFN PR ={P}
Beweis:

a) ,,C* folgt direkt aus der Definition von PR™ und PR~
,2% Sei Q € PR = P,Q, R sind kollinear.
Q liegt zwischen P und R = Q € PR

2{R liegt zwischen P und Q = Q € PR
P liegt zwischen Q und R = Q) € PR

b) ,,0 ist offensichtlich
»,C% Sei PRT N PR™. Dann ist d(Q, R) = d(P,Q) + d(P, R) weil Q € PR~ und

{ d(P,R) = d(P,Q) + d(Q, R) oder }
d(P,Q)=d(P,R)+d(R,Q)

=d(Q,R) =2d(P,Q) +d(Q,R)
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=d(P,Q)=0

=P=qQ

d(P,Q) = 2d(P,R) + d(P, Q)
=P=R

= Widerspruch

Definition 59
§3) Anordnungsaxiome

(i) Zu jeder Halbgerade H mit Anfangspunkt P € X und jedem r € R>( gibt es
genau ein Q € H mit d(P,Q) = r.

(i) Jede Gerade zerlegt X \ g = Hy U Hy in zwei nichtleere Teilmengen Hy, Ho, sodass
fiir alle A € H;, B€ H; mit 4,5 € {1,2} gilt: ABNg# 0 & i#j.

Diese Teilmengen H; heiffen Halbebenen bzgl. g.

§4) Bewegungsaxiom: Zu P,Q, P, Q" € X mit d(P,Q) = d(P’,Q’) gibt es mindestens
2 Isometrien @1, @2 mit @;(P) = P’ und ¢;(Q) = Q' mit i = 1,2.

§5) Parallelenaxiom: Zu jeder Geraden g € G und jedem Punkt P € X \ g gibt es
hochstens ein h € G mit P € h und hNg = (). h heikt Parallele zu g durch P.

Satz 4.1 (Satz von Pasch)
Seien P, Q, R nicht kollinear, g € G mit gN{ P,Q, R} = 0 und g N PQ # 0.

Dann ist entweder g N PR # () oder g N QR # 0.

Dieser Satz besagt, dass Geraden, die eine Seite eines Dreiecks (also nicht nur eine Ecke)
schneiden, auch eine weitere Seite schneiden.
Beweis: gNPQ # 0
dg)P und @ liegen in verschiedenen Halbebenen bzgl. g
= o. B. d. A. R und P liegen in verschieden Halbebenen bzgl. g
=gNRP#0
Bemerkung 61
Sei P,@Q € X mit P # @ sowie A, B € X \ PQ mit A # B. Auferdem seien A und B in der
selben Halbebene bzgl. PQ sowie Q und B in der selben Halbebene bzgl. PA.

Dann gilt: PBt N AQ # ()
Auch Bemerkung 61 ldsst sich umgangssprachlich sehr viel einfacher ausdriicken: Die Diagonalen
eines konvexen Vierecks schneiden sich.
Beweis: Sei P’ € PQ—,P' # P 54224 PR schneidet AP U AQ

Sei C' der Schnittpunkt. Dann gilt:

(i) C € PB*, denn A und B liegen in derselben Halbebene bzgl. PQ = P’'Q, also auch
AP und AQ.

!Die ,Verschiebung® von P'Q’ nach PQ und die Isometrie, die zusétzlich an der Gerade durch P und Q spiegelt.
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Abbildung 4.2: Situation aus Bemerkung 61

(ii) C liegt in derselben Halbebene bzgl. PA wie B, weil das fiir @ gilt.
AP’ liegt in der anderen Halbebene bzgl. PA = C ¢ P'A= C € AQ
Da C € PB* und C € AQ folgt nun direkt: ) # { C '} € PBT N AQ [ |

Bemerkung 62
Seien P,@Q € X mit P # Q und A, B € X\ PQ in der selben Halbebene bzgl. PQ. Auferdem
sei d(A, P) =d(B,P) und d(A,Q) = d(B, Q).

Dann ist A = B.

P

Abbildung 4.3: Bemerkung 62: Die beiden roten und die beiden blauen Linien sind gleich lang.
Intuitiv weifs man, dass daraus folgt, dass A = B gilt.

Beweis: durch Widerspruch
Annahme: A # B

Dann ist B ¢ (PAUQA) wegen §2.
1. Fall: Q und B liegen in derselben Halbebene bzgl. PA

Bem. 61 PB+ HTQ 75 @

Sei C der Schnittpunkt vom PB und AQ.
Dann gilt:

(i) d(A,C) +d(C,Q) = d(A, Q) = d(B,Q) < d(B,C) +d(C,Q) = d(A,C) < d(B,C)

(ii) a) B liegt zwischen P und C.

d(P,A) + d(A,C) > d(P,C) = d(P,B) + d(B,C) = d(P,A) + d(B,C) =
d(A,C) > d(B,C) = Widerspruch zu Punkt (i)
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ety

N

P [N

(a) 1. Fall (b) 2. Fall

Abbildung 4.4: Fallunterscheidung aus Bemerkung 62

b) C liegt zwischen P und B

d(P,C)+d(C,A) > d(P,A) =d(P,B) =d(P,C)+d(C,B)
= d(C,A) > d(C,B)
= Widerspruch zu Punkt (i)

2. Fall: @ und B liegen auf verschieden Halbebenen bzgl. PA.
Dann liegen A und @ in derselben Halbebene bzgl. PB.

Tausche A und B = Fall 1 [ ]

Bemerkung 63
Sei (X, d,G) eine Geometrie, die §1 - §3 erfiillt, P,Q € X mit P # @ und ¢ eine Isometrie

mit ¢(P) = P und ¢(Q) = Q.
Dann gilt p(S) =S VS € PQ.
Beweis:

0.B.d. A.sei S € PQ & d(P,Q) = d(P,S) +d(S,Q)
p€Iso(X)

=" "d(p(P), p(Q)) = d(¢(P), ¢(5)) + d((5), ¢(Q))

PO p Q) = d(P, () + d((S), Q)
= (9) liegt zwischen P und @
= d(P,S) = d(p(P), ¢(5)) = d(P,¢(S))

Wos)=s

Proposition 4.2
In einer Geometrie, die §1 - §3 erfiillt, gibt es zu P, P, Q, Q" mit d(P,Q) = d(P',Q’)
hochstens zwei Isometrien mit p(P) = P’ und ¢(Q) = Q’

Aus den Axiomen folgt, dass es in der Situation von §4 héchstens zwei Isometrien mit
pi(P) =P und ¢;(Q) = Q' gibt.
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Beweis: Seien 1, 2, p3 Isometrien mit ¢;(P) = P, ¢;(Q) = Q' mit i = 1,2, 3.
Der Beweis von Proposition 4.2 erfolgt iiber zwei Teilaussagen:
(Teil i) IR € X \ PQ mit o1 (R) = pa(R).
(Teil ii) Hat ¢ 3 Fixpunkte, die nicht kollinear sind, so ist ¢ = idx.

Aus (Teil i) und (Teil ii) folgt, dass @5 ' o1 = idx, also 2 = @1, da P, Q und R in diesem
Fall Fixpunkte sind.

Nun zu den Beweisen der Teilaussagen:

(Teil i) Sei R € X \ PQ. Von den drei Punkten ¢;(R), p2(R), p3(R) liegen zwei in der selben
Halbebene bzgl. P'Q' = ¢;(PQ).

O. B. d. A. seien ¢1(R) und ¢2(R) in der selben Halbebene.
Bs gilt: d(P', p1(R)) = d(¢1(P), 1 (R))

P, 02(R))
und analog d(Q’, p1(R)) = d(Q’, v2(R))

(Teil ii) Seien P, @ und R Fixpunkte von ¢, R ¢ PQ und A ¢ PQU PRUQR. Sei B €
PQ\{P,Q}. Dann ist ¢(B) = B wegen Bemerkung 63.

Ist R € AB, so enthilt AB 2 Fixpunkte von ¢ Do 6% p(A) = A.

A

e N A
Abbildung 4.5: P,Q, R sind Fixpunkte, B € PQ\{P,Q}, A¢ PQUPRUQR

Ist R¢ AB, so ist ABN PR # () oder AB € RQ # () nach Satz 4.1. Der Schnittpunkt
C' ist dann Fixpunkt von ¢’ nach Bemerkung 63 = ¢(A) = A.

Bemerkung 64 (SWS-Kongruenzsatz)
Sei (X,d,G) eine Geometrie, die §1 - §4 erfiillt. Seien aukerdem AABC und AA'B'C’
Dreiecke, fiir die gilt:

(i) d(A,B) =d(A",B’)

(i) ZCAB= /C'A'B'

(iii) d(A,C)=d(A,C")
Dann ist AABC kongruent zu AA’B'C’ .
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Beweis: Sei ¢ die Isometrie mit ¢(A4’) = A, p(A'C'"t) = ACT und ¢(A'B'") = AB™. Diese

Isometrie existiert wegen Punkt §4.

= C € p(A'C"") und B € p(A'B'T).
d(A',C") = d(p(A), o(C") = d(A, p(C") 22 p(C") = C

(A", B') = d((A), (B')) = d(A, p(B')) 22 o(B') = B
Also gilt insbesondere ¢(AA'B'C") = AABC. |

Bemerkung 65 (WSW-Kongruenzsatz)
Sei (X,d,G) eine Geometrie, die §1 - §4 erfiillt. Seien aukerdem AABC und AA'B'C’
Dreiecke, fiir die gilt:

(i) d(A,B) =d(A’', B’)

(i) ZLCAB= /C'A'B’

(i) ZABC = /A'B'C’
Dann ist AABC kongruent zu AA’B'C’ .

Beweis: Sei ¢ die Isometrie mit p(A’) = A, p(B’) = B und ¢(C") liegt in der selben Halbebene
bzgl. AB wie C'. Diese Isometrie existiert wegen §4.

Aus LCAB = LC'"A'B' = Zp(C")p(A')o(B') = Lp(C")AB folgt, dass ¢(C") € ACT.
Analog folgt aus ZABC = LA'B'C" = Zp(A)p(B")p(C') = LABp(C"), dass ¢(C') €
BCT.

Dann gilt p(C") € ACNBC ={C} = ¢(C') =C.

