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Was ist Topologie?

Die Kugeloberfläche S2 lässt sich durch strecken, stauchen und umformen zur Würfeloberfläche
oder der Oberfläche einer Pyramide verformen, aber nicht zum R2 oder zu einem Torus T 2. Für
den R2 müsste man die Oberfläche unendlich ausdehnen und für einen Torus müsste man ein
Loch machen.

Erforderliche Vorkenntnisse

Es wird ein sicherer Umgang mit den Quantoren (∀, ∃), Mengenschreibweisen (∪,∩, \, ∅,R,P(M))
und ganz allgemein formaler Schreibweise vorausgesetzt. Auch die Beweisführung mittels Wider-
spruchsbeweisen sollte bekannt sein und der Umgang mit komplexen Zahlen C, deren Betrag,
Folgen und Häufungspunkten nicht weiter schwer fallen. Diese Vorkenntnisse werden vor allem
in „Analysis I“ vermittelt.

http://martin-thoma.com/geotopo/
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Abbildung 0.1: Beispiele für verschiedene Formen

Außerdem wird vorausgesetzt, dass (affine) Vektorräume, Faktorräume, lineare Unabhängigkeit,
der Spektralsatz und der projektive Raum P(R) aus „Lineare Algebra I“ bekannt sind. In „Lineare
Algebra II“ wird der Begriff der Orthonormalbasis eingeführt.

Obwohl es nicht vorausgesetzt wird, könnte es von Vorteil sein „Einführung in die Algebra und
Zahlentheorie“ gehört zu haben.
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1 Topologische Grundbegriffe

1.1 Topologische Räume

Definition 1
Ein topologischer Raum ist ein Paar (X,T) bestehend aus einer Menge X und T ⊆ P(X)
mit folgenden Eigenschaften

(i) ∅, X ∈ T

(ii) Sind U1, U2 ∈ T, so ist U1 ∩ U2 ∈ T

(iii) Ist I eine Menge und Ui ∈ T für jedes i ∈ I, so ist
⋃
i∈I

Ui ∈ T

Die Elemente von T heißen offene Teilmengen von X.

A ⊆ X heißt abgeschlossen, wenn X \A offen ist.

Es gibt auch Mengen, die weder abgeschlossen, noch offen sind wie z. B. [0, 1). Auch gibt es
Mengen, die sowohl abgeschlossen als auch offen sind.

Bemerkung 1 (Mengen, die offen & abgeschlossen sind, ex.)
Betrachte ∅ und X mit der trivialen Topologie Ttriv = { ∅, X }.
Es gilt: X ∈ T und ∅ ∈ T, d. h. X und ∅ sind offen. Außerdem XC = X \X = ∅ ∈ T und
X \ ∅ = X ∈ T, d. h. X und ∅ sind als Komplement offener Mengen abgeschlossen. �

Beispiel 1 (Topologien)
1) X = Rn mit der von der euklidischen Metrik erzeugten Topologie TEuklid:

U ⊆ Rn offen⇔ für jedes x ∈ U gibt es r > 0,
sodass Br(x) = { y ∈ Rn | d(x, y) < r } ⊆ U

Diese Topologie wird auch „Standardtopologie des Rn“ genannt. Sie beinhaltet unter
anderem alle offenen Kugeln, aber z. B. auch Schnitte zweier Kugeln mit unterschiedli-
chem Mittelpunkt (vgl. Definition 1.ii).

2) Jeder metrische Raum (X, d) ist auch ein topologischer Raum.

3) Für eine Menge X heißt TDiskret = P(X) diskrete Topologie.

4) X := R,TZ := { U ⊆ R | R \ U endlich } ∪ { ∅ } heißt Zariski-Topologie
Beobachtungen:

• U ∈ TZ ⇔ ∃f ∈ R[X], sodass R \ U = V (f) = { x ∈ R | f(x) = 0 }
• Es gibt keine disjunkten offenen Mengen in TZ .
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5) X := Rn,TZ = {U ⊆ Rn|Es gibt Polynome f1, . . . , fr ∈ R[X1, . . . , Xn] sodass
Rn \ U = V (f1, . . . , fr)}

6) X := { 0, 1 } ,T = { ∅, { 0, 1 } , { 0 } } heißt Sierpińskiraum.
∅, { 0, 1 } , { 1 } sind dort alle abgeschlossenen Mengen.

Definition 2
Sei (X,T) ein topologischer Raum und x ∈ X.

Eine Teilmenge U ⊆ X heißt Umgebung von x, wenn es ein U0 ∈ T gibt mit x ∈ U0 und
U0 ⊆ U .

Gilt eine Eigenschaft in einer Umgebung, so sagt man, dass die Eigenschaft lokal gilt.

Definition 3
Sei (X,T) ein topologischer Raum und M ⊆ X eine Teilmenge.

a) M◦ := { x ∈M |M ist Umgebung von x } =
⋃
U⊆M
U∈T

U heißt Inneres oder offener

Kern von M .

b) M :=
⋂
M⊆A

A abgeschlossen

A heißt abgeschlossene Hülle oder Abschluss von M .

c) ∂M := M \M◦ heißt Rand von M .

d) M heißt dicht in X, wenn M = X ist.

Beispiel 2
1) Sei X = R mit euklidischer Topologie und M = Q. Dann gilt: M = R und M◦ = ∅

2) Sei X = R und M = (a, b). Dann gilt: M = [a, b]

3) Sei X = R,T = TZ und M = (a, b). Dann gilt: M = R

Definition 4
Sei (X,T) ein topologischer Raum.

a) B ⊆ T heißt Basis der Topologie T, wenn jedes U ∈ T Vereinigung von Elementen
aus B ist.

b) S ⊆ T heißt Subbasis der Topologie T, wenn jedes U ∈ T Vereinigung von endlichen
Durchschnitten von Elementen aus S ist.

Beispiel 3 (Basis und Subbasis)
1) Jede Basis ist auch eine Subbasis, z.B.

S = { (a, b) | a, b ∈ R, a < b } ist für R mit der Standardtopologie sowohl Basis als
auch Subbasis.

2) Gegeben sei X = Rn mit euklidischer Topologie T. Dann ist

B = {Br(x) | r ∈ Q>0, x ∈ Qn }

ist eine abzählbare Basis von T.

3) Sei (X,T) ein topologischer RaummitX = { 0, 1, 2 } und T = { ∅, { 0 } , { 0, 1 } , { 0, 2 } , X }.
Dann ist S = { ∅, { 0, 1 } , { 0, 2 } } eine Subbasis von T, da gilt:
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• S ⊆ T

• ∅, { 0, 1 } und { 0, 2 } ∈ S

• { 0 } = { 0, 1 } ∩ { 0, 2 }

• X = { 0, 1 } ∪ { 0, 2 }

Allerings ist S keine Basis von (X,T), da { 0 } nicht als Vereinigung von Elementen
aus S erzeugt werden kann.

Bemerkung 2
Sei X eine Menge und S ⊆ P(X). Dann gibt es genau eine Topologie T auf X, für die S
Subbasis ist.

Definition 5
Sei (X,T) ein topologischer Raum und Y ⊆ X.
TY := { U ∩ Y | U ∈ T } ist eine Topologie auf Y .

TY heißt Teilraumtopologie und (Y,TY ) heißt ein Teilraum von (X,T).

Die Teilraumtopologie wird auch Spurtopologie oder Unterraumtopologie genannt.

Definition 6
Seien X1, X2 topologische Räume.
U ⊆ X1 × X2 sei offen, wenn es zu jedem x = (x1, x2) ∈ U Umgebungen Ui um xi mit
i = 1, 2 gibt, sodass U1 × U2 ⊆ U gilt.

T = { U ⊆ X1 ×X2 | U offen } ist eine Topologie auf X1×X2. Sie heißt Produkttopologie.
B = { U1 × U2 | Ui offen in Xi, i = 1, 2 } ist eine Basis von T.

U

xx2

x1

U2

U1

X1

X2

Abbildung 1.1: Zu x = (x1, x2) gibt es Umgebungen U1, U2 mit U1 × U2 ⊆ U

Beispiel 4 (Produkttopologien)
1) X1 = X2 = R mit euklidischer Topologie.
⇒ Die Produkttopologie auf R× R = R2 stimmt mit der euklidischen Topologie auf
R2 überein.

2) X1 = X2 = R mit Zariski-Topologie. T Produkttopologie auf R2: U1 × U2

(Siehe Abbildung 1.2)
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U1 = R \ N

U
2

=
R
\
N

Abbildung 1.2: Zariski-Topologie auf R2

Definition 7
Sei X ein topologischer Raum, ∼ eine Äquivalenzrelation auf X, X = X/∼ sei die Menge
der Äquivalenzklassen, π : X → X, x 7→ [x]∼.

TX :=
{
U ⊆ X

∣∣ π−1(U) ∈ TX
}

(X,TX) heißt Quotiententopologie.

Beispiel 5
X = R, a ∼ b :⇔ a− b ∈ Z

R-1 0 1 2 3 4 5

0

a
U

aπ−1(u)

0 ∼ 1, d. h. [0] = [1]

Beispiel 6
Sei X = R2 und (x1, y1) ∼ (x2, y2)⇔ x1− x2 ∈ Z und y1− y2 ∈ Z. Dann ist X/∼ ein Torus.

Beispiel 7 (Projektiver Raum)

X = Rn+1 \ { 0 } , x ∼ y ⇔ ∃λ ∈ R× mit y = λx

⇔ x und y liegen auf der gleichen
Ursprungsgerade

X = Pn(R)
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Also für n = 1:

−4 −2 2 4 6 8

−4

−2

2

4

1.2 Metrische Räume

Definition 8
Sei X eine Menge. Eine Abbildung d : X ×X → R+

0 heißt Metrik, wenn gilt:

(i) Definitheit: d(x, y) = 0⇔ x = y ∀x, y ∈ X
(ii) Symmetrie: d(x, y) = d(y, x) ∀x, y ∈ X
(iii) Dreiecksungleichung: d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X
Das Paar (X, d) heißt ein metrischer Raum.