Es gilt also p(AA'B'C") = AABC. ]

Definition 60
a) Ein Winkel ist ein Punkt P € X zusammen mit 2 Halbgeraden mit Anfangspunkt P.
Man schreibt: Z/Ri PRy bzw. /RyPR;?

b) Zwei Winkel sind gleich, wenn es eine Isometrie gibt, die den einen Winkel auf den
anderen abbildet.

¢) ZR)|P'R) heift kleiner als /R PRy, wenn es eine Isometrie ¢ gibt, mit ¢(P’) = P,
o(P'R}") = PR{ und o(R}) liegt in der gleichen Halbebene bzgl. PRy wie Ry und in
der gleichen Halbebene bzgl. PRy wie R

d) Im Dreieck APQR gibt es Innenwinkel und Aufsenwinkel.
Bemerkung 66
In einem Dreieck ist jeder Innenwinkel kleiner als jeder nicht anliegende Aufsenwinkel.
Beweis: Zeige /PRQ < ZRQP'.

Sei M der Mittelpunkt der Strecke QR und P’ € PQ* \ PQ. Sei A € M P~ mit d(P, M) =
d(M, A).

Es gilt: d(Q, M) = d(M, R) und d(P, M) = d(M, A) sowic ZPMR = ZAMQ = AMRQ
ist kongruent zu AAMQ, denn eine der beiden Isometrien, die Z/PM R auf ZAM () abbildet,
bildet R auf Q und P auf A ab.

2Fiir dieses Skript gilt: ZR1 PRs = ZR2PR;. Also sind insbesondere alle Winkel < 180°.
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°
Ry
(a) LR|P'Rj ist kleiner als ZR1 PRa2(b) und AuRenwin-

vgl. Definition 60.c kel in APQR, vgl. Definiti-
on 60.d

Abbildung 4.6: Situation aus Definition 60

QLY P

(a) Parallelogramm AQPR(b) Innen- und Aufenwin-
kel von APQR

Abbildung 4.7: Situation aus Bemerkung 66

=/ MQA=/MRP = /ZQRP = ZPRQ.
Noch zu zeigen: ZMQA < ZRQP’, denn A liegt in der selben Halbebene bzgl. PQ wie M.

Proposition 4.3 (Existenz der Parallelen)
Sei (X, d,G) eine Geometrie mit den Axiomen §1 - §4.

Dann gibt es zu jeder Geraden g € G und jedem Punkt P € X \ g mindestens eine
Parallele h € G mit P € hund gNh = 0.

Beweis: Seien P,QQ € f € G und ¢ die Isometrie, die Q auf P und P auf P’ € f mit
d(P, P") = d(P, Q) abbildet und die Halbebenen bzgl. f erhilt.

Annahme: p(g)Ng # 0

= Es gibt einen Schnittpunkt { R } = ¢(g) N g.

Dann ist ZRQP = ZRQP' < ZRPP’ nach Bemerkung 66 und ZRQP = ZRPP’, weil
o(LRQP) = ZRPP'.
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Abbildung 4.8: Situation aus Proposition 4.3

= Widerspruch
= ¢o(g)Ng=10 u
Folgerung 4.4

Die Summe zweier Innenwinkel in einem Dreieck ist kleiner als 7.

D. h. es gibt eine Isometrie ¢ mit p(Q) = P und ¢(QP*) = PR™, sodass ¢(R) in der gleichen
Halbebene bzgl. PQ liegt wie R.

Beweis: Die Summe eines Innenwinkels mit den anliegenden Auflenwinkeln ist 7, d. h. die
beiden Halbgeraden bilden eine Gerade.

Abbildung 4.9: In der sphérischen Geometrie gibt es, im Gegensatz zur euklidischen Geometrie,
Dreiecke mit drei 90°-Winkeln.

Proposition 4.5
In einer Geometrie mit den Axiomen §1 - §4 ist in jedem Dreieck die Summe der
Innenwinkel < 7.

Sei im Folgenden ,IWS“ die ,Innenwinkelsumme®.
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P

(a) Summe der Winkel «, 8 und ~ (b) Situation aus Proposition 4.5

Abbildung 4.10: Situation aus Proposition 4.5

Beweis: Sei A ein Dreieck mit IWS(A) =7+«

Sei « ein Innenwinkel von A.

Beh.: Es gibt ein Dreieck A" mit IWS(A) = IWS(A) und einem Innenwinkel o’ < §.

Dann gibt es fiir jedes n ein A, mit IWS(A,,) = IWS(A) und Innenwinkel o < 7. Fiir
5w < € ist dann die Summe der beiden Innenwinkel um A, grofer als 7 = Widerspruch
zu Folgerung 4.4.

Beweis: Es seien A, B,C € X und A das Dreieck mit den Eckpunkten A, B, C und « sei

der Innenwinkel bei A, § der Innenwinkel bei B und « der Innenwinkel bei C'.

Sei M der Mittelpunkt der Strecke BC'. Sei aufierdem oy = ZCAM und ap = ZBAM.
Sei weiter A’ € M A~ mit d(A', M) = d(A, M).

Die Situation ist in Abbildung 4.10b skizziert.

= A(MA'C) und A(MAB) sind kongruent. = ZABM = ZA'CM und LMA'C =
IMAB. = a++v =IWS(AABC) = IWS(AAA'C) und aq + a2 = v, also 0. B. d. A.
a1 <5

Bemerkung 67
In einer euklidischen Ebene ist in jedem Dreieck die Innenwinkelsumme gleich 7.

Abbildung 4.11: Situation aus Bemerkung 67

Beweis: Sei g eine Parallele von AB durch C.
e Es gilt o/ = a wegen Proposition 4.3.
e Es gilt 8/ = 3 wegen Proposition 4.3.
e Es gilt o = o/ wegen Aufgabe 8.
= IWS(AABC)=~v+d"+ 5 ==
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Aus der Eigenschaft, dass die Innenwinkelsumme von Dreiecken in der euklidischen Ebene gleich
7 ist, folgen direkt die Kongruenzsidtze SWW und WWS iiber den Kongruenzsatz WSW.

4.2 Weitere Eigenschaften einer euklidischen Ebene

Satz 4.6 (Strahlensatz)
In &hnlichen Dreiecken sind Verhéltnisse entsprechender Seiten gleich.

Y,
3T A2z
21 z
14
— 0 x Az )

1,0 1 2 3 4 =

Abbildung 4.12: Strahlensatz

Der Beweis wird hier nicht gefithrt. Fiir Beweisvorschldge wére ich dankbar.

Abbildung 4.13: Die Dreiecke AABC und AAB’C’ sind ahnlich.

4.2.1 Flacheninhalt

Definition 61
wSimplizialkomplexe* in euklidischer Ebene (X, d) heifen flichengleich, wenn sie sich in
kongruente Dreiecke zerlegen lassen.
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7
: T/ 1777777 7777777
AT I I II I I 777

(a) Zwei kongruente Dreiecke (b) Zwei weitere kongruente Drei-
ecke

Abbildung 4.14: Flachengleichheit

C

(a) Y2 [AB] - |he| (b) /2 [BC| - |hal

Abbildung 4.15: Flachenberechnung im Dreieck

Der Flacheninhalt eines Dreiecks ist 1/2 - Grundseite - Hohe.

Zu zeigen: Unabhéngigkeit von der gewéhlten Grundseite.

77000
o
TTANG 0

A Lc B
Abbildung 4.16: AABL, und ACL¢B sind dhnlich, weil IWS =7

Strahlensatz
:}lzi—)a-hazc-hc
he ha

Satz 4.7 (Satz des Pythagoras)
Im rechtwinkligen Dreieck gilt a® 4+ b? = ¢2, wobei ¢ die Hypotenuse und a, b die beiden
Katheten sind.

Beweis: (a+b)-(a+b)=a?+2ab+b*=c*+4-(1 a-b)
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a

A ¢ B b a

(a) a,b sind Katheten und c ist die Hypo- (b) Beweisskizze
tenuse

Abbildung 4.17: Satz des Pythagoras

Satz 4.8
Bis auf Isometrie gibt es genau eine euklidische Ebene (X,d,G), nimlich X = R2,
d = euklidischer Abstand, G = Menge der {iblichen Geraden.

Beweis:
(i) (R?,dguuiq) ist offensichtlich eine euklidische Ebene.

(ii) Sei (X,d) eine euklidische Ebene und g1, g2 Geraden in X, die sich in einem Punkt 0
im rechten Winkel schneiden.

Sei P € X \ (g1 U g2) ein Punkt und Px der Fukpunkt des Lots von P auf ¢g; (vgl.
Aufgabe 9 (c¢)) und Py der Fufspunkt des Lots von P auf gs.

Sei xp := d(Px,0) und yp := d(Py,0).
In Abbildung 4.19 wurde die Situation skizziert.

Sei h : X — R? eine Abbildung mit h(P) := (xp,yp) Dadurch wird h auf dem
Quadranten definiert, in dem P liegt, d. h.

VQEXmitTQﬂglzﬂzmﬁgg

Fortsetzung auf ganz X durch konsistente Vorzeichenwahl.
Im Folgenden werden zwei Aussagen gezeigt:
(i) h ist surjektiv
(ii) h ist eine Isometrie
Da jede Isometrie injektiv ist, folgt aus (i) und (ii), dass h bijektiv ist.
Nun zu den Beweisen der Teilaussagen:

(i) Sei (x,y) € R% z. B. 2 > 0,y > 0. Sei P’ € g; mit d(0,P") = z und P’ auf der
gleichen Seite von gs wie P.
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92 92
X X
° Py P
P
yp
g1 0 zp Px 91
(a) Schritt 1 (b) Schritt 2

Abbildung 4.18: Beweis zu Satz 4.8

go !

yp

Abbildung 4.19: Beweis zu Satz 4.8
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(ii) Zu Zeigen: d(P,Q) = d(h(P),h(Q))

d(P,Q)
h(Q) = (2@, yq)

Pythagoras
2 YRR (P, R)? + d(R, Q) = (yg — yp)? + (2q — op)*.