Bemerkung 3
Sei (X, d) ein metrischer Raum und

Br(x) := { y ∈ X | d(x, y) < r } für x ∈ X, r ∈ R+

B = {Br(x) ⊆ P(X) | x ∈ X, r ∈ R+ } ist Basis einer Topologie auf X.

Definition 9
Seien (X, dX) und (Y, dY ) metrische Räume und ϕ : X → Y eine Abbildung mit

∀x1, x2 ∈ X : dX(x1, x2) = dY (ϕ(x1), ϕ(x2))

Dann heißt ϕ eine Isometrie von X nach Y .

Beispiel 8 (Skalarprodukt erzeugt Metrik)
Sei V ein euklidischer oder hermitescher Vektorraum mit Skalarprodukt 〈·, ·〉. Dann wird V
durch d(x, y) :=

√
〈x− y, x− y〉 zum metrischen Raum.

Beispiel 9 (diskrete Metrik)
Sei X eine Menge. Dann heißt

d(x, y) =

{
0 falls x = y

1 falls x 6= y

die diskrete Metrik. Die Metrik d induziert die diskrete Topologie.
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Br(0) =

r r

r

r

(a) Br(0) (b) Euklidische Topologie

Abbildung 1.3: Veranschaulichungen zur Metrik d

Beispiel 10
X = R2 und d ((x1, y1), (x2, y2)) := max(‖x1 − x2‖, ‖y1 − y2‖) ist Metrik.

Beobachtung: d erzeugt die euklidische Topologie.

Beispiel 11 (SNCF-Metrik1)
X = R2

−4 −2 2 4 6 8

−4

−2

2

4

Definition 10
Ein topologischer Raum X heißt hausdorffsch, wenn es für je zwei Punkte x 6= y in X
Umgebungen Ux um x und Uy um y gibt, sodass Ux ∩ Uy = ∅.

Bemerkung 4 (Trennungseigenschaft)
Metrische Räume sind hausdorffsch, wegen

d(x, y) > 0⇒ ∃ε > 0 : Bε(x) ∩Bε(y) = ∅

Beispiel 12 (Topologische Räume und Hausdorff-Räume)
1) (R,TZ) ist ein topologischer Raum, der nicht hausdorffsch ist.

2) (R,TEuklid) ist ein topologischer Hausdorff-Raum.
1Diese Metrik wird auch „französische Eisenbahnmetrik“ genannt.

https://de.wikipedia.org/wiki/Franz%C3%B6sische_Eisenbahnmetrik
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Bemerkung 5 (Eigenschaften von Hausdorff-Räumen)
Seien X,X1, X2 Hausdorff-Räume.

a) Jeder Teilraum von X ist hausdorffsch.

b) X1 ×X2 ist hausdorffsch.

(x1, y1) (x2, y2)

x1 x2
U1 ×X2 U2 ×X2

X1

X2

Abbildung 1.4: Wenn X1, X2 hausdorffsch sind, dann auch X1 ×X2

Definition 11
Sei X ein topologischer Raum und (x)n∈N eine Folge in X. x ∈ X heißt Grenzwert oder
Limes von (xn), wenn es für jede Umgebung U von x ein n0 gibt, sodass xn ∈ U für alle
n ≥ n0.

Bemerkung 6
Ist X hausdorffsch, so hat jede Folge in X höchstens einen Grenzwert.

Beweis: Sei (xn) eine konvergierende Folge und x und y Grenzwerte der Folge.

Da X hausdorffsch ist, gibt es Umgebungen Ux von x und Uy von y mit Ux ∩ Uy = ∅ falls
x 6= y. Da (xn) gegen x und y konvergiert, existiert ein n0 mit xn ∈ Ux ∩ Uy für alle n ≥ n0

⇒ x = y �

1.3 Stetigkeit

Definition 12
Seien (X,TX), (Y,TY ) topologische Räume und f : X → Y eine Abbildung.

a) f heißt stetig :⇔ ∀U ∈ TY : f−1(U) ∈ TX .

b) f heißt Homöomorphismus, wenn f stetig ist und es eine stetige Abbildung g :
Y → X gibt, sodass g ◦ f = idX und f ◦ g = idY .

Bemerkung 72

Seien X,Y metrische Räume und f : X → Y eine Abbildung.

Dann gilt: f ist stetig ⇔ zu jedem x ∈ X und jedem ε > 0 gibt es δ(x, ε) > 0, sodass für
alle y ∈ X mit d(x, y) < δ gilt dY (f(x), f(y)) < ε.

2Es wird die Äquivalenz von Stetigkeit im Sinne der Analysis und Topologie auf metrischen Räumen gezeigt.
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Beweis: „⇒“: Sei x ∈ X, ε > 0 gegeben und U := Bε(f(x)).
Dann ist U offen in Y .
Def. 12.a
=====⇒ f−1(U) ist offen in X. Dann ist x ∈ f−1(U).
⇒ ∃δ > 0, sodass Bδ(x) ⊆ f−1(U)
⇒ f(Bδ(x)) ⊆ U
⇒ { y ∈ X | dX(x, y) < δ } ⇒ Beh.

„⇐“: Sei U ⊆ Y offen, X ∈ f−1(U).
Dann gibt es ε > 0, sodass Bε(f(x)) ⊆ U
Vor.
==⇒ Es gibt δ > 0, sodass f(Bδ(x)) ⊆ Bε(f(x)))
⇒ Bδ(x) ⊆ f−1(Bε(f(x))) ⊆ f−1(U) �

Bemerkung 8
Seien X,Y topologische Räume und f : X → Y eine Abbildung. Dann gilt:

f ist stetig
⇔ für jede abgeschlossene Teilmenge A ⊆ Y gilt : f−1(A) ⊆ X ist abgeschlossen.

Beispiel 13 (Stetige Abbildungen und Homöomorphismen)
1) Für jeden topologischen Raum X gilt: idX : X → X ist Homöomorphismus.

2) Ist (Y,TY ) trivialer topologischer Raum, d. h. TY = Ttriv, so ist jede Abbildung
f : X → Y stetig.

3) Ist X diskreter topologischer Raum, so ist f : X → Y stetig für jeden topologischen
Raum Y und jede Abbildung f .

4) Sei X = [0, 1), Y = S1 = { z ∈ C | ‖z‖ = 1 } und f(t) = e2πit.

R0 1
0

f

g

Abbildung 1.5: Beispiel einer stetigen Funktion f , deren Umkehrabbildung g nicht stetig ist.

Die Umkehrabbildung g ist nicht stetig, da g−1(U) nicht offen ist (vgl. Abbildung 1.5).

Bemerkung 9 (Verkettungen stetiger Abbildungen sind stetig)
Seien X,Y, Z topologische Räume, f : X → Y und g : Y → Z stetige Abbildungen.

Dann ist g ◦ f : X → Z stetig.

X
f //

g◦f   

Y

g��
Z

Beweis: Sei U ⊆ Z offen ⇒ (g ◦ f)−1(U) = f−1(g−1(U)). g−1(U) ist offen in Y weil g stetig
ist, f−1(g−1(U)) ist offen in X, weil f stetig ist. �

Bemerkung 10
a) Für jeden topologischen Raum ist

Homöo(X) := { f : X → X | f ist Homöomorphismus }

eine Gruppe.
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b) Jede Isometrie f : X → Y zwischen metrischen Räumen ist ein Homöomorphismus.

c) Iso(X) := { f : X → X | f ist Isometrie } ist eine Untergruppe von Homöo(X) für
jeden metrischen Raum X.

Bemerkung 11 (Projektionen sind stetig)
Seien X,Y topologische Räume. πX : X × Y → X und πY : X × Y → Y die Projektionen

πX : (x, y) 7→ x und πY : (x, y) 7→ y

Wird X × Y mit der Produkttopologie versehen, so sind πX und πY stetig.

Beweis: Sei U ⊆ X offen
⇒ π−1

X (U) = U × Y ist offen in X × Y . �

Bemerkung 12
Sei X ein topologischer Raum, ∼ eine Äquivalenzrelation auf X, X = X/∼ der Bahnenraum
versehen mit der Quotiententopologie, π : X → X, x 7→ [x]∼.

Dann ist π stetig.

Beweis: Nach Definition ist U ⊆ X offen ⇔ π−1(U) ⊆ X offen. �

Beobachtung: Die Quotiententopologie ist die feinste Topologie, sodass π stetig wird.

Beispiel 14 (Stereographische Projektion)
Rn und Sn \ {N } sind homöomorph für beliebiges N ∈ Sn. Es gilt:

Sn =
{
x ∈ Rn+1

∣∣ ‖x‖ = 1
}

=

{
x ∈ Rn+1

∣∣∣∣∣
n+1∑
i=1

x2
i = 1

}

O. B. d. A. sei N =


0
...
0
1

. Die Gerade durch N und P schneidet die Ebene H in genau

einem Punkt P̂ . P wird auf P̂ abgebildet.

f :Sn \ {N } → Rn

P 7→
genau ein Punkt︷ ︸︸ ︷
LP ∩H

wobei Rn = H =


 x1

...
xn+1

 ∈ Rn+1

∣∣∣∣∣∣∣ xn+1 = 0

 und LP die Gerade in Rn+1 durch N

und P ist.
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x

y

z

N

P̂

0

P

Abbildung 1.6: Visualisierung der stereographischen Projektion

Sei P =

 x1
...

xn+1

, so ist xn+1 < 1, also ist LP nicht parallel zu H. Also schneiden sich LP

und H in genau einem Punkt P̂ .

Es gilt: f ist bijektiv und die Umkehrabbildung ist ebenfalls stetig.

1.4 Zusammenhang

Definition 13

a) Ein RaumX heißt zusammenhängend, wenn es keine offenen, nichtleeren Teilmengen
U1, U2 von X gibt mit U1 ∩ U2 = ∅ und U1 ∪ U2 = X.

b) Eine Teilmenge Y ⊆ X heißt zusammenhängend, wenn Y als topologischer Raum mit
der Teilraumtopologie zusammenhängend ist.