4.3 Hyperbolische Geometrie

Definition 62
Sei
H:z{zé@]%(z)>0}:{(:B,y)€R2‘y>0}

die obere Halbebene bzw. Poincaré-Halbebene und G = G1 U G mit

Gi={gn CH|ImeRreRog:g1={z€eH:|z—m|=7r}}
Go={gpCH|FTzcR:gao={z€cH: R(z)=x}}

Die Elemente aus G heifen hyperbolische Geraden.

Bemerkung 68 (Eigenschaften der hyperbolischen Geraden)
Die hyperbolischen Geraden erfiillen. . .

a) ...die Inzidenzaxiome §1

b) ...das Anordnungsaxiom §3 (ii)

¢) ...nicht das Parallelenaxiom §5
Beweis:

a) Offensichtlich sind §1 (iii) und §1 (ii) erfiillt. Fur §1 (i) gilt:
Gegeben z1, z0 € H
Existenz:

Fall 1 %(21) = 5}%(22)
= z1 und 2o liegen auf

g={z€C|R(z)=R(z1)\NH}
Siehe Abbildung 4.20a.
Fall 2 R(z1) # R(22)

Betrachte nun z; und z9 als Punkte in der euklidischen Ebene. Die Mittelsenkrech-
te zu diesen Punkten schneidet die x-Achse. Alle Punkte auf der Mittelsenkrechten
zu z1 und zo sind gleich weit von z; und 25 entfernt. Daher ist der Schnittpunkt mit
der x-Achse der Mittelpunkt eines Kreises durch z; und zy (vgl. Abbildung 4.20b)

b) Sei g € G U G2 eine hyperbolische Gerade.

Es existieren disjunkte Zerlegungen von H \ g:

Fall l: g={z€H| z—m|=r} Gy
Dann gilt:
H={zeH|z-m|<r}U{zeH||z-—m|>r}

=:H; (Kreisinneres) =:Hy (Kreisduferes)
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Y, Yy

4 41

3 1 Z2 3\(\

’ 4 TN,

1 1 "Zl \\‘\‘\\

—0 \ | A A — —0 t t \‘\%\ t t -
-1 0 1 9 3 4 5 -1 0 1 2 3~ 4 5
(a) Fall 1 (b) Fall 2

Abbildung 4.20: Zwei Punkte liegen in der hyperbolischen Geometrie immer auf genau einer
Geraden

Da r > 0 ist Hq nicht leer, da r € R ist Hy nicht leer.

Fall2: g={zc€H|Rz=2} € G
Die disjunkte Zerlegung ist:

H={:eH|R(z) <z}U{zeH|R(z) >z}

=:H; (Links) =:H (Rechts)

Zu zeigen: VA€ H;, B€ Hymit i,j € { 1,2} gilt: ABNg#0 & i#j

,<=" A€ H,B¢€ H 2@09#@

Da dy stetig ist, folgt diese Richtung direkt. Alle Punkte in H; haben einen Abstand
von m der kleiner ist als » und alle Punkte in Hs haben einen Abstand von m der
grofer ist als . Da man jede Strecke von A nach B insbesondere auch als stetige
Abbildung f : R — Rsq auffassen kann, greift der Zwischenwertsatz = AB N g # ()
= AeH,BEH; miti,je{1,2}: ABNg#0=1i+#j

Sei h die Gerade, die durch A und B geht.

Da A,B ¢ g, aber A, B € h gilt, haben g und h insbesondere mindestens einen
unterschiedlichen Punkt. Aus §1 (i) folgt, dass sich g und h in héchstens einen Punkt
schneiden. Sei C dieser Punkt.

Aus A, B ¢ g folgt: C' # A und C # B. Also liegt C zwischen A und B. Daraus folgt,
dass A und B bzgl. g in verschiedenen Halbebenen liegen.

c) Siehe Abbildung 4.21.

Definition 63
Es seien a,b,c,d € R mit ad — bc # 0 und ¢ : C — C eine Abbildung definiert durch

az+b
cz+d

o(z) =

o heit Mobiustransformation.
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Proposition 4.9
a) Die Gruppe SLa2(R) operiert auf H durch die Mébiustransformation

(2) = a b o '_az—i-b
O—Z-_ c d Z.—m

b) Die Gruppe PSLg(R) = SLa(R)/(+) operiert durch o auf H.

c) PSLy(R) operiert auf R U { oo }. Diese Gruppenoperation ist 3-fach transitiv, d. h.
zu g < 1 < Too € R gibt es genau ein 0 € PSLa(R) mit o(zg) =0, o(x1) =1,

0(Too) = 00.
d) SL2(R) wird von den Matrizen

A0 1t 0 1 . v
<0 )\_1),<0 1) und (_1 0) mit t, A € R

::A)\ :;Bt :ZC

erzeugt.

e) PSLy(R) operiert auf G.

Beweis:

a) Sei z =z +iy € H, d. h.y>0und0:<z Z) € SLa(R)

a(z+iy) +b

=o(z) = ztiy) 1 d

_ (az +b) +iay (cx+d)—icy

" (cx+d)+icy (cx+d)—icy

_ (az +b)(cx +d) +aycy . ay(cx +d) — (ax + b)cy
T (et d)? + (ey)? T e+ d)? + (cy)?
_axcx + ard + bex +bd +aycy . (ad —be)y

- (cz + d)2 + (cy)? “lez + d)2 + (cy)?

SLa(R) ac(z?® 4+ y?) + adw + bex +bd Yy
= (cz +d)? + ()2 T e A ()

= S0(2) = wrptrar > 0

Die Abbildung bildet also nach H ab. Aufierdem gilt:

L0 oz—x+iy—m+i =z
01 -1 - y=

und

a b . a b . _(a b . a'z+ b
c d ¢ d)°%) " \e a)° 2 +d
aj,'jigi +0b

a’z+b
¢ cz+d +d
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b)

)

a(a’z4b")+b(c' z+d’)
c'z4d’

c(a’ z+b')+d(c' z+d")
' z+d’

aldz+V)+b(dz+d)
cla'z+V)+d(dz+d)
_ (ad" 4+ bc)z + ab' + bd’
(ca’ +db)z + cb + dd
ad' +bc  ab + bd'
<ca' +db b + dd’) °F

-((¢a) (& 0))e

Es gilt 0(z) = (—0)(z) fir alle o € SLy(R) und z € H.

Ansatz: o = (Z Z) o(xg) = Z;gig 0= axg+b=0= b= —axg

0(Too) =00 = CToo +d=0=d = —crso
ox1)=1=ar1+b=cr1+d

a(x; — ) = ¢(T1 — Too) = ¢ = a0

T1—Too
= —a? - po TR0 4 g2p, BT —

) T1—Too 961*5130%
x1—x _ _ T1—Too
=q 7‘%017%2 (T0 — Too) =1 = a® = —(xl—x;)(m—xo)
Es gilt:
ATl =4
y =4
B'=B,
C—l — C3

Daher geniigt es zu zeigen, dass man mit Ay, By und C alle Matrizen aus SLy(R)
erzeugen kann, geniigt es also von einer beliebigen Matrix durch Multiplikation mit
Matrizen der Form Ay, B; und C die Einheitsmatrix zu generieren.

Sei also
a b
M = <C d) € SLQ(R)
beliebig.

Fall1: a =0
Da M € SLg(R) ist, gilt det M = 1 = ad — bc = —be. Daher ist insbesondere ¢ # 0. Es

' (0 - (e

Gehe zu Fall 2.

Fall 2: a #0
Nun wird in M durch M - A1 an der Stelle von a eine 1 erzeugt:

a

(o) (6 2)-( %)
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Gehe zu Fall 3.
Fall 3: a =1
L b\ (1 =b)y_ (1 0
c d 0 1) \e¢ d-bc
Da wir det M = 1 = ad — bc = d — bc wissen, gilt sogar Ma o = 1.

Gehe zu Fall 4.
Fall4:a=1,6=0,d=1

10 10
AL CBC (c 1)_<0 1>

Daher erzeugen Matrizen der Form Ay, B; und C die Gruppe SLaR. ]

e) Es geniigt die Aussage fiir Matrizen aus Proposition 4.9 (d) zu zeigen.

A0
0 At
Abbildung 4.22a und Abbildung 4.22b dargestellt sind.

o0 = , also 0(2) = A2z. Daraus ergeben sich die Situationen, die in

e Offensichtlich gilt die Aussage fiir 0 = <(1) 61L>

e Sei nun o = <_01 é), also o(2) = —1

Bemerkung 69
Zu hyperbolischen Geraden g1, g2 gibt es o € PSLy(R) mit o(g1) = go.

Beweis: Nach Proposition 4.9 (c¢) gibt es o mit o(a;) = b; und o(ag) = be. Dann existiert
o(g1) := g2 wegen dem Inzidenzaxiom §1 und ist eindeutig bestimmt.

Definition 64
Seien z1, 29, 23, 24 € C paarweise verschieden.

D hei
ann heifst 2:2 1 — 22) (2 — )
DV(a1, 22,23, 24) = = = (21 — 22) - (23 — 24)
z3—22
Doppelverhéltnis von 21, ..., 24.

Bemerkung 70 (Eigenschaften des Doppelverhéltnisses)
a) DV(z1,...,24) € C\{0,1}
b) DV (21, 24, 23, 22) = 71)\,(21;2%3%4)

1
c) DV(z3, 29, 21,24) = DV

)
)
d) DV ist auch wohldefiniert, wenn eines der z; = oo oder wenn zwei der z; gleich sind.
e) DV(0,1,00,24) = z4 (Der Fall z4 € {0,1,00 } ist zugelassen).