Bemerkung 13
X ist zusammenhängend ⇔ Es gibt keine abgeschlossenen, nichtleeren Teilmengen A1, A2

mit A1 ∩A2 = ∅ und A1 ∪A2 = X.

Beispiel 15 (Zusammenhang von Räumen)
1) (Rn,TEuklid) ist zusammenhängend, denn:

Annahme: Rn = U1 ∪̇ U2 mit ∅ 6= U1, U2 ∈ TEuklid existieren.
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Sei x ∈ U1, y ∈ U2 und [x, y] die Strecke zwischen x und y. Sei V = [x, y]. Nun
betrachten wir V ( Rn als (metrischen) Teilraum mit der Teilraumtopologie TV .
Somit gilt U1 ∩ [x, y] ∈ TV wegen der Definition der Teilraumtopologie.

Dann gibt es z ∈ [x, y] mit z ∈ ∂(U1 ∩ [x, y]), aber z /∈ U1 ⇒ z ∈ U2. In jeder
Umgebung von z liegt ein Punkt von U1 ⇒ Widerspruch zu U2 offen.

2) R \ { 0 } ist nicht zusammenhängend, denn R \ { 0 } = R<0 ∪ R>0

3) R2 \ { 0 } ist zusammenhängend.

4) Q ( R ist nicht zusammenhängend, da (Q ∩ R<√2) ∪ (Q ∩ R>√2) = Q

5) { x } ist zusammenhängend für jedes x ∈ X, wobei X ein topologischer Raum ist.

6) R mit Zariski-Topologie ist zusammenhängend.

Bemerkung 14
Sei X ein topologischer Raum und A ⊆ X zusammenhängend. Dann ist auch A zusammen-
hängend.

Beweis: durch Widerspruch
Annahme: A = A1 ∪A2, Ai abgeschlossen, Ai 6= ∅, A1 ∩A2 = ∅

⇒ A = (A ∩A1)︸ ︷︷ ︸
abgeschlossen

∪̇ (A ∩A2)︸ ︷︷ ︸
abgeschlossen︸ ︷︷ ︸

disjunkt

Wäre A ∩A1 = ∅
⇒ A ⊆ A = A1 ∪̇A2

⇒ A ⊆ A2 ⇒ A ⊆ A2

⇒ A1 = ∅
⇒ Widerspruch zu A1 6= ∅
⇒ A ∩A1 6= ∅ und analog A ∩A2 6= ∅
⇒ Widerspruch zu A ist zusammenhängend. �

Bemerkung 15
Sei X ein topologischer Raum und A,B ⊆ X zusammenhängend.

Ist A ∩B 6= ∅, dann ist A ∪B zusammenhängend.

Beweis: Sei A ∪B = U1 ∪̇ U2, Ui 6= ∅ offen

o. B. d. A.
======⇒ A = (A ∩ U1) ∪̇ (A ∩ U2) offen
A zhgd.
====⇒ A ∩ U1 = ∅
A∩B 6=∅
====⇒ U1 ⊆ B
B = (B ∩ U1)︸ ︷︷ ︸

=U1

∪ (B ∩ U2)︸ ︷︷ ︸
=∅

ist unerlaubte Zerlegung.

�
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Definition 14
Sei X ein topologischer Raum.

Für x ∈ X sei Z(x) ⊆ X definiert durch

Z(x) :=
⋃

A⊆Xzhgd.
x∈A

A

Z(x) heißt Zusammenhangskomponente.

Bemerkung 16 (Eigenschaften von Zusammenhangskomponenten)
Sei X ein topologischer Raum. Dann gilt:

a) Z(x) ist die größte zusammenhängende Teilmenge von X, die x enthält.

b) Z(x) ist abgeschlossen.

c) X ist disjunkte Vereinigung von Zusammenhangskomponenten.

Beweis:

a) Sei Z(x) = A1 ∪̇A2 mit Ai 6= ∅ abgeschlossen.
O. B. d. A. sei x ∈ A1 und y ∈ A2. y liegt in einer zusammehängenden Teilmenge A,
die auch x enthält. ⇒ A = (A ∩A1)︸ ︷︷ ︸

3x

∪ (A ∩A2)︸ ︷︷ ︸
3y

ist unerlaubte Zerlegung.

b) Nach Bemerkung 14 ist Z(x) zusammenhängend ⇒ Z(x) ⊆ Z(x) ⇒ Z(x) = Z(x)

c) Ist Z(y) ∩ Z(x) 6= ∅ Bem. 15
=====⇒ Z(y) ∪ Z(x) ist zusammenhängend.

⇒ Z(x) ∪ Z(y) ⊆ Z(x)⇒ Z(y) ⊆ Z(x)

⊆ Z(y)⇒ Z(x) ⊆ Z(y)

�

Bemerkung 17
Sei f : X → Y stetig. Ist A ⊆ X zusammenhängend, so ist f(A) ⊆ Y zusammenhängend.

Beweis: Sei f(A) = U1 ∪ U2, Ui 6= ∅, offen, disjunkt.
⇒ f−1(f(A)) = f−1(U1) ∪ f−1(U2)

⇒ A = (A ∩ f−1(U1))︸ ︷︷ ︸
6=∅

∪ (A ∩ f−1(U2))︸ ︷︷ ︸
6=∅

�

1.5 Kompaktheit

Definition 15
Sei X eine Menge und U ⊆ P(X).

U heißt eine Überdeckung von X, wenn gilt:

∀x ∈ X : ∃M ∈ U : x ∈M
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Definition 16
Ein topologischer Raum X heißt kompakt, wenn jede offene Überdeckung von X

U = { Ui }i∈I mit Ui offen in X

eine endliche Teilüberdeckung ⋃
i∈J⊆I

Ui = X mit |J | ∈ N

besitzt.

Bemerkung 18
Das Einheitsintervall I := [0, 1] ist kompakt bezüglich der euklidischen Topologie.

Beweis: Sei (Ui)i∈J eine offene Überdeckung von I.

Es genügt zu zeigen, dass es ein δ > 0 gibt, sodass jedes Teilintervall der Länge δ von I in
einem der Ui enthalten ist. Wenn es ein solches δ gibt, kann man I in endlich viele Intervalle
der Länge δ unterteilen und alle Ui in die endliche Überdeckung aufnehmen, die Teilintervalle
enthalten.

Angenommen, es gibt kein solches δ. Dann gibt es für jedes n ∈ N ein Intervall In ⊆ [0, 1]
der Länge 1/n sodass In ( Ui für alle i ∈ J .
Sei xn der Mittelpunkt von In. Die Folge (xn) hat einen Häufungspunkt x ∈ [0, 1]. Dann
gibt es i ∈ J mit x ∈ Ui. Da Ui offen ist, gibt es ein ε > 0, sodass (x − ε, x + ε) ⊆ Ui.
Dann gibt es n0, sodass gilt: 1/n0 < ε/2 und für unendlich viele3 n ≥ n0 : |x− xn| < ε/2, also
In ⊆ (x− ε, x+ ε) ⊆ Ui für mindestens ein n ∈ N.4

⇒ Widerspruch

Dann überdecke [0, 1] mit endlich vielen Intervallen I1, . . . , Id der Länge δ. Jedes Ij ist in
Uij enthalten.

⇒ Uj1 , . . . , Ujd ist endliche Teilüberdeckung von U . �

Beispiel 16 (Kompakte Räume)
1) R ist nicht kompakt.

2) (0, 1) ist nicht kompakt.
Un = (1/n, 1− 1/n)⇒ ⋃

n∈N Un = (0, 1)

3) R mit der Zariski-Topologie ist kompakt und jede Teilmenge von R ist es auch.

Bemerkung 19
Sei X kompakter Raum, A ⊆ X abgeschlossen. Dann ist A kompakt.

Beweis: Sei (Vi)i∈I offene Überdeckung von A.
Dann gibt es für jedes i ∈ I eine offene Teilmenge Ui ⊆ X mit Vi = Ui ∩A.

⇒ A ⊆
⋃
i∈I

Ui

⇒ U = { Ui | i ∈ I } ∪ {X \A } ist offene Überdeckung von X

3Dies gilt nicht für alle n ≥ n0, da ein Häufungspunkt nur eine konvergente Teilfolge impliziert.
4Sogar für unendlich viele.
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X kompakt
=======⇒ es gibt i1, . . . , in ∈ I, sodass

n⋃
j=1

Uij ∪ (X \A) = X

⇒

 n⋃
j=1

Uij ∪ (X \A)

 ∩A = A

⇒
n⋃
j=1

(Uij ∩A)︸ ︷︷ ︸
=Vij

∪ ((X \A) ∩A)︸ ︷︷ ︸
=∅

= A

⇒ Vi1 , . . . , Vin überdecken A.

�

Bemerkung 20
Seien X,Y kompakte topologische Räume. Dann ist X × Y mit der Produkttopologie
kompakt.

Beweis: Sei (Wi)i∈I eine offene Überdeckung von X × Y . Für jedes (x, y) ∈ X × Y gibt es
offene Teilmengen Ux,y von X und Vx,y von Y sowie ein i ∈ I, sodass Ux,y × Vx,y ⊆Wi.

Wi

xy

x

Vx,y

Ux,y

Y

X

Abbildung 1.7: Die blaue Umgebung ist Schnitt vieler Umgebungen

Die offenen Mengen Ux0,y × Vx0,y für festes x0 und alle y ∈ Y überdecken { x0 } × y. Da Y
kompakt ist, ist auch { x0 } × Y kompakt. Also gibt es y1, . . . , ym(x0) mit

⋃m(x0)
i=1 Ux0,yi ×

Vx0,yi ⊇ { x0 } × Y .

Sei Ux0 :=
⋂m(x)
i=1 Ux0,yi . Da X kompakt ist, gibt es x1, . . . , xn ∈ X mit

⋃n
j=1 Uxj = X

⇒ ⋃k
j=1

⋃m(xj)
i=1

(
Uxj ,yi × Vxj ,yi

)︸ ︷︷ ︸
Ein grün-oranges Kästchen

⊇ X × Y

⇒ ⋃
j

⋃
iWi(xj , yi) = X × Y �

Bemerkung 21
Sei X ein Hausdorffraum und K ⊆ X kompakt. Dann ist K abgeschlossen.