)

f) Fir o0 € PSLy(C) und z1,...,24 € CU{ 00 } ist
DV(o(z1),0(22),0(23),0(24)) = DV(21, 22, 23, 24)

=

und fiir o(z) = £ gilt

DV(O’(Zl), 0'(2’2), 0'(2’3), O'(Z4)) = DV(Zl, Z92,23, 2’4)
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g) DV(z1,29,23,24) ERU{ 00} & 21,..., 24 liegen auf einer hyperbolischen Geraden.
Beweis:
a) DV(z1,...,24) # 0, da z; paarweise verschieden

DV(z1,...,24) # 1, da:
Annahme: DV(zy,...,24) =1

= (211 — 22)(Z3 — 24) = (2’1 — 24)(2:3 — 2’2)
& 2123 — 2923 — 2124 + 2024 = 2123 — 2324 — 2122 + 2224
& 2923 + 2124 = 2324 + 2122
< 2923 — 2324 = 2129 — 2124
& z3(z0 — 24) = 21(22 — 24)

& 23 = z1 oder z9 = 24

Alle z; sind paarweise verschieden = Widerspruch ]
_ (s1—22)(s3—24) _ 1
b) DV(21, 24,23, 22) = G2y Gse—2) = DVGrzasn)
_ (m—z)(z1—20) _ 1
c) DV(z3, 22,21, 24) = (Z§—z;)~(21—zi) " DV(21,22,23,24)

d) Zwei der z; diirfen gleich sein, da:

Fall 1 z; = z4 oder 23 = 29
In diesem Fall ist DV (z1,...,24) =0

Fall 2 z1 = z9 oder 23 = 24
Mit der Regel von L’Hospital folgt, dass in diesem Fall DV(z1, ..., z4) = oo gilt.

Fall 3 z1 = z3 oder z9 = 24
Durch Einsetzen ergibt sich DV(z1,...,24) = 1.

Im Fall, dass ein z; = oo ist, ist entweder DV(0, 1, 00, z4) = 0 oder DV(0, 1, 00, z4) £ 00

e) DV(0,1,00,24) = (i = ol — o,

 (0—1)-(c0o—24) 00—24
f) Wenn jemand diesen Beweis fiihrt, bitte an info@martin-thoma.de schicken.

g) Sei 0 € PSLy(C) mit 0(z1) =0, 0(22) = 1, 0(23) = oo. Ein solches ¢ existiert, da man
drei Parameter von o wahlen darf.

Berrg?O.fDV(Zl’ .., z4) = DV(0,1,00,0(24))

= DV(z1,...,24) e RU{ o0}
< o(zg) ERU{o0}

Behauptung folgt, weil 0~ (R U 00) ein Kreis oder eine Gerade in C ist.

Definition 65
Fiir 21, 20 € H sei g., ., die eindeutige hyperbolische Gerade durch z; und 22 und a1, az die
wSchnittpunkte” von g, ., mit RU{ oo }.

Dann sei d(z1, 22) := %| In DV (ay, 21, az, z2)| und heike hyperbolische Metrik.

Beh.: Fiir 21,2, € H sei g, », die eindeutige hyperbolische Gerade durch z; und 2z und ay, as
die ,,Schnittpunkte von g, ,, mit RU{ oo }.
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Dann gilt:
1 1
§|lnDV(a1,zl,a2,22)| = §|lnDV(a2,zl,a1,22)|

Beweis: Wegen Bemerkung 70.c gilt:

1
DV (a2, 21, a1, 22)

DV(GI, 21,02, ZQ) -
Aufserdem gilt:
1
In—=Inz!'=(-1)-lnz=—Inz
x

Da der In im Betrag steht, folgt direkt:
1 1
iylnDV(al,zl,ag,ZQ)] = 5’1nDV<CL2,21,a1,22)’

Es ist also egal in welcher Reihenfolge die ,Schnittpunkte mit der z-Achse im Doppelver-
héltnis genutzt werden. [ ]

Beh.: Die hyperbolische Metrik ist eine Metrik auf H.
Beweis: Wegen Bemerkung 70.f ist
d(z1,22) :=d(0(z1),0(22)) mit o(a;) =0, o(az) = oo
d. h. 0(gz,,2,) = iR (imaginére Achse).
also gilt 0. B. d. A. 21 =da und 25 = ¢b mit a,b € R und a < b.

2d(ia,ib) =| InDV(0,ia, 0o, ib) |
(0 —1ib)(co —ia)

=1
o ) o= i) |
2|
a
=Inb—1Ina

Also: d(zl, ZQ) > 0, d(zl, ZQ) =0& 21 =2

2d(z2,21) =| InDV(aq, 2z2,a1, 21) |
—| In DV (00, ib, 0, ia) |

Pem_ 10D 1y DV (0, b, 00, ia) |

= 2d(21, 2‘2)

Liegen drei Punkte z1, 29,23 € C auf einer hyperbolischen Geraden, so gilt d(z1,23) =
d(z1, z2) + d(z2,z3) (wenn z9 zwischen z; und z3 liegt).

Dreiecksungleichung: Beweis ist umsténdlich und wird hier nicht gefiihrt. Es sei auf die
Vorlesung , Hyperbolische Geometrie” verwiesen.
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Satz 4.10
Die hyperbolische Ebene H mit der hyperbolischen Metrik d und den hyperbolischen
Geraden bildet eine ,nichteuklidische Geometrie®, d. h. die Axiome §1 - §4 sind erfiillt,
aber Axiom §5 ist verletzt.
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_=5 x
Abbildung 4.21: Hyperbolische Geraden erfiillen §5 nicht.
)
3 A2z
Yy
31 27 z
1 4
2
—0 ! i A t >
-1 0 1 2 3 4 7T

(b) Fall 2 (Strahlensatz)

Abbildung 4.23: Inversion am Kreis
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Ubungsaufgaben

Aufgabe 8

Seien (X, d) eine absolute Ebene und P, @, R € X Punkte. Der Scheitelwinkel des Winkels
/ZPQR ist der Winkel, der aus den Halbgeraden QP~ und QR~ gebildet wird. Die

Nebenwinkel von ZPQR sind die von QPT und QR~ bzw. QP~ und QR™ gebildeten
Winkel.

Zeigen Sie:
(a) Die beiden Nebenwinkel von ZPQR sind gleich.
(b) Der Winkel ZPQR ist gleich seinem Scheitelwinkel.

Aufgabe 9

Sei (X, d) eine absolute Ebene. Der Abstand eines Punktes P zu einer Menge Y C X von
Punkten ist definiert durch d(P,Y) :=infd(P,y)ly € Y.

Zeigen Sie:

(a) Ist AABC ein Dreieck, in dem die Seiten AB und AC kongruent sind, so sind die
Winkel ZABC und /BC A gleich.

(b) Ist AABC ein beliebiges Dreieck, so liegt der langeren Seite der grofere Winkel
gegeniiber und umgekehrt.

(c) Sind g eine Gerade und P ¢ g ein Punkt, so gibt es eine eindeutige Gerade h mit
P € h und die g im rechten Winkel schneidet. Diese Grade heifit Lot von P auf g
und der Schnittpunkt des Lots mit g heilst LotfufSpunkt.

Aufgabe 10

Seien f, g, h € G und paarweise verschieden.

Zeigen Sie: f|[gAg||h=f| R

Aufgabe 11

Beweise den Kongruenzsatz SSS.



5 Krummung

Definition 66
Sei f : [a,b] — R™ eine eine Funktion aus C*°. Dann heifst f Kurve.

5.1 Kriimmung von Kurven

Definition 67
Sei v : I = [a,b] — R™ eine Kurve.

a) Die Kurve v heifit durch Bogenlinge parametrisiert, wenn gilt:

IV®)l2=1 Vtel

Dabei ist v/(t) = (v1(t), 12(t), - - -, 7 ()
b) 1(y) = [ |7/ (t)||dt heift Linge von ~.

Bemerkung 71 (Eigenschaften von Kurven I)
Sei v : I = [a,b] = R™ eine C*°-Funktion.
a) Ist v durch Bogenldnge parametrisiert, so ist [(v) = b — a.

b) Ist v durch Bogenlidnge parametrisiert, so ist 7/(¢) orthogonal zu ~”(¢) fir alle ¢ € I.

Beweis:

a) 1(y) = [, IV @®)dt = [, 1dt = b - a.

b) Im Folgenden wird die Aussage nur fiir v : [a, b] — R? bewiesen. Allerdings funktioniert
der Beweis im R™ analog. Es muss nur die Ableitung angepasst werden.

L= YOl = IV O = '(6),7'®)

= S0 (0,7 (0)
. d
=i
(@) () +92(8) - 7(1)

(

=9 1
=2-(y"(t),7(t))

=0

(MO ) +12()s(t))

Definition 68
Sei 7 : I — R? eine durch Bogenlinge parametrisierte Kurve.

a) Fiir ¢t € I sei n(t) Normalenvektor an v in ¢ wenn gilt:

(n(t),7'(t)) =0, [In(t)[| = 1 und det((y'(t), n(t))) = +1
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b) Seit k: I — R so, dass gilt:

V() = k(t) - n(t)

Dann heift #(¢) Kriimmung von + in ¢.

Da n(t) und 4”(t) nach Bemerkung 71.b linear abhéngig sind, existiert r(t).

Beispiel 45
Gegeben sei ein Kreis mit Radius r, d. h. mit Umfang 27r. Es gilt:

t t
~(t) = (r - COS —, T - sin) fir ¢t € [0, 27r]
r r

ist parametrisiert durch Bogenlange, da gilt:

1 t, 1 t

70 = (0 Dsinf)or cos )

T o T
Lt t
= [ —sin—,cos -
r r

Der Normalenvektor von « in ¢ ist

n(t) = <— cos E, _sin t)

r T

da gilt:

oot =((2)-(24)

= (- cos E) (—sin E) + (—sin 7j) (cos ;)
=0
In()] = H(—cos, ~sin ) ’
t

_Sln ¢
dein) = | (o Z5er)|
t

.ty t
= (—sin—)* — (—cos—) - cos —
( mT) (—co 7“) o "

=1
Die Krimmung ist fiir jedes ¢ konstant %, da gilt:

1 t 1 t
v'(t) = (— cos —, ——sin >

T r T r
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1 < t . t>

=—-|—cos—,—sin—
T T T
1

= k(t) = -

Definition 69
Sei v : I — R3 eine durch Bogenliinge parametrisierte Kurve.

a) Fir t € I heift (t) := [|7"(¢)| die Kriimmung von + in ¢.
b) Ist fur t € I die Ableitung +"(¢) # 0, so heift % Normalenvektor an v in ¢.

c) b(t) sei ein Vektor, der v/ (t), n(t) zu einer orientierten Orthonormalbasis von R? ergiinzt.
Also gilt:
det(+/(t), n(t), b(t)) = 1

b(t) heift Binormalenvektor, die Orthonormalbasis
/
{~'(t),n(t),0(t) }

heifit begleitendes Dreibein.