Beweis: z. Z.: Komplement ist offen

Ist X = K, so ist K abgeschlossen in X. Andernfalls sei y ∈ X \K. Für jedes x ∈ K seien
Ux bzw. Vy Umgebungen von x bzw. von y, sodass Ux ∩ Vy = ∅.
Da K kompakt ist, gibt es endlich viele x1, . . . , xn ∈ K, sodass

⋃m
i=1 Uxi ⊇ K.
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Xi

K

x

y

Sei V :=
n⋂
i=1

Vxi

⇒ V ∩
(

n⋃
i=1

Uxi

)
= ∅

⇒ V ∩K = ∅
⇒ V ist Überdeckung von y, die ganz in X \K enthalten ist.
⇒ X \K ist offen

Damit ist K abgeschlossen. �

Bemerkung 22
Seien X,Y topologische Räume, f : X → Y stetig.
Ist K ⊆ X kompakt, so ist f(K) ⊆ Y kompakt.

Beweis: Sei (Vi)i∈I offene Überdeckung von f(K)
f stetig
====⇒ (f−1(Vi))i∈I ist offene Überdeckung von K
Kompakt
=====⇒ es gibt i1, . . . , in, sodass f−1(Vi1), . . . , f−1(Vin) Überdeckung von K ist.
⇒ f(f−1(Vi1)), . . . , f(f−1(Vin)) überdecken f(K).

Es gilt: f(f−1(V )) = V ∩ f(X) �

Satz 1.1 (Heine-Borel)
Eine Teilmenge von Rn oder Cn ist genau dann kompakt, wenn sie beschränkt und
abgeschlossen ist.

Beweis: „⇒“: Sei K ⊆ Rn (oder Cn) kompakt.

Da Rn und Cn hausdorffsch sind, ist K nach Bemerkung 21 abgeschlossen. Nach Vorausset-
zung kann K mit endlich vielen offenen Kugeln von Radien 1 überdeckt werden ⇒ K ist
beschränkt.

„⇐“ Sei A ⊆ Rn (oder Cn) beschränkt und abgeschlossen.
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Dann gibt es einen Würfel W = [−N,N ]× · · · × [−N,N ]︸ ︷︷ ︸
n mal

mit A ⊆ W bzw. „Polyzylinder“

Z = { (z1, . . . , zn) ∈ Cn | zi ≤ N für i = 1, . . . , n }
Nach Bemerkung 20 und Bemerkung 18 ist W kompakt, also ist A nach Bemerkung 19 auch
kompakt. Genauso ist Z kompakt, weil

{ z ∈ C ‖ z| ≤ 1 }

homöomorph zu {
(x, y) ∈ R2

∣∣ ‖(x, y)‖ ≤ 1
}

ist. �

1.6 Wege und Knoten

Definition 17
Sei X ein topologischer Raum.

a) Ein Weg in X ist eine stetige Abbildung γ : [0, 1]→ X.

b) γ heißt geschlossen, wenn γ(1) = γ(0) gilt.

c) γ heißt einfach, wenn γ|[0,1) injektiv ist.

Beispiel 17
Ist X diskret, so ist jeder Weg konstant, d. h. von der Form

∀x ∈ [0, 1] : γ(x) = c, c ∈ X

Denn γ([0, 1]) ist zusammenhängend für jeden Weg γ.

Definition 18
Ein topologischer Raum X heißt wegzusammenhängend, wenn es zu je zwei Punkten
x, y ∈ X einen Weg γ : [0, 1]→ X gibt mit γ(0) = x und γ(1) = y.

Bemerkung 23
Sei X ein topologischer Raum.

a) X ist wegzusammenhängend ⇒ X ist zusammenhängend

b) X ist wegzusammenhängend 6⇐ X ist zusammenhängend

Beweis:

a) Sei X ein wegzusammenhängender topologischer Raum, A1, A2 nichtleere, disjunkte,
abgeschlossene Teilmengen von X mit A1 ∪A2 = X. Sei x ∈ A1, y ∈ A2, γ : [0, 1]→ X
ein Weg von x nach y.

Dann ist C := γ([0, 1]) ⊆ X zusammenhängend, weil γ stetig ist.

C = (C ∩A1)︸ ︷︷ ︸
3x

∪ (C ∩A2)︸ ︷︷ ︸
3y

ist Zerlegung in nichtleere, disjunkte, abgeschlossene Teilmengen ⇒ Widerspruch
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(a) Spirale S mit Kreis C

0.1 1

−1

0

1

X

Y

{(x, sin( 1
x)) ∈ X × Y }

(−1, 1) ⊆ Y

(b) Sinus

Abbildung 1.8: Beispiele für Räume, die zusammenhängend, aber nicht wegzusammenhängend
sind.

b) Sei X =
{

(x, y) ∈ R2
∣∣∣ x2 + y2 = 1 ∨ y = 1 + 2 · e− 1

10
x
}
.

Abbildung 1.8a veranschaulicht diesen Raum.

Sei U1 ∪ U2 = X,U1 6= U2 = ∅, Ui offen. X = C ∪ S. Dann ist C ⊆ U1 oder C ⊆ U2,
weil C und S zusammenhängend sind.

Also ist C = U1 und S = U2 (oder umgekehrt).

Sei y ∈ C = U1, ε > 0 und Bε(y) ⊆ U1 eine Umgebung von y, die in U1 enthalten ist.

Aber: Bε(y) ∩ S 6= ∅ ⇒ Widerspruch ⇒ X ∪ S ist zusammenhängend, aber nicht
wegzusammenhängend. �

Beispiel 18 (Hilbert-Kurve)
Es gibt stetige, surjektive Abbildungen [0, 1]→ [0, 1]× [0, 1]. Ein Beispiel ist die in Abbil-
dung 1.9 dargestellte Hilbert-Kurve.

(a) n = 1 (b) n = 2 (c) n = 3 (d) n = 4 (e) n = 5

Abbildung 1.9: Hilbert-Kurve

Definition 19
Sei X ein topologischer Raum. Eine (geschlossene) Jordankurve in X ist ein Homöomor-
phismus γ : [0, 1]→ C ⊆ X bzw. γ : S1 → C ⊆ X.

Satz 1.2 (Jordanscher Kurvensatz)
Ist C = γ([0, 1]) eine geschlossene Jordankurve in R2, so hat R2 \ C genau zwei
Zusammenhangskomponenten, von denen eine beschränkt ist und eine unbeschränkt.
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außen
innen

Jordankurve

Abbildung 1.10: Die unbeschränkte Zusammenhangskomponente wird häufig inneres, die be-
schränkte äußeres genannt.

Beweis: ist technisch mühsam und wird hier nicht geführt. Er kann in „Algebraische Topologie:
Eine Einführung“ von R. Stöcker und H. Zieschang auf S. 301f (ISBN 978-3519122265)
nachgelesen werden.

Idee: Ersetze Weg C durch Polygonzug.

Definition 20
Eine geschlossene Jordankurve in R3 heißt Knoten.

Beispiel 19 (Knoten)

(a) Trivialer Knoten (b) Kleeblattknoten (c) Achterknoten (d) 62-Knoten

Abbildung 1.11: Beispiele für verschiedene Knoten

Definition 21
Zwei Knoten γ1, γ2 : S1 → R3 heißen äquivalent, wenn es eine stetige Abbildung

H : S1 × [0, 1]→ R3

gibt mit

H(z, 0) = γ1(z) ∀z ∈ S1

H(z, 1) = γ2(z) ∀z ∈ S1

und für jedes feste t ∈ [0, 1] ist

Hz : S1 → R3, z 7→ H(z, t)

ein Knoten. Die Abbildung H heißt Isotopie zwischen γ1 und γ2.
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Definition 22
Sei γ : [0, 1]→ R3 ein Knoten, E eine Ebene und π : R3 → E eine Projektion auf E.

π heißt Knotendiagramm von γ, wenn gilt:∣∣π−1(x)
∣∣ ≤ 2 ∀x ∈ π(γ)

Ist (π|γ([0,1]))
−1(x) = { y1, y2 }, so liegt y1 über y2, wenn gilt:

∃λ > 1 : (y1 − x) = λ(y2 − x)

Satz 1.3 (Satz von Reidemeister)
Zwei endliche Knotendiagramme gehören genau dann zu äquivalenten Knoten, wenn sie
durch endlich viele „Reidemeister-Züge“ ineinander überführt werden können.

(a) Ω1 (b) Ω2

(c) Ω3

Abbildung 1.12: Reidemeister-Züge

Beweis: Durch sorgfältige Fallunterscheidung.5

Definition 23
Ein Knotendiagramm heißt 3-färbbar, wenn jeder Bogen von D so mit einer Farbe gefärbt
werden kann, dass an jeder Kreuzung eine oder 3 Farben auftreten und alle 3 Farben
auftreten.

5Siehe „Knot Theory and Its Applications“ von Kunio Murasugi. ISBN 978-0817638177.
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Abbildung 1.13: Ein 3-gefärber Kleeblattknoten
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Übungsaufgaben

Aufgabe 1 (Sierpińskiraum)

Es sei X := { 0, 1 } und TX := { ∅, { 0 } , X }. Dies ist der sogenannte Sierpińskiraum.

(a) Beweisen Sie, dass (X,TX) ein topologischer Raum ist.

(b) Ist (X,TX) hausdorffsch?

(c) Ist TX von einer Metrik erzeugt?

Aufgabe 2

Es sei Z mit der von den Mengen Ua,b := a+ bZ(a ∈ Z, b ∈ Z \ { 0 }) erzeugten Topologie
versehen.

Zeigen Sie:

(a) Jedes Ua,b und jede einelementige Teilmenge von Z ist abgeschlossen.

(b) { −1, 1 } ist nicht offen.
(c) Es gibt unendlich viele Primzahlen.

Aufgabe 3 (Cantorsches Diskontinuum)

Für jedes i ∈ N sei Pi := { 0, 1 } mit der diskreten Topologie. Weiter Sei P :=
∏
i∈N Pi.

(a) Wie sehen die offenen Mengen von P aus?

(b) Was können Sie über den Zusammenhang von P sagen?

Aufgabe 4 (Kompaktheit)

(a) Ist GLn(R) = {A ∈ Rn×n | det(A) 6= 0 } kompakt?

(b) Ist SLn(R) = {A ∈ Rn×n | det(A) = 1 } kompakt?

(c) Ist P(R) kompakt?

Aufgabe 5 (Begriffe)

Definieren sie die Begriffe „Homomorphismus“ und „Homöomorphismus“.

Geben Sie, falls möglich, ein Beispiel für folgende Fälle an. Falls es nicht möglich ist,
begründen Sie warum.

1) Ein Homomorphismus, der zugleich ein Homöomorphismus ist,

2) ein Homomorphismus, der kein Homöomorphismus ist,
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3) ein Homöomorphismus, der kein Homomorphismus ist

Aufgabe 6 (Begriffe)

Definieren sie die Begriffe „Isomorphismus“, „Isotopie“ und „Isometrie“.



2 Mannigfaltigkeiten und
Simplizialkomplexe

2.1 Topologische Mannigfaltigkeiten

Definition 24
Sei (X,T) ein topologischer Raum und n ∈ N.

a) Eine n-dimensionale Karte auf X ist ein Paar (U,ϕ), wobei U ∈ T und ϕ : U → V
Homöomorphismus von U auf eine offene Teilmenge V ⊆ Rn.

b) Ein n-dimensionaler Atlas A auf X ist eine Familie (Ui, ϕi)i∈I von Karten auf X,
sodass

⋃
i∈I Ui = X.

c) X heißt (topologische) n-dimensionale Mannigfaltigkeit, wenn X hausdorffsch ist,
eine abzählbare Basis der Topologie hat und einen n-dimensionalen Atlas besitzt.

Anschaulich ist also ein n-dimensionale Mannigfaltigkeit lokal dem Rn ähnlich.

Bemerkung 24 (Mächtigkeit von Mannigfaltigkeiten)
Jede n-dimensionale Mannigfaltigkeit mit n ≥ 1 ist mindestens so mächtig wie R.

Beweis: Sei (X,T) ein topologischer Raum und (U,ϕ) mit U ∈ T und ϕ : U → V ⊆ Rn, wobei
V offen und ϕ ein Homöomorphismus ist, eine Karte auf X.

Da jede offene Teilmenge des Rn genauso mächtig ist wie der Rn, ϕ als Homöomorphismus
insbesondere bijektiv ist und Mengen, zwischen denen eine Bijektion existiert, gleich mächtig
sind, ist U genauso mächtig wie der Rn. Da jede Mannigfaltigkeit mindestens eine Karte
hat, muss jede Mannigfaltigkeit X mindestens so mächtig sein wie der Rn. �

Hinweis: Es gibt auch noch 0-dimensionale Mannigfaltigkeiten. Diese Mannigfaltigkeiten können
beliebig viele Elemente haben.

Bemerkung 25
a) Es gibt surjektive, stetige Abbildungen [0, 1]→ [0, 1]× [0, 1]

b) Für n 6= m sind Rn und Rm nicht homöomorph. Zum Beweis benutzt man den „Satz
von der Gebietstreue“ (Brouwer):

Ist U ⊆ Rn offen und f : U → Rn stetig und injektiv, so ist f(U) offen.

Ist n < m und Rm homöomorph zu Rn, so wäre

f : Rn → Rm → Rn, (x1, . . . , xn) 7→ (x1, x2, . . . , xn, 0, . . . , 0)

eine stetige injektive Abbildung. Also müsste f(Rn) offen sein ⇒ Widerspruch
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Beispiel 20 (Mannigfaltigkeiten)
1) Jede offene Teilmenge U ⊆ Rn ist eine n-dimensionale Mannigfaltigkeit mit einem

Atlas aus einer Karte.

2) Cn ist eine 2n-dimensionale Mannigfaltigkeit mit einem Atlas aus einer Karte:

(z1, . . . , zn) 7→ (<(z1),=(z1), . . . ,<(zn),=(zn))

3) Pn(R) = (Rn+1 \ { 0 })/∼ = Sn/∼ und Pn(C) sind Mannigfaltigkeiten der Dimension
n bzw. 2n, da gilt:

Sei Ui := { (x0 : · · · : xn) ∈ Pn(R) | xi 6= 0 } ∀i ∈ 0, . . . , n. Dann ist Pn(R) =
⋃n
i=0 Ui

und die Abbildung

Ui → Rn

(x0 : · · · : xn) 7→
(
x0

xi
, . . . ,

�
��
xi
xi
, . . . ,

xn
xi

)
(y1 : · · · : yi−1 : 1 : yi : · · · : yn) 7→(y1, . . . , yn)

ist bijektiv.

Die Ui mit i = 0, . . . , n bilden einen n-dimensionalen Atlas:

x = (1 : 0 : 0) ∈ U0 → R2 x 7→ (0, 0)

y = (0 : 1 : 1) ∈ U2 → R2 y 7→ (0, 1)

Umgebung: B1(0, 1)→ { (1 : u : v) | ‖(u, v)‖ < 1 } = V1

Umgebung: B1(0, 1)→
{

(w : z : 1)
∣∣ w2 + z2 < 1

}
= V2

V1 ∩ V2 = ∅?
(a : b : c) ∈ V1 ∩ V2

⇒ a 6= 0 und ( ba)2 + ( ca)2 < 1⇒ c
a < 1

⇒ c 6= 0 und (ac )2 + ( bc)
2 < 1⇒ a

c < 1
⇒ Widerspruch

4) Sn =
{
x ∈ Rn+1

∣∣ ‖x‖ = 1
}
ist n-dimensionale Mannigfaltigkeit.

Karten:
Di := {(x1, . . . , xn+1) ∈ Sn|xi > 0} → B1(0, . . . , 0︸ ︷︷ ︸

∈Rn

)

Ci := {(x1, . . . , xn+1) ∈ Sn|xi < 0} → B1(0, . . . , 0)
(x1, . . . , xn+1) 7→ (x1, . . . ,��xi, . . . , xn+1)1

(x1, . . . , xn) 7→ (x1, . . . , xi−1,
√

1−∑n
k=1 x

2
k, xi, . . . , xn), oder −

√
1−∑n

k=1 x
2
k für Ci

Sn =
⋃n+1
i=1 (Ci ∪Di)

Als kompakte Mannigfaltigkeit wird Sn auch „geschlossene Mannigfaltigkeit“ genannt.

5) [0, 1] ist keine Mannigfaltigkeit, denn:
Es gibt keine Umgebung von 0 in [0, 1], die homöomorph zu einem offenem Intervall
ist.

1xi wird rausgenommen
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6) V1 =
{

(x, y) ∈ R2
∣∣ x · y = 0

}
ist keine Mannigfaltigkeit.

Das Problem ist (0, 0). Wenn man diesen Punkt entfernt, zerfällt der Raum in 4
Zusammenhangskomponenten. Jeder Rn zerfällt jedoch in höchstens zwei Zusammen-
hangskomponenten, wenn man einen Punkt entfernt.

7) V2 =
{

(x, y) ∈ R2
∣∣ x3 = y2

}
ist eine Mannigfaltigkeit.

8) X = (R \ { 0 }) ∪ (01, 02)

U ⊆ X offen ⇔
{
U offen in R \ { 0 } , falls 01 /∈ U, 02 ∈ U
∃ε > 0 : (−ε, ε) ⊆ U falls 01 ∈ U, 02 ∈ U

Insbesondere sind (R \ { 0 }) ∪ { 01 } und (R \ { 0 }) ∪ { 02 } offen und homöomorph
zu R.

Aber: X ist nicht hausdorffsch! Denn es gibt keine disjunkten Umgebungen von 01

und 02.

9) GLn(R) ist eine Mannigfaltigkeit der Dimension n2, weil offene Teilmengen von Rn2

eine Mannigfaltigkeit bilden.

Definition 25
Seien X,Y n-dimensionale Mannigfaltigkeiten, U ⊆ X und V ⊆ Y offen, Φ : U → V ein Ho-
möomorphismus Z = (X ∪̇Y )/∼ mit der von u ∼ Φ(u) ∀u ∈ U erzeugten Äquivalenzrelation
und der von ∼ induzierten Quotiententopologie.

Z heißtVerklebung vonX und Y längs U und V . Z besitzt einen Atlas aus n-dimensionalen
Karten. Falls Z hausdorffsch ist, ist Z eine n-dimensionale Mannigfaltigkeit.

Bemerkung 26
Sind X,Y Mannigfaltigkeiten der Dimension n bzw. m, so ist X × Y eine Mannigfaltigkeit
der Dimension n+m.

Beweis: Produkte von Karten sind Karten. �

Beispiel 21
Mannigfaltigkeiten mit Dimension 1:

1) Offene Intervalle, R, (0, 1) sind alle homöomorph

2) S1

Mannigfaltigkeiten mit Dimension 2:

1) R2

2) S2 (0 Henkel)

3) T 2 (1 Henkel)

4) oder mehr Henkel, wie z.B. der Zweifachtorus in Abbildung 2.1

Bemerkung 27
Sei n ∈ N, F : Rn → R stetig differenzierbar und X = V (F ) := { x ∈ Rn | F (x) = 0 } das
„vanishing set“.

Dann gilt:
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Abbildung 2.1: Durch Verklebung zweier Tori entsteht ein Zweifachtorus.

a) X ist abgeschlossen in Rn

b) Ist grad(F )(X) 6= 0 ∀x ∈ X, so ist X eine Mannigfaltigkeit der Dimension n− 1.