Bemerkung 72 (Eigenschaften von Kurven II)
Sei 7y : I — R3 durch Bogenlinge parametrisierte Kurve.

a) n(t) ist orthogonal zu /().
b) b(t) aus Definition 69.c ist eindeutig.

5.2 Tangentialebene

Erinnerung Sie sich an Definition 32  regulére Flache".

Aquivalent dazu ist: S ist lokal von der Form
V() ={ae®| f) =0}

fiir eine C*°-Funktion f : R? — R.

Definition 70
Sei S C R3 eine regulire Fliche, s € S, F : U — V N S eine lokale Parametrisierung um
seV:
(u,v) = (x(u,v),y(u,v), z(u,v))
Fiir p = F~1(s) € U sei
(») 2
i (p) 7P
7. (r) 5(p)
und D, F : R?* — R3 die durch Jr(p) definierte lineare Abbildung.

(S5

Jr(p) =

Q| QI
S8

INESH ISESY

Dann heifst 7,5 := Bild(D,F') die Tangentialebene an s € S.

Bemerkung 73 (Eigenschaften der Tangentialebene)
a) TsS ist 2-dimensionaler Untervektorraum von R3.
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b) TS = (a,v), wobei @, v die Spaltenvektoren der Jacobi-Matrix Jg(p) sind.
¢) TsS hingt nicht von der gewédhlten Parametrisierung ab.

d) Sei S = V(f) eine regulire Fliche in R3, also f : V — R eine C*°-Funktion, V' C R3
offen, grad(f)(z) # 0 fir alle z € S.

Dann ist TS = (grad(f)(s))* fiir jedes s € S.
Beweis:

a) Jp ist eine 3 x 2-Matrix, die mit einem 2 x 1-Vektor multipliziert wird. Das ist
eine lineare Abbildung und aus der linearen Algebra ist bekannt, das das Bild ein
Vektorraum ist. Da Rg(Jr) = 2, ist auch dim(7,5) = 2.

b) Hier kann man wie in Punkt a) argumentieren

c) TsS = {x € R3|3parametrisierte Kurve 7y : [—¢, +¢] — S fiir ein ¢ > 0 mit v(0) =
s und v/(0) = =}
Wenn jemand diesen Beweis fiihrt, bitte an info@martin-thoma.de schicken.

d) Sei z € TS, v : [—¢,+¢] — S eine parametrisierte Kurve mit £ > 0 und +/(0) = s,
sodass 7/(0) = z gilt. Da y(t) € S fir alle t € [—¢,¢],ist foy=0
= 0= (f07)'(0) = (grad(f)(v(0)),~'(0))
= T8 C grad(f)(s)*

L2 T8 = (grad(f)(s)) -

Definition 71
a) Ein Normalenfeld auf der reguldren Flache S C R3 ist eine Abbildung n : § — S2 C
R3 mit n(s) € T,S* fiir jedes s € S.

b) S heift orientierbar, wenn es ein stetiges Normalenfeld auf S gibt.

Manchmal wird zwischen einem Normalenfeld und einem FEinheitsnormalenfeld unterschieden.
Im Folgenden werden diese Begriffe jedoch synonym benutzt.

Bemerkung 74 (Eigenschaften von Normalenfeldern)
a) Ein Normalenfeld auf S ist genau dann stetig, wenn es glatt ist (also C*°).

b) Zu jedem s € S gibt es eine Umgebung V' C R? von s und eine lokale Parametrisierung
F:U — V von S um s, sodass auf F(U) =V NS ein stetiges Normalenfeld existiert.

c) S ist genau dann orientierbar, wenn es einen differenzierbaren Atlas von S aus lokalen
Parametrisierungen F; : U; — Vi, ¢ € [ gibt, sodass fiir alle 4,7 € F und alle
seV;nV;NS gilt:

Vi=V;
———
det(Ds Fjo F1) >0
N———

€R3><3
Beweis: Wird hier nicht gefiihrt.
Beispiel 46 (Normalenfelder)

1) S =52, n; =idg ist ein stetiges Normalenfeld.
Auch ny = —idge ist ein stetiges Normalenfeld.

2) S = Mobiusband (vgl. Abbildung 5.1) ist nicht orientierbar. Es existiert ein Norma-
lenfeld, aber kein stetiges Normalenfeld.
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Abbildung 5.1: Mébiusband

5.3 GauB-Kriimmung

Bemerkung 75
Sei S eine regulire Fliche, s € S, n(s) ist ein Normalenvektor in s, z € 1,5, ||z| = 1.

Sei E der von x und n(s) aufgespannte 2-dimensionale Untervektorraum von R3.

Dann gibt es eine Umgebung V' C R3 von s, sodass
C:=(s+E)nSnv

das Bild einer durch Bogenlidnge parametrisierten Kurve 7 : [—¢,¢] — S enthélt mit y(0) = s
und 7/(0) = =.

Beweis: ,Satz iiber implizite Funktionen®!

Definition 72
In der Situation aus Bemerkung 75 heifit die Kriimmung x~(0) der Kurve v in der Ebene
(s + E) im Punkt s die Normalkriimmung von S in s in Richtung 2 = +/(0).

Man schreibt: Knor(S, ) := £4(0)

Hinweis: Die Kriimmung ist nur bis auf das Vorzeichen bestimmt.

Beispiel 47 (Gaufi-Kriimmung)
1) S=85%2=V(X2+Y?%2+ 2% 1) ist die Kugel um den Ursprung mit Radius 1, n = id,
s=1(0,0,1), x = (1,0,0)
= FE=R-z+R-n(s) (z,2-Ebene)

C = ENS ist Kreislinie

KNor (8, x) = % =1

2) 8 =V(X24 Z2—1) CR? ist ein Zylinder (siche Abbildung 5.2a). s = (1,0,0)
z1 =1(0,1,0) = Ey =R-e; + R ez (z,y-Ebene)
SNE; =V(X2+Y?-1)NE, Kreislinie in E
= KNor(s,x1) = £1
x9 =1(0,0,1),EF2 =R -e; +R-e3 (x, 2-Ebene)

!Siehe z. B. https://github.com/MartinThoma/LaTeX-examples/tree/master/documents/Analysis¥%2011
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VNE,NS={(1,0,2) €R?®| 2 €R } ist eine Gerade
= KNor(s,22) =0

3) S=V(X2-Y?2-2),s=(0,0,0) (Hyperbolisches Paraboloid, siche Abbildung 5.2b)
xz1 = (1,0,0), n(s) = (0,0,1)

x9 =(0,1,0
K’NOI‘(Saxl) = 2
KNor (8, 22) = —2

N

N
LR

MR
\\\\\\\\\\\‘:“

(a) S=V(X?+2%-1) (b) S=V(X?-Y?-2)
Abbildung 5.2: Beispiele fiir regulédre Flachen

Definition 73
Sei S C R3 eine regulire Fliche, s € S und n ein stetiges Normalenfeld auf S.

v : [—e,e] — S eine nach Bogenlange parametrisierte Kurve (¢ > 0) mit v(0) = s und
7

7"(0) # 0.
: — 2"(0)

Sei n(0) := m. Zerlege

n(0) = n(0)! + n(0)* mit n(0)* € TuS und n(0)* € (T,5)*

Dann ist n(0)* = (n(0),n(s)) - n(s)
kNor(8,7) = (7¥(0),n(s)) die Normalkriimmung.

Bemerkung 76
Sei Y(t) = y(—t), t € [—&,€]. Dann ist knor(S,7) = KNor (S, 7Y)-

Beweis: 77(0) =~"(0), da 7' (0) = —+/(0).
Es gilt: KNor(s,y) héngt nur von |7/(0)| ab und ist gleich xknor(s,7/(0)).

Bemerkung 77
Sei S eine regulére Fldche und n = n(s) ein Normalenvektor an S in s.

Sei T}S ={z € T,S||z|] =1} =S Dann ist
KNor(8) : TslS — R, =+ K&Nor(S,2)

eine glatte Funktion und Bild k{,(s) ist ein abgeschlossenes Intervall.

Definition 74
Sei S eine regulédre Flidche und n = n(s) ein Normalenvektor an S in s.
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a) K7(s):=min{ Kl (s,z) | 2 € 7,9} und heiken Hauptkriimmungen von S in s.
K5 (s) : = max { K, (s,2) |z € T!S}
b) K(s):= k}(s) - k5 (s) heift Gauft-Kriitmmung von S in s.

Bemerkung 78
Ersetzt man n durch —n, so gilt:

R (8, @) = —kfeop(z) Vo € TS
= K1 "(s) = —K5(s)
Ky (s) = =K1 (s)
und K~ "(s) = K"(s) =: K(s)

Beispiel 48
1) S = S2. Dann ist k1(s) = ra(s) = £1 Vs € S2
= K(s)=1
2) Zylinder:
k1(s) =0,k2(s) =1= K(s) =0
3) Sattelpunkt auf hyperbolischem Paraboloid:
k1(s) < 0,kr2(s) =0— K(s) <0

4) S = Torus. Siehe Abbildung 5.3

Abbildung 5.3: K(s1) > 0, K(s2) =0, K(s3) <0

Bemerkung 79
Sei S eine reguléare Flache, s € S ein Punkt.
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a) Ist K(s) > 0, so liegt S in einer Umgebung von s ganz auf einer Seite von 73S + s.

b) Ist K(s) < 0, so schneidet jede Umgebung von s in S beide Seiten von TS + s.

5.4 Erste und zweite Fundamentalform

Sei S C R3 eine reguliire Fliche, s € S, T,S die Tangentialebene an S in s und F : U — V eine
lokale Parametrisierung von S um s. Weiter sei p := F~1(s).

Definition 75
Sei Ig € R2*2 definiert als

o= (o) ) - (7 &0)

mit g; ; = gs(DpF(€i), DpF(e;))

- <§Z<p>,§£<p>> ije{12}

Die Matrix Ig heift erste Fundamentalform von S bzgl. der Parametrisierung F'.