Beweis:

a) Sei y ∈ Rn \ V (F ). Weil F stetig ist, gibt es δ > 0, sodass F (Bδ(y)) ⊆ Bε(F (y)) mit
ε = 1

2‖F (y)‖. Folgt Bδ(y) ∩ V (F ) = ∅ ⇒ Rn \ V (F ) ist offen.

b) Sei x ∈ X mit grad(F )(x) 6= 0, also o. B. d. A. ∂F
∂X1

(x) 6= 0, x = (x1, . . . , xn),
x′ := (x2, . . . , xn) ∈ Rn−1. Der Satz von der impliziten Funktion liefert nun: Es
gibt Umgebungen U von x′ und differenzierbare Funktionen g : U → R, sodass
G : U → Rn, u 7→ (g(u), u) eine stetige Abbildung auf eine offene Umgebung V von x
in X ist.

�

Beispiel 22

1) F : R3 → R, (x, y, z) 7→ x2+y2+z2−1, V (F ) = S2, grad(F ) = (2x, 2y, 2z)
Bem. 27.b
======⇒

Sn ist n-dimensionale Mannigfaltigkeit in Rn+1

2) F : R2 → R, (x, y) 7→ y2−x3 Es gilt: grad(F ) = (−3x2, 2y). Also: grad(0, 0) = (0, 0).

−5−4−3−2−10
1

2
3

4
5

−4

−2

0

2

4

−100

0

100

x

y

z

−100

0

100

f(x, y)

(a) F (x, y) = y2 − x3

2 4 6 8 10 12

−10

−5

5

10

x

y

a = 1
3

a = 1
a = 2

(b) y2 − ax3 = 0

Abbildung 2.2: Rechts ist die Neilsche Parabel für verschiedene Parameter a.

Daher ist Bemerkung 27.b nicht anwendbar, aber V (F ) ist trotzdem eine 1-dimensionale
topologische Mannigfaltigkeit.
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Definition 26
Sei X ein Hausdorffraum mit abzählbarer Basis der Topologie. X heißt n-dimensionale
Mannigfaltigkeit mit Rand, wenn es einen Atlas (Ui, ϕi) gibt, wobei Ui ⊆ Xi offen und
ϕi ein Homöomorphismus auf eine offene Teilmenge von

Rn+,0 := { (x1, . . . , xn) ∈ Rn | xn ≥ 0 }

ist.

Rn+,0 ist ein „Halbraum“.

Hinweis: Mannigfaltigkeiten mit Rand sind keine Mannigfaltigkeiten.

∼
=

(a) Halbraum

∼
=

(b) Pair of pants

∼
=

(c) Sphäre mit einem Loch

Abbildung 2.3: Beispiele für Mannigfaltigkeiten mit Rand

Definition 27
Sei X eine n-dimensionale Mannigfaltigkeit mit Rand und Atlas A. Dann heißt

∂X :=
⋃

(U,ϕ)∈A

{ x ∈ U | ϕ(x) = 0 }

Rand von X.

∂X ist eine Mannigfaltigkeit der Dimension n− 1.

Definition 28
Sei X eine n-dimensionale Mannigfaltigkeit mit Atlas (Ui, ϕi)i∈I

Für i, j ∈ I mit Ui ∩ Uj 6= ∅ heißt

ϕij := ϕj ◦ ϕ−1
i

ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj)

Kartenwechsel oder Übergangsfunktion.
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Rn Rn

Ui Uj

Vi Vj

X

ϕi ϕj

Abbildung 2.4: Kartenwechsel

2.2 Differenzierbare Mannigfaltigkeiten

Definition 29
Sei X eine n-dimensionale Mannigfaltigkeit mit Atlas (Ui, ϕi)i∈I .

a) X heißt differenzierbare Mannigfaltigkeit der Klasse Ck, wenn jede Karten-
wechselabbildung ϕij , i, j ∈ I k-mal stetig differenzierbar ist.

b) X heißt differenzierbare Mannigfaltigkeit, wenn X eine differenzierbare Mannig-
faltigkeit der Klasse C∞ ist.

Differenzierbare Mannigfaltigkeiten der Klasse C∞ werden auch glatt genannt.

Definition 30
Sei X eine differenzierbare Mannigfaltigkeit der Klasse Ck (k ∈ N ∪ {∞ }) mit Atlas
A = (Ui, ϕi)i∈I .

a) Eine Karte (U,ϕ) auf X heißt verträglich mit A, wenn alle Kartenwechsel ϕ ◦ ϕ−1
i

und ϕi ◦ ϕ−1 (i ∈ I mit Ui ∩ U 6= ∅) differenzierbar von Klasse Ck sind.

b) Die Menge aller mit A verträglichen Karten auf X bildet einen maximalen Atlas der

Klasse Ck. Er heißt Ck-Struktur auf X.

Eine C∞-Struktur heißt auch differenzierbare Struktur auf X.

Bemerkung 28
Für n ≥ 4 gibt es auf Sn mehrere verschiedene differenzierbare Strukturen, die sogenannten

„exotische Sphären“.

Definition 31
Seien X,Y differenzierbare Mannigfaltigkeiten der Dimension n bzw. m, x ∈ X.

a) Eine stetige Abbildung f : X → Y heißt differenzierbar in x (von Klasse Ck), wenn
es Karten (U,ϕ) von X mit x ∈ U und (V, ψ) von Y mit f(U) ⊆ V gibt, sodass
ψ ◦ f ◦ ϕ−1 stetig differenzierbar von Klasse Ck in ϕ(x) ist.

b) f heißt differenzierbar (von Klasse Ck), wenn f in jedem x ∈ X differenzierbar ist.

c) f heißt Diffeomorphismus, wenn f differenzierbar von Klasse C∞ ist und es eine
differenzierbare Abbildung g : Y → X von Klasse C∞ gibt mit g ◦ f = idX und
f ◦ g = idY .
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Bemerkung 29
Die Bedingung in Definition 31.a hängt nicht von den gewählten Karten ab.

Beweis: Seien (U ′, ϕ′) und (V ′, ψ′) Karten von X bzw. Y um x bzw. f(x) mit f(U ′) ⊆ V ′.
⇒ ψ′ ◦ f ◦ (ϕ′)−1

= ψ′ ◦ (ψ−1 ◦ ψ) ◦ f ◦ (ϕ−1 ◦ ϕ) ◦ (ϕ′)−1

ist genau dann differenzierbar, wenn ψ ◦ f ◦ ϕ−1 differenzierbar ist.

Beispiel 23
f : R→ R, x 7→ x3 ist kein Diffeomorphismus, aber Homöomorphismus, da mit g(x) := 3

√
x

gilt: f ◦ g = idR, g ◦ f = idR

Bemerkung 30
Sei X eine glatte Mannigfaltigkeit. Dann ist

Diffeo(X) := { f : X → X | f ist Diffeomorphismus }

eine Untergruppe von Homöo(X).

Definition 32
S ⊆ R3 heißt reguläre Fläche :⇔ ∀s ∈ S ∃ Umgebung V (s) ⊆ R3 ∃U ⊆ R2 offen:
∃ differenzierbare Abbildung F : U → V ∩ S: Rg(JF (u)) = 2 ∀u ∈ U .

F heißt (lokale) reguläre Parametrisierung von S.

F (u, v) = (x(u, v), y(u, v), z(u, v))

JF (u, v) =

∂x
∂u(p) ∂x

∂v (p)
∂y
∂u(p) ∂y

∂v (p)
∂z
∂u(p) ∂z

∂v (p)


Beispiel 24

1) Rotationsflächen: Sei r : R→ R>0 eine differenzierbare Funktion.

F : R2 → R3 (u, v) 7→ (r(u) cos(u), r(v) sin(u), v)

JF (u, v) =

−r(v) sinu r′(v) cosu
r(v) cosu r′(v) sinu

0 1


hat Rang 2 für alle (u, v) ∈ R2.

2) Kugelkoordinaten: F : R2 → R3,
(u, v) 7→ (R cos v cosu,R cos v sinu,R sin v)
Es gilt: F (u, v) ∈ S2

R, denn

R2 cos2(v) cos2(u) +R2 cos2(v) sin2(u) +R2 sin2(v)

=R2(cos2(v) cos2(u) + cos2(v) sin2(u) + sin2(v))

=R2
(
cos2(v)(cos2(u) + sin2(u)) + sin2(v)

)
=R2

(
cos2(v) + sin2(v)

)
=R2
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N

S

vu

(a) Kugelkoordinaten

−1
0

1
2−2

−1
0

1
2

0.6

0.8

1

(b) Rotationskörper

π
2

π 3π
2

2π

−1

−0.5

0.5

1

x

y

sinx
cosx

(c) Sinus und Kosinus haben keine gemeinsame Nullstelle
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Die Jacobi-Matrix

JF (u, v) =

−R cos v sinu −R sin v cosu
R cos v cosu −R sin v sinu

0 R cos v


hat Rang 2 für cos v 6= 0. In N und S ist cos v = 0.

Bemerkung 31
Jede reguläre Fläche S ⊆ R3 ist eine 2-dimensionale, differenzierbare Mannigfaltigkeit.

Beweis:

S ⊆ R3 ist als reguläre Fläche eine 2-dimensionale Mannigfaltigkeit. Aus der Definition von
regulären Flächen folgt direkt, dass Karten (Ui, Fi) und (Uj ⊆ R2, Fj : R2 → R3) von S mit
Ui ∩ Uj 6= ∅ existieren, wobei Fi und Fj nach Definition differenzierbare Abbildungen sind.

z.Z.: F−1
j ◦ Fi ist ein Diffeomorphismus.

Ui Uj

S

s

Fi Fj

F−1
j ◦Fi

Abbildung 2.5: Reguläre Fläche S zum Beweis von Bemerkung 31

Idee: Finde differenzierbare Funktion F̃−1
j in Umgebung W von s, sodass F̃−1

j |S∩W = F−1
j .

Ausführung: Sei u0 ∈ Ui, v0 ∈ Uj mit Fi(u0) = s = Fj(v0).

Da Rg(JFj (v0)) = 2 ist, ist o. B. d. A.

det

(∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
(v0) 6= 0

und Fj(u, v) = (x(u, v), y(u, v), z(u, v)).

Definiere F̃j : Uj × R→ R3 durch

F̃j(u, v, t) := (x(u, v), y(u, v), z(u, v) + t)

Offensichtlich: F̃j |Uj×{ 0 } = Fj

J
F̃j

=

∂x
∂u

∂x
∂v 0

∂y
∂u

∂y
∂v 0

∂z
∂u

∂z
∂v 1

⇒ det J
F̃j

(v0, 0) 6= 0

Analysis II
======⇒ Es gibt Umgebungen W von Fj von F̃j(v0, 0) = Fj(v0) = s, sodass F̃j auf W eine
differenzierbar Inverse F−1

j hat.
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Weiter gilt:

F̃j
−1|W∩S = F−1

j |W∩S
⇒ F−1

j ◦ Fi|F−1
i (W∩S) = F−1

j ◦ Fi|F−1
i (W∩S)

ist differenzierbar.

Definition 33
Sei G eine Mannigfaltigkeit und (G, ◦) eine Gruppe.

a) G heißt topologische Gruppe, wenn die Abbildungen ◦ : G×G→ G und ι : G→ G
definiert durch

g ◦ h := g · h und ι(g) := g−1

stetig sind.

b) Ist G eine differenzierbare Mannigfaltigkeit, so heißt G Lie-Gruppe, wenn (G, ◦) und
(G, ι) differenzierbar sind.

Beispiel 25 (Lie-Gruppen)
1) Alle endlichen Gruppen sind 0-dimensionale Lie-Gruppen.

2) GLn(R)

3) (R×, ·)

4) (R>0, ·)

5) (Rn,+), denn A ·B(i, j) =
∑n

k=1 aikbkj ist nach allen Variablen differenzierbar

(A−1)(i, j) =
det(Aij)

detA

Aij =

ai1 . . . ain
...

. . .
...

an1 . . . ann

 ∈ R(n−1)×(n−1)

ist differenzierbar.

detAij kann 0 werden, da: (
1 1
−1 0

)

6) SLn(R) = {A ∈ GLn(R) | det(A) = 1 }

Bemerkung 32
Ist G eine Lie-Gruppe und g ∈ G, so ist die Abbildung

lg : G→ G

h 7→ g · h

ein Diffeomorphismus.
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2.3 Simplizialkomplex

Definition 34
Seien v0, . . . , vk ∈ Rn Punkte.

a) v0, . . . , vk sind in allgemeiner Lage
⇔ es gibt keinen (k−1)-dimensionalen affinen Untervektorraum, der v0, . . . , vk enthält
⇔ v1 − v0, . . . , vk − v0 sind linear unabhängig.

b) conv(v0, . . . , vk) :=
{∑k

i=0 λivi

∣∣∣ λi ≥ 0,
∑k

i=0 λi = 1
}
heißt die konvexe Hülle von

v0, . . . , vk.

Definition 35
a) Sei ∆n = conv(e0, . . . , en) ⊆ Rn+1 die konvexe Hülle der Standard-Basisvektoren

e0, . . . , en.

Dann heißt ∆n Standard-Simplex und n die Dimension des Simplex.

b) Für Punkte v0, . . . , vk im Rn in allgemeiner Lage heißt ∆(v0, . . . , vk) = conv(v0, . . . , vk)

ein k-Simplex in Rn.

c) Ist ∆(v0, . . . , vk) ein k-Simplex und I = { i0, . . . , ir } ⊆ { 0, . . . , k }, so ist si0,...,ir :=

conv(vi0 , . . . , vir) ein r-Simplex und heißt Teilsimplex oder Seite von ∆.

(a) 0-Simplex ∆0

1 2 3

1

2

3

e0

e1

(b) 1-Simplex ∆1

1 2 3

1

2

3

e0

e1

e2

(c) 2-Simplex ∆2

e0 e1

e2

e3

(d) 3-Simplex ∆3

Abbildung 2.6: Beispiele für k-Simplexe

Definition 36
a) Eine endliche Menge K von Simplizes im Rn heißt (endlicher) Simplizialkomplex,

wenn gilt:

(i) Für ∆ ∈ K und S ⊆ ∆ Teilsimplex ist S ∈ K.

(ii) Für ∆1,∆2 ∈ K ist ∆1 ∩∆2 leer oder ein Teilsimplex von ∆1 und von ∆2.

b) |K| := ⋃∆∈K ∆ (mit Teilraumtopologie) heißt geometrische Realisierung von K.

c) Ist d = max { k ∈ N0 | K enthält k-Simplex }, so heißt d die Dimension von K.
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(a) 1D Simplizialkomplex (b) 2D Simplizialkomplex
(ohne untere Fläche!)

(c) 2D Simplizialkomplex

(d) 1D Simplizialkomplex (e) 2D Simplizialkomplex

P

(f) P ist kein Teilsimplex, da Eigen-
schaft Punkt b.ii verletzt ist

P

(g) Simplizialkomplex

Abbildung 2.7: Beispiele für Simplizialkomplexe

Definition 37
Seien K,L Simplizialkomplexe. Eine stetige Abbildung

f : |K| → |L|

heißt simplizial, wenn für jedes ∆ ∈ K gilt:

a) f(∆) ∈ L

b) f |∆ : ∆→ f(∆) ist eine affine Abbildung.

Beispiel 26 (Simpliziale Abbildungen)
1) ϕ(e1) := b1, ϕ(e2) := b2

ϕ ist eine eindeutig bestimmte lineare Abbildung
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0 e2

e1

0 b1

b2

ϕ

2) Folgende Abbildung ϕ : ∆n → ∆n−1 ist simplizial:

ϕ

3) Tori können simplizial auf Sphären abgebildet werden (vgl. Abbildung 2.8)

M M

a

a

a

b

b

b

c

c

c

d

d

d

M

a

b

c

d
b b b

b b b

b b b

b

b

b

b

b

b

bb

b

b b

b b

b b
b

b

b

b

Abbildung 2.8: Abbildung eines Torus auf eine Sphäre

Definition 38
Sei K ein endlicher Simplizialkomplex. Für n ≥ 0 sei an(K) die Anzahl der n-Simplizes in
K.

Dann heißt

χ(K) :=
dimK∑
n=0

(−1)nan(K)

Eulerzahl (oder Euler-Charakteristik) von K.

Beispiel 27
1) χ(∆1) = 2− 1 = 1

χ(∆2) = 3− 3 + 1 = 1
χ(∆3) = 4− 6 + 4− 1 = 1

2) χ(Oktaeder-Oberfläche) = 6− 12 + 8 = 2
χ(Rand des Tetraeders) = 2
χ(Ikosaeder) = 12− 30 + 20 = 2

3) χ(Würfel) = 8− 12 + 6 = 2
χ(Würfel, unterteilt in Dreiecksflächen) = 8− (12 + 6) + (6 · 2) = 2

Bemerkung 33
χ(∆n) = 1 für jedes n ∈ N0
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Beweis: ∆n ist die konvexe Hülle von (e0, . . . , en) in Rn+1. Jede (k + 1)-elementige Teilmenge
von { e0, . . . , en } definiert ein k-Simplex.
⇒ ak(∆

n) =
(
n+1
k+1

)
, k = 0, . . . , n

⇒ χ(∆n) =
∑n

k=0(−1)k
(
n+1
k+1

)
f(x) = (x+ 1)n+1

Binomischer
Lehrsatz=

∑n+1
k=0

(
n+1
k

)
xk

⇒ 0 =
∑n+1

k=0

(
n+1
k

)
(−1)k = χ(∆n)− 1

⇒ χ(∆n) = 1 �

Definition 39
a) Ein 1D-Simplizialkomplex heißt Graph.

b) Ein Graph, der homöomorph zu S1 ist, heißt Kreis.

c) Ein zusammenhängender Graph heißt Baum, wenn er keinen Kreis enthält.

(a) Dies wird häufig auch als
Multigraph bezeichnet.

(b) Planare Einbettung des Te-
traeders

(c) K5 (d) K3,3

Abbildung 2.9: Beispiele für Graphen

Bemerkung 34
Für jeden Baum T gilt χ(T ) = 1.

Beweis: Induktion über die Anzahl der Ecken.

Bemerkung 35
a) Jeder zusammenhängende Graph Γ enthält einen Teilbaum T , der alle Ecken von Γ

enthält.2

b) Ist n = a1(Γ)− a1(T ), so ist χ(Γ) = 1− n.

Beweis:

a) Siehe „Algorithmus von Kruskal“.

2T wird „Spannbaum“ genannt.
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b) χ(Γ) = a0(Γ)− a1(Γ)

= a0(Γ)− (n+ a1(T ))

= a0(T )− a1(T )− n
= χ(T )− n
= 1− n

Bemerkung 36
Sei ∆ ein n-Simplex und x ∈ ∆◦ ⊆ Rn. Sei K der Simplizialkomplex, der aus ∆ durch
„Unterteilung“ in x entsteht. Dann ist χ(K) = χ(∆) = 1.

(a) K (b) ∆, das aus K durch Unter-
teilung entsteht

Abbildung 2.10: Beispiel für Bemerkung 36.

Beweis: χ(K) = χ(∆)− (−1)n︸ ︷︷ ︸
n-Simplex

+
n∑
k=0

(−1)k
(
n+ 1

k

)
︸ ︷︷ ︸

(1+(−1))n+1

= χ(∆) �

Definition 40
Sei X ein topologischer Raum, K ein Simplizialkomplex und

h : |K| → X

ein Homöomorphismus von der geometrischen Realisierung |K| auf X. Dann heißt h eine
Triangulierung von X.

Beispiel 28 (Triangulierung des Torus)
Für eine Triangulierung des Torus werden mindestens 14 Dreiecke benötigt. Beispiele für
fehlerhafte „Triangulierungen“ sind in Beispiel 28 zu sehen. Korrekte Triangulierungen sind
in Beispiel 28.

Satz 2.1 (Eulersche Polyederformel)
Sei P ein konvexes Polyeder in R3, d. h. ∂P ist ein 2-dimensionaler Simplizialkomplex,
sodass gilt:

∀x, y ∈ ∂P : [x, y] ⊆ P

Dann ist χ(∂P ) = 2.