Bemerkung 80
a) Die Einschrinkung des Standardskalarproduktes des R? auf T,S macht T3S zu einem

euklidischen Vektorraum.
b) { D F(e1), DyF(e2) } ist eine Basis von T5S.

c) Bzgl. der Basis { D,F(e1), DpF(e2) } hat das Standardskalarprodukt aus Bemer-
kung 80.a die Darstellungsmatrix Ig.

d) gi ;(s) ist eine differenzierbare Funktion von s.

Bemerkung 81

2

OF OF
det(ls) = || m—(p) X 57—
et1s) = | g t) x g 0)
L1 Y1
Beweis: Sei g—uFl(p) = x|, a%(p) =192
3 Y3
21
Dann ist g—fl(p) X g—f;(p) = | 22 | mit
z3

21 = T2Y3 — T3Y2
22 = T3Y1 — T1Y3
23 = T1Y2 — T2Y1

oF oF
= ||87u1(p) X OTLQ(p)H =2} + 25 + 23
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det(Is) = g1,192,2 — 9%,2

T x1 U1 Y1 T 1
— T2 y | T2 Y2 s | Y2 - x2 y | Y2
x3 €3 Y3 Y3 €3 Y3

= (2] + 25 + 23) (Y] + v3 + v3) — (21y1 + 22y + 23Y3)°
Definition 76

a) Das Differential dA = /det([)du;dus heift Flachenelement von S bzgl. der Para-

metrisierung F'.

b) Fiir eine Funktion f : V — R heifst

/fdA ::/f(F(ul,u2))\/detl(s)du1du2
\% U T

der Wert des Integrals von f iiber V, falls das Integral rechts existiert.

Bemerkung 82
a) fV fdA ist unabhéngig von der gewahlten Parametrisierung.

b) Sei f: S — R eine Funktion, die im Sinne von Definition 76.b lokal integrierbar ist.
Dann ist [ fdA wohldefiniert, falls (z. B.) S kompakt ist.

Etwa:

/SfdA:g/V{dA
=) [rdA

iz 2 ViV

+) [fdA

ik VinVinVi

Beweis:
a) Mit Transformationsformel.

b) Ist dem Leser iiberlassen.

Proposition 5.1
Sei S C R? eine regulire, orientierbare Fliche mit glatten Normalenfeld n : S — S2.
Dann gilt:

a) n induziert fiir jedes s € S eine lineare Abbildung dsn : TsS — T, n(S)SQ durch

d
dsn(zx) = En(s,ﬁr“t:ﬂ) o

Soll auf Flache S bleiben

Die Abbildung dsn heifit Weingarten-Abbildung
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b) Tps)S? = TsS.
¢) dgn ist ein Endomorphismus von 75S.

d) dsn ist selbstadjungiert bzgl. des Skalarproduktes Ig.

Hinweis: Die Weingarten-Abbildung wird auch Formoperator genannt.

Beweis:
a) Wenn jemand diesen Beweis fiihrt, bitte an info@martin-thoma.de schicken.
b) Tn(5)5’2 = (n(s))t =T,S

¢) Wegen Proposition 5.1 (a) ist dsn ein Homomorphismus.
TODO: Warum sollte das ein Endomorphismus sein?

d) Zu zeigen: Vx,y € I,S : (z,dsn(y)) = (dsn(x),y)

Aufgrund der Bilinearitdt des Skalarproduktes geniigt es diese Eigenschaft fiir die
Basisvektoren zu zeigen.

Sei z; = D, F(e;) = gqi. (p) i=1,2
2
Beh.: (z;,dsn(x;)) = (%(p)adsn@i»

= (5230 (p), dsn(x:)) = (2, dsn ()

OF
Bew. 0= (Z-(p+te;),n(p+te;))
d [ OF
d OF

=

TP te)]_nls) + (wrdin D)

2 Ij
%(1))
Definition 77

Die durch —dgn definierte symmetrische Bilinearform auf 7.5 heift zweite Fundamental-
form von S in s bzgl. F.

Man schreibt: I1s(x,y) = (—dsn(x),y) = Is(—dsn(x),y)
Bemerkung 83
Beziiglich der Basis { x1,x2 } von TS hat I, die Darstellungsmatrix

®) . _ 0*F
(hi,j )i,jzlyg mit hm(s) = <m(?)an(s)>

Proposition 5.2
Sei 7 : [—¢&,e] — S eine nach Bogenlidnge parametrisierte Kurve mit v(0) = s. Dann gilt:

’iNor(Sa ’7) = IIS(’Y/(O)v 7/(0))
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Beweis: Nach Definition 73 ist £nor(s,v) = (77(0),n(s)). Nach Voraussetzung gilt

n(y(t)) L +'(t) & (+7(0),n(s)) =0
Die Ableitung nach ¢ ergibt

0= %((n(v(t))y’/(t))

_ <in(7(t))‘t:0,7’(o)> + (n(s),7"(0))

= (dsn(7'(0)),7(0)) + Fnor(s,7)
- _115(7/(0)7 7/(0» + ’%Nor<3a 7)
Folgerung 5.3

Die beiden Definitionen von Normalkriimmung in Abschnitt 5.1 stimmen {iberein:

KNor(37 '7) = /iNor(sv ’YI(O»

Satz 5.4
Sei S C R? eine reguliire, orientierbare Fliche und s € S.

a) Die Hauptkriimmungen k1(s), ko(s) sind die Eigenwerte von II.

b) Fiir die Gauk-Kriimmung gilt: K (s) = det(I1)

Bewelis:

a) Il ist symmetrisch, IS hat also eine Orthonormalbasis aus Eigenvektoren 1, y2 von
II,. Ist € TS, ||z]| = 1, so gibt es ¢ € [0,27) mit x = cos - y1 + sinp - yo.
Seien A1, A2 die Eigenwerte von I1g, also I1s(y;,y;) = A;. Dann gilt:
IT (2, 2) = cos® pA; +sin? pAo
= (1 — sin? ) A1 + sin” pAg
= A +sin? p(Ay — A1) >\
= cos? p + (1 — cos® ) A\
=Xy —cos’ (A2 — A1) < Ag

Lrop 0% A1 = min { Kxor(s, ) ! reT!S }

Ay = max{ KNor (8, x) } T € T;S }

Satz 5.5 (Satz von Gauft-Bonnet)
Sei S C R3 eine kompakte orientierbare regulire Fliche. Dann gilt:

/ K(s)dA = 2mx(S5)
S

Dabei ist x(S) die Euler-Charakteristik von S.

Beweis: Der Beweis wird hier nicht gefithrt. Er kann in ,Elementare Differentialgeometrie” von
Christian Béar (2. Auflage), ISBN 978-3-11-022458-0, ab Seite 281 nachgelesen werden.



Losungen der Ubungsaufgaben

LGésung zu Aufgabe 1

Teilaufgabe a) Es gilt:
(1) 0, X € Tx.

(ii) Tx ist offensichtlich unter Durchschnitten abgeschlossen, d. h. es gilt fiir alle Uy, Uy €
Tx:U1NUy € Tx.

(iii) Auch unter beliebigen Vereinigungen ist Tx abgeschlossen, d. h. es gilt fiir eine
beliebige Indexmenge I und alle U; € Tx fiir allei € I : J,; U; € Tx

Also ist (X, Tx) ein topologischer Raum.

Teilaufgabe b) Wihle x = 1,y = 0. Dann gilt « # y und die einzige Umgebung von x
ist X. Day =0 € X kénnen also x und y nicht durch offene Mengen getrennt werden.
(X, Tx) ist also nicht hausdorffsch.

Teilaufgabe c) Nach Bemerkung 4 sind metrische Rdume hausdorffsch. Da (X, T x) nach
(b) nicht hausdorffsch ist, liefert die Kontraposition der Trennungseigenschaft, dass (X, Tx)
kein metrischer Raum sein kann.

LGésung zu Aufgabe 2

Teilaufgabe a)
Beh.: Va € Z: { a } ist abgeschlossen.
Sei a € Z beliebig. Dann gilt:

Wenn jemand diese Aufgabe gemacht hat, bitte die Losung an info@martin-thoma.de
schicken.

Teilaufgabe b)

Beh.: { —1,1 } ist nicht offen
Bew.: durch Widerspruch
Annahme: { —1,1 } ist offen.

Dann gibt es T C B, sodass | Jy;er M = { —1,1}. Aber alle U € B haben unendlich viele
Elemente. Auch endlich viele Schnitte von Elementen in B haben unendlich viele Elemente
= keine endliche nicht-leere Menge kann in dieser Topologie offen sein = { —1,1 } ist
nicht offen. |

Teilaufgabe c)
Beh.: Es gibt unendlich viele Primzahlen.
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Bew.: durch Widerspruch

Annahme: Es gibt nur endlich viele Primzahlen p € P

Dann ist N
FS d. Arithmeti
ZA{ =11 R Uy
peP
endlich. Das ist ein Widerspruch zu |Z| ist unendlich und |{ —1,1 } | ist endlich. [ |

Losung zu Aufgabe 3

(a) Beh.: Die offenen Mengen von P sind Vereinigungen von Mengen der Form
H Uj X H Pi
jeJ €N, i£j
wobei J C N endlich und U; C P; offen ist.

Beweis: Nach Definition der Produkttopologie bilden Mengen der Form

HUj X HB, wobei J C N endlich und U; C Pjoffen Vj € J
1eJ ieN
idJ
eine Basis der Topologie. Damit sind die offenen Mengen von P Vereinigungen
von Mengen der obigen Form. ]

(b) Beh.: Die Zusammenhangskomponenten von P sind alle einpunktig.

Beweis: Es seinen z,y € P und z sowie y liegen in der gleichen Zusammenhangs-
komponente Z C P. Da Z zusammenhangend ist und Vi € I : p; : P — P; ist
stetig, ist p;(Z) C P; zusammenhéngend fiir alle ¢ € N. Die zusammenhéngenden
Mengen von P; sind genau {0} und {1}, d. h. fir alle ¢ € N gilt entweder
pi(Z) C{0} oder p;(Z) C{1}. Esseiz €{0,1} so, dass p;(Z) C { z } fir
alle ¢ € N. Dann gilt also:

pi(x) =z =pi(y) Vi € N
—~— ——

=T; =Yi

Somit folgt: x =y ]

LGésung zu Aufgabe 4

(a) Beh.: GL,(R) ist nicht kompakt.
Bew.: det : GL,(R) — R\ {0} ist stetig. Auferdem ist det(GL,(R)) =R\ {0}

nicht kompakt. = GL,(R) ist nicht kompakt. [ |
(b) Beh.: SL;(R) ist nicht kompakt, fir n > 1 ist SL,(R) kompakt.

Bew.: Fiir SL; (R) gilt: SLy(R) = { A € R | det A =1} = (1) = {1}. Z SLy(R)
ist kompakt.
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SLn(R) C GL,(R) lisst sich mit einer Teilmenge des R identifizieren. Nach Satz 1.1
sind diese genau dann kompakt, wenn sie beschriankt und abgeschlossen sind. Definiere
nun fiir fiir n € N>o,m € N:

) 1
Ay, = diag, (m, e LRRY 1)

Dann gilt: det 4,, = 1, d. h. A, € SL,(R), und A,, ist unbeschriankt, da ||A;,||c =

m —— 00. [ |
m—00

(c) Beh.: P(R) ist kompakt.
Bew.: P(R) = 5" /,_,. Per Definition der Quotiententopologie ist die Klassenabbil-
dung stetig. Da S™ als abgeschlossene und beschriinkte Teilmenge des R"*! kompakt

ist 2 P(R) ist kompakt. |

Losung zu Aufgabe 5

Die Definition von Homéomorphismus kann auf Seite 9 nachgelesen werden.

Definition 78
Seien (G,*) und (H,o) Gruppen und ¢ : G — H eine Abbildung.

© heift Homomorphismus, wenn

Vg1,92 € G : ¢(g1 * g2) = ¢(91) © ¢(92)
gilt.

Es folgt direkt:

1) Sei X = R mit der Standarttopologie und ¢; : idg und R = (R, +). Dann ist ¢; ein
Gruppenhomomorphismus und ein Homdéomorphismus.

2) Sei G = (Z,+) und H = (Z/37Z,+). Dann ist ¢o : G — H,x — x mod 3 ein
Gruppenhomomorphismus. Jedoch ist @9 nicht injektiv, also sicher kein Homéomor-
phismus.

3) Sei X ein topologischer Raum. Dann ist idx ein Homoéomorphismus. Da keine
Verkniipfung auf X definiert wurde, ist X keine Gruppe und daher auch kein Grup-
penhomomorphismus.

Also: Obwohl die Begriffe dhnlich klingen, werden sie in ganz unterschiedlichen Kontexten
verwendet.

Losung zu Aufgabe 6

Die Definition einer Isotopie kann auf Seite 20 nachgelesen werden, die einer Isometrie auf
Seite 7.
Definition 79

Seien (G, *) und (H, o) Gruppen und ¢ : G — H eine Abbildung.

© heiftt Isomorphismus, wenn ¢ ein bijektiver Homomorphismus ist.

Eine Isotopie ist also fiir Knoten definiert, Isometrien machen nur in metrischen Rdumen
Sinn und ein Isomorphismus benétigt eine Gruppenstruktur.
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LGésung zu Aufgabe 7

(a) Vor.: Sei M eine topologische Mannigfaltigkeit.
Beh.: M ist wegzusammehéngend < M ist zusammenhéngend

Beweis: ,,=“: Da M insbesondere ein topologischer Raum ist folgt diese Richtung
direkt aus Bemerkung 23.

»,<=": Seien =,y € M und
Z :={z€ M |3IWeg von z nach z }
Es gilt:
(i) Z # 0, da M lokal wegzusammenhéngend ist
(ii) Z ist offen, da M lokal wegzusammenhéngend ist
(iii) Z¢ :={ %€ M | $Weg von x nach Z } ist offen

Da M eine Mannigfaltigkeit ist, existiert zu jedem 2z € Z¢ eine offene und
wegzusammenhéangende Umgebung Uz C M.

Es gilt sogar Uz C Z¢, denn giibe es ein Uz 3 Z € Z, so gibe es Wege 73 :
[0,1] = M,~v(0) = Z,72(1) = z und 71 : [0,1] = M,v1(0) = Z,v1(1) = Z.
Dann wére aber

v:[0,1] = M,
7 (2x) falls 0 <z <1
Y(z) = .
Yo(2z —1) falls § <z <1

ein stetiger Weg von Z nach x = Widerspruch.

Da M zusammenhiingend ist und M = Z U Z% , sowie Z £ () folgt Z¢ = 0.
T~

offen  offen
Also ist M = Z wegzusammenhéngend. ]

(b) Beh.: X ist wegzusammenhéngend.

Beweis: X := (R\{0})U{0,02 } und (R\ {0})U{02} sind homéomorph zu R.
Also sind die einzigen kritischen Punkte, die man nicht verbinden kénnen konnte
01 und 0s.

Da (R\{0})U{0; } hombomorph zu R ist, exisitert ein Weg ~; von 0; zu einem
beliebigen Punkt a € R\ {0 }.

Da (R\ {0})U{02} ebenfalls hombomorph zu R ist, existiert auferdem ein
Weg 2 von a nach 0y. Damit existiert ein (nicht einfacher) Weg « von 0; nach
02. [ |

Losung zu Aufgabe 9

Vor.: Sei (X, d) eine absolute Ebene, A, B,C' € X und AABC ein Dreieck.
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(a)

Beh.: AB~ AC = /ABC = /ACB

Bew.: Sei AB = AC.

= 3 Isometrie ¢ mit p(B) = C und ¢(C) = B und ¢(A) = A.

= ¢(LABC) = LACB

= /LABC = LZACB |

Beh.: Der ldangeren Seite von AABC liegt der grofere Winkel gegeniiber und umge-
kehrt.

Bew.: Sei d(A,C) > d(A, B). Nach §3 (i) gibt es C' € ACT mit d(A4,C") = d(A, B)
= (' liegt zwischen A und C.

Es gilt {ABC’ < LABC und aus Aufgabe 9 (a) folgt: {ABC" = LAC'B.

/BC'" A ist ein nicht anliegender Aufienwinkel zu /BC A Lo % ¢ BC'A > £BCA

= ABCA < {BC'A = {ABC" < LABC Sei umgekehrt {ABC > £BCA, kann
wegen 1. Teil von Aufgabe 9 (b) nicht d(A, B) > d(A, C) gelten.

Wegen Aufgabe 9 (a) kann nicht d(A, B) = d(A, C) gelten.

= d(A,B) < d(A,C) |

Vor.: Sei g eine Gerade, P€ X und P ¢ ¢

Beh.: 3! Lot

Bew.: UB10 A4(a): Es gibt Geradenspiegelung ¢ an g. ¢ vertauscht die beiden
Halbebenen bzgl. g.

= ¢(P)P schneidet g in F.

Es gibt eine Geradenspiegelung ¢ an g. ¢ vertauscht die beiden Halbebenen bzgl. ¢
= @(P)P schneidet g in F.

Sei A € g\{ F }. Dann gilt o(LAFP) = LAFp(P) = m = LAF P ist rechter Winkel.

Géabe es nun G € g\ { F' }, so dass PG weiteres Lot von P auf g ist, wire APFG
ein Dreieck mit zwei rechten Innenwinkeln (vgl. Abbildung 5.4).

1
¢
1
1
1
1
1
1
1
1
1
.1
1
1
1
1
1

Abbildung 5.4: Zwei Lote zu einer Geraden g durch einen Punkt P

Nach Folgerung 4.4 ist die Summe von zwei Innenwinkeln immer < 7
= @ gibt es nicht. [ |

LGosung zu Aufgabe 10

Sei f||hund o. B.d. A. f | g.

fHh= fNh=+#0,seialsoz e fNh Mit Axiom §5 folgt: Es gibt hochstens eine Parallele
zu g durch z, da = ¢ g. Diese ist f, da = € f und f || g. Da aber z € h, kann h nicht
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parallel zu g sein, denn ansonsten gibe es zwei Parallelen zu g durch = (f #h). = gt h R

Losung zu Aufgabe 11

Sei (X,d,G) eine Geometrie, die §1-§4 erfiillt. Seien auferdem AABC und AA'B'C’
Dreiecke, fiir die gilt:

d(A,B) =d(A', B
d(A,C) =d(A',C")
d(B,C) =d(B',C")

Sei ¢ die Isometrie mit p(A) = A’ p(B) = B’ und ¢(C") liegt in der selben Halbebene
bzgl. AB wie C'. Diese Isometrie existiert wegen §4.

Es gilt d(A,C) = d(A',C") = d(p(A"),¢(C")) = d(A, ¢(C")) und d(B,C) = d(B',C") =
d(p(B'), p(C")) = d(B,(C")).

Bem. 62 C = (p(C)

Es gilt also o(AA'B'C") = AABC. |
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Erganzende Definitionen und Satze

Da dieses Skript in die Geometrie und Topologie einfiihren soll, sollten soweit wie mdoglich alle
benotigten Begriffe definiert und erklért werden. Die folgenden Begriffe wurden zwar verwendet,
aber nicht erklart, da sie Bestandteil der Vorlesungen ,, Analysis I und II“ sowie ,Lineare Algebra
und analytische Geometrie I und II“ sind. Jedoch will ich zumindest die Definitionen bereitstellen.

Definition 80
Sei D C R und zg € R. x heift ein Haufungspunkt von D :< 3 Folge z,, in D \ { o }
mit x, — Tg.

Folgende Definition wurde dem Skript von Herrn Prof. Dr. Leuzinger fiir Lineare Algebra
entnommen:

Definition 81
Es seien V und W K-Vektorrdume und A(V) und A(W) die zugehodrigen affinen Réume.
Eine Abbildung f : V' — W heifit affin, falls fiir alle a,b € V und alle A,y € Kmit A+p =1
gilt:

fha+pb) = Af(a) + puf(b)

Definition 82
Sei V' ein Vektorraum und S C V eine Teilmenge.

S heifst eine Orthonormalbasis von V| wenn gilt:
(i) S ist eine Basis von V/
(i) Vo e S vl =1

(iil) Yvi,ve €S :v1 # vy = (v1,v2) =0

Satz (Zwischenwertsatz)
Sei a < bund f € CJa,b] := C([a,b]), weiter sei yo € R und f(a) < yo < f(b) oder
f(b) <yo < f(a). Dann existiert ein zg € [a,b] mit f(z¢) = yo.

Definition 83
Sei V' ein Vektorraum iiber einem Korper K und f: V' — V eine lineare Abbildung.

v €V \ {0} heifst Eigenvektor :< I\ € K: f(v) = \v.
Wenn ein solches A € K existiert, heifst es Eigenwert von f.

Satz (Binomischer Lehrsatz)
Sei z,y € R. Dann gilt:

(x+y)" = Z <Z> "k vyn e Ny
k—

0



108 Ergénzende Definitionen und Sétze

Definition 84
Seien a,b € R? Vektoren.

ap ai asbs — azba
axb:= bg X b3 = a3b1 — CL1b3
as as arby — azby



Symbolverzeichnis

Mengenoperationen Wege

A®  Komplement der Menge A v:I—X Ein Weg

P(M) Potenzmenge von M [v] HOIIlOtOpieklasse: von 7y
M Abschluss der Menge M Y1 * Y2 Zusammel?hangen von Wegen
&M Rand der Menge M v1 ~ 72 Homotopie von Wegen
M?°  Inneres der Menge M F(@) =91 —2) .Invlerser Weg
C :=([0,1]) Bild eines Weges =y

A x B Kreuzprodukt zweier Mengen
A C B Teilmengenbeziehung
A C B echte Teilmengenbezichung

A\B A ohne B Weiteres

AUB Vereinigung

AU B Disjunkte Vereinigung B Basis einer Topologie
AN B Schnitt S Subbasis einer Topologie

PBs(x) o0-Kugel um z
% Topologie

: A Atlas
Geometrie P Projektiver Raum
(-,-) Skalarprodukt
AB  Gerade durch die Punkte A und B X/~ X modulo ~
AB  Strecke mit Endpunkten A und B [z]~  Aquivalenzklassen von x bzgl. ~
AABC  Dreieck mit Eckpunkten A, B, C |z|| Norm von x
AB = CD Die Strecken AB und CD sind || Betrag von x
isometrisch (a) FErzeugnis von a
|K| Geometrische Realisierung des Simplizi-
alkomplexes K S"  Sphiire
T" Torus

fog Verkettung von f und g
Gruppen mx Projektion auf X

flu  f eingeschrankt auf U

f~1(M) Urbild von M

Homéo(X) Homéomorphismengruppe Rg(M) Rang von M

Iso(X) Isometriengruppe X(K) Euler-Charakteristik von K

GL,(K) Allgemeine lineare Gruppe? A Standard-Simplex

SL,(K) Spezielle lineare Gruppe X#Y  Verklebung von X und Y

PSL,(K) PI‘OJekth.e lineare Gruppe d, Lineare Abbildung aus Bemerkung 37
Perm(X) Permutationsgruppe A>B  Aist isometrisch zu B

Sym(X) Symmetrische Gruppe f« Abbildung zwischen Fundamentalgruppen

(vgl. Seite 50)

2von General Linear Group
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Zahlenmengen

N=1{1,2,3,...} Natiirliche Zahlen

Z=NU{0,-1,-2,...} Ganze Zahlen
Q=7ZU{3,3,2}={Zmit2€ZundneZ\{0}} Rationale Zahlen
R=QU { V2,3, .. } Reele Zahlen

R4 Echt positive reele Zahlen

R} o :={(z1,...,2,) ER" [z, >0} Halbraum
R* =R\ {0} Einheitengruppe von R
C={a+ib|a,beR} Komplexe Zahlen
P={23,57,...} Primzahlen
H={zeC|32>0} obere Halbebene

I =[0,1] € R Einheitsintervall

f:S"<— R? Einbettung der Kreislinie in die Ebene

7m1(X,z) Fundamentalgruppe im topologischen Raum X um z € X
Fix(f) Menge der Fixpunkte der Abbildung f

| -|l2 2-Norm; Euklidische Norm

£ Krimmung

KNor Normalenkrimmung
V(f) Nullstellenmenge von f*

Krimmung

D,F :R? -+ R3 Lineare Abbildung mit Jacobi-Matrix in p (siehe Seite 90)
T,S Tangentialebene an S C R? durch s € S
dsn(xz) lineare Abbildung (siehe Seite 96)

3von Vanishing Set
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Abbildung
affine, 107
differenzierbare, 30
homotope, 51
offene, 53
simpliziale, 36
stetige, 9
Abschluss, 4
Abstand, 87
Abstandsaxiom, 65
Achterknoten, 20
Aktion, siehe Gruppenoperation
Anordnungsaxiome, 66
Atlas, 25
Aufenwinkel, 70
Axiom, 64
Axiomensystem, 64

Basis, 4

Baum, 38

Betti-Zahl, 42
Bewegungsaxiom, 66
Binormalenvektor, 90

Cantorsches Diskontinuum, 23
C*-Struktur, 30

Decktransformation, 59
Decktransformationsgruppe, 59
Deformationsretrakt, 48
dicht, 4
Diffeomorphismus, 30
Dimension, 35
diskret, 54
Doppelverhiltnis, 82
Dreibein

begleitendes, 90

Ebene

euklidische, 64
Eigenvektor, 107
Figenwert, 107

einfach zusammenhéngend, 50
Einheitsnormalenfeld, 91
Euler-Charakteristik, siehe Eulerzahl
Eulersche Polyederformel, 39
Eulerzahl, 37

Farbbarkeit, 21
Faser, siehe Urbild
Flache
orientierbare, 91
regulére, 31
Flachenelement, 96
Formoperator, siehe Weingarten-Abbildung
Fundamentalform
erste, 95
zweite, 97
Fundamentalgruppe, 48

Gaufs-Kriimmung, 93, 92-95
Geometrie, 64
Gerade, 64
hyperbolische, 78
Graph, 38
Grenzwert, 9
Gruppe
allgemeine lineare, 23, 27
spezielle lineare, 23
topologische, 34
Gruppe operiert durch Homdéomorphismen,
62
Gruppenaktion, siehe Gruppenoperation
Gruppenoperation, 61, 61-63
stetige, 62

Héufungspunkt, 107
Hiille

konvexe, 35
Halbebene, 66
Halbgerade, 65
Halbraum, 29
Hauptkrimmung, 93
Hilbert-Kurve, 19, 19
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Homoéomorphismengruppe, 10

Homd&omorphismus, 9
Homologiegruppe, 42

Homomorphismus, 101

Homotopie, 45
Homotopieklasse, 48

Inklusionsabbildung, 48

Innenwinkel, 70
Inneres, 4
Inzidenzaxiome, 64
Isometrie, 7, 11
Isometriegruppe, 11
Isomorphismus, 101
Isotopie, 20

Jordankurve, 19
geschlossene, 19

Karte, 25
Kartenwechsel, 29
Kern

offener, 4
Kleeblattknoten, 20

Klumpentopologie, siche triviale Topologie

Knoten, 20, 18-21
aquivalente, 20
trivialer, 20

Knotendiagramm, 21

kollinear, 65

kongruent, siehe isometrisch
Kongruenz, siehe Isometrie

Kongruenzsatz
SSS, 104
SWS, 69
SWW,_ 74
WSW, 70
Kriimmung, 89, 90
Kreis, 38
Kreuzprodukt, 108
Kurve, 88
Lange einer, 88

Lage
allgemeine, 35
Lehrsatz
Binomischer, 107
Lie-Gruppe, 34
liegt zwischen, 65
Liftung, 55
Limes, 9

lokal, 4
Lot, 87
Lotfufspunkt, 87

Mébiusband, 92

Mobiustransformation, 79

Mannigfaltigkeit, 25

differenzierbare, 30

geschlossene, 26

glatte, 30

mit Rand, 29
Menge

abgeschlossene, 3

offene, 3

zusammenhéngende, 12

Metrik, 7
diskrete, 7
hyperbolische, 83
SNCF, 8

Nebenwinkel, 87
Neilsche Parabel, 28
Normalenfeld, 91

Normalenvektor, 88, 90

Normalkriimmung, 92, 93, 98

Oktaeder, 35

Orthonormalbasis, 107

Paraboloid

hyperbolisches, 93

Parallele, 66
Parallelenaxiom, 64
parametrisiert

durch Bogenlénge, 88

Parametrisierung
reguldre, 31
Polyzylinder, 18
Produkttopologie, 5
Projektion

stereographische, 11

Punkt, 35

Quotiententopologie, 6, 11, 11

Rand, 4, 29

Raum
hausdorffscher, 8
kompakter, 15
metrischer, 7

projektiver, 6, 23, 26, 53
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topologischer, 3

zusammenhéngender, 12
Realisierung

geometrische, 35
Retraktion, 48

Satz von
Gauft-Bonnet, 98
Scheitelwinkel, 87
Seite, 35
Sierpiriskiraum, 4, 23
Simplex, 35
Simplizialkomplex, 35
Simplizialkomplexe
flachengleiche, 74
Sphére
exotische, 30
Standard-Simplex, 35
Standardtopologie, 3
sternférmig, 49
Stetigkeit, 9-12
Strecke, 65
Struktur
differenzierbare, 30
Subbasis, 4

Tangentialebene, 90, 90-91
Teilraum, 5
Teilraumtopologie, 5
Teilsimplex, 35
Topologie

diskrete, 3, 7

euklidische, 3

feinste, 11

triviale, 3

Zariski, 3, 13, 15
Torus, iii, 6, 39, 52, 94
Total Unzusammenhéangend, 100
Triangulierung, 39

Uberdeckung, 14
Ubergangsfunktion, siche Kartenwechsel
Uberlagerung, 52, 52-61
reguldre, 59
universelle, 58
Umgebung, 4

vanishing set, 27

Vektorprodukt, siehe Kreuzprodukt
Verklebung, 27

vertréglich, 30

Wiirfel, 35
Weg, 18
einfacher, 18
geschlossener, 18
homotope, 45
inverser, 49
zusammengesetzter, 47
Wegzusammenhang, 18
Weingarten-Abbildung, 96
Winkel, 70

Zusammenhang, 12-14
Zusammenhangskomponente, 14
Zwischenwertsatz, 107
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