Beweis:

1) Die Aussage ist richtig für den Tetraeder.

2) O. B. d. A. sei 0 ∈ P und P ⊆ B1(0). Projeziere ∂P von 0 aus auf ∂B1(0) = S2.
Erhalte Triangulierung von S2.
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(a) Die beiden markierten Dreiecke schneiden sich im
Mittelpunkt und in einer Seite.

(b) Die beiden markierten Dreiecke schneiden sich im
Mittelpunkt und außen.

Abbildung 2.11: Fehlerhafte Triangulierungen

(a) Einfache Triangulierung (b) Minimale Triangulierung

Abbildung 2.12: Triangulierungen des Torus
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3) Sind P1 und P2 konvexe Polygone und T1, T2 die zugehörigen Triangulierungen von
S2, so gibt es eine Triangulierung T , die sowohl um T1 als auch um T2 Verfeinerung
ist (vgl. Abbildung 2.13).

T1

T2

T

Abbildung 2.13: T ist eine Triangulierung, die für T1 und T2 eine Verfeinerung ist.

Nach Bemerkung 36 ist χ(∂P1) = χ(T1) = χ(T ) = χ(T2) = χ(∂P2) = 2, weil o. B. d. A.
P2 ein Tetraeder ist.

Bemerkung 37 (Der Rand vom Rand ist 0)
Sei K ein endlicher Simplizialkomplex mit Knotenmenge V und < eine Totalordnung auf V .

Sei An die Menge der n-Simplizes in K, d. h.

An(K) := { σ ∈ K | dim(σ) = n } für n = 0, . . . , d = dim(K)

und Cn(K) der R-Vektorraum mit Basis An(K), d. h.

Cn(K) =

 ∑
σ∈An(K)

cσ · σ

∣∣∣∣∣∣ cσ ∈ R


Sei σ = ∆(x0, . . . , xn) ∈ An(K), sodass x0 < x1 < · · · < xn.

Für i = 0, . . . , n sei ∂iσ := ∆(x0, . . . , x̂i, . . . , xn) die i-te Seite von σ und dσ = dnσ :=∑
i=0(−1)i∂iσ ∈ Cn−1(K) und dn : Cn(K) → Cn−1(K) die dadurch definierte lineare

Abbildung.

Dann gilt: dn−1 ◦ dn = 0

a b

c

σ

e3

e1e2

Abbildung 2.14: Simplizialkomplex mit Totalordnung

Beispiel 29
Sei a < b < c. Dann gilt:

d2σ = e1 − e2 + e3

d1(e1 − e2 + e3) = (c− b)− (c− a) + (b− a)
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= 0

Sei a < b < c < d. Dann gilt für Tetraeder:

d3(∆(a, b, c, d)) = ∆(b, c, d)−∆(a, c, d) + ∆(a, b, d)−∆(a, b, c),wobei:
d2( ∆(b, c, d)) = ∆(c, d)−∆(b, d) + ∆(b, c)

d2(−∆(a, c, d)) = −∆(c, d) + ∆(a, d)−∆(a, c)

d2( ∆(a, b, d)) = ∆(b, d)−∆(a, d) + ∆(a, b)

d2(−∆(a, b, c)) = −∆(b, c) + ∆(a, c)−∆(a, b)

⇒ d2(d3(∆(a, b, c, d))) = 0

Beweis: Sei σ ∈ An. Dann gilt:

dn−1(dnσ) = dn−1(
n∑
i=0

(−1)i∂iσ)

=
n∑
i=0

(−1)idn−1(∂iσ)

=
n∑
i=0

(−1)i
n−1∑
j=0

∂i(∂jσ)(−1)j

=
∑

0≤i≤j≤n−1

(−1)i+j∂j(∂i(σ)) +
∑

0≤j<i≤n
(−1)i+j∂i−1(∂jσ)

= 0

weil jeder Summand aus der ersten Summe auch in der zweiten Summe vorkommt, aber mit
umgekehrten Vorzeichen. �

Definition 41
Sei K ein Simplizialkomplex, Zn := Kern(dn) ⊆ Cn und Bn := Bild(dn+1) ⊆ Cn.

a) Hn = Hn(K,R) := Zn/Bn heißt n-te Homologiegruppe von K.

b) bn(K) := dimRHn heißt n-te Betti-Zahl von K.

Bemerkung 38
Nach Bemerkung 37 ist Bn ⊆ Zn, denn dn+1(C) ∈ Kern(dn) für C ∈ Cn+1.

Satz 2.2
Für jeden endlichen Simplizialkomplex K der Dimension d gilt:

d∑
k=0

(−1)kbk(K) =

d∑
k=0

(−1)kak(K) = χ(K)

Bemerkung 39
Es gilt nicht ak = bk ∀k ∈ N0.
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Beweis:

• Dimensionsformel für dn: an = dimZn + dimBn−1 für n ≥ 1

• Dimensionsformel für Zn → Hn = Zn/Bn : dimZn = bn + dimBn

• dimZd = bd, da dimZd = bd + dimBd, wobei dimBd = 0, da ad+1 = 0

• a0 − dimB0 = b0, da a0 − dimB0 = a0 − dimZ0 + b0 und a0 = dimZ0, weil a−1 = 0

⇒
d∑

k=0

(−1)kak = a0 +
d∑

k=1

(−1)k(dimZk + dimBk−1)

= a0 +
d∑

k=1

(−1)k dimZk +
d−1∑
k=0

(−1)k+1 dimBk

= a0 +
d∑

k=1

(−1)k dimZk −
d−1∑
k=0

(−1)k dimBk

= a0 +

d−1∑
k=1

(−1)kbk + (−1)d dimZd︸ ︷︷ ︸
=bd

−dimB0

= b0 +
d−1∑
k=1

(−1)kbk + (−1)dbd

=
d∑

k=0

(−1)kbk
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Übungsaufgaben

Aufgabe 7 (Zusammenhang)

(a) Beweisen Sie, dass eine topologische Mannigfaltigkeit genau dann wegzusammenhän-
gend ist, wenn sie zusammenhängend ist

(b) Betrachten Sie nun wie in Beispiel 20.8 den Raum X := (R\{ 0 })∪{ 01, 02 } versehen
mit der dort definierten Topologie. Ist X wegzusammenhängend?



3 Fundamentalgruppe und Überlagerungen

3.1 Homotopie von Wegen

a b

γ1

γ2

(a) γ1 und γ2 sind homotop,
da man sie „zueinander ver-
schieben“ kann.

a b

γ1

γ2

(b) γ1 und γ2 sind wegen dem
Hindernis nicht homotop.

Abbildung 3.1: Beispiele für Wege γ1 und γ2

Definition 42
Sei X ein topologischer Raum, a, b ∈ X, γ1, γ2 : I → X Wege von a nach b, d. h. γ1(0) =
γ2(0) = a, γ1(1) = γ2(1) = b

γ1 und γ2 heißen homotop, wenn es eine stetige Abbildung H : I × I → X mit

H(t, 0) = γ1(t) ∀t ∈ I
H(t, 1) = γ2(t) ∀t ∈ I

und H(0, s) = a und H(1, s) = b für alle s ∈ I gibt. Dann schreibt man: γ1 ∼ γ2

H heißt Homotopie zwischen γ1 und γ2.

Bemerkung 40
Sei X ein topologischer Raum, a, b ∈ X, γ1, γ2 : I → X Wege von a nach b und H eine
Homotopie zwischen γ1 und γ2.

Dann gilt: Der Weg
γs : I → X, γs(t) = H(t, s)

ist Weg in X von a nach b für jedes s ∈ I.

Beweis: H ist stetig, also ist H(t, s) insbesondere für jedes feste s stetig. Da H(0, s) = a und
H(1, s) = b für alle s ∈ I und γs eine Abbildung von I auf X ist, ist γs ein Weg in X von a
nach b für jedes s ∈ I. �

Bemerkung 41
Durch Homotopie wird eine Äquivalenzrelation auf der Menge aller Wege in X von a nach b
definiert.

Beweis:
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• reflexiv: H(t, s) = γ(t) für alle (t, s) ∈ I × I

• symmetrisch: H ′(t, s) = H(t, 1− s) für alle (t, s) ∈ I × I

• transitiv: Seien H ′ bzw. H ′′ Homotopien von γ1 nach γ2 bzw. von γ2 nach γ3.

Dann sei H(t, s) :=

{
H ′(t, 2s) falls 0 ≤ s ≤ 1

2

H ′′(t, 2s− 1) falls 1
2 ≤ s ≤ 1

⇒ H ist stetig und Homotopie von γ1 nach γ3.

�

Beispiel 30
1) Sei X = S1. γ1 und γ2 aus Abbildung 3.3a nicht homotop.

2) Sei X = T 2. γ1, γ2 und γ3 aus Abbildung 3.3b sind paarweise nicht homotop.

3) Sei X = R2 und a = b = (0, 0).

Je zwei Wege im R2 mit Anfangs- und Endpunkt (0, 0) sind homotop.

Abbildung 3.2: Zwei Wege im R2 mit Anfangs- und Endpunkt (0, 0)

Sei γ0 : I → R2 der konstante Weg γ0(t) = (0, 0) ∀t ∈ I. Sei γ(0) = γ(1) = (0, 0).

H(t, s) := (1− s)γ(t) ist stetig, H(t, 0) = γ(t) ∀t ∈ I und H(t, 1) = (0, 0) ∀t ∈ I.

Bemerkung 42
Sei X ein topologischer Raum, γ : I → X ein Weg und ϕ : I → I stetig mit ϕ(0) = 0,
ϕ(1) = 1. Dann sind γ und γ ◦ ϕ homotop.

Beweis: Sei H(t, s) = γ((1− s)t+ s · ϕ(t)).

Dann ist H stetig, H(t, 0) = γ(t), H(t, 1) = γ(ϕ(t)), H(0, s) = γ(0) und H(1, s) =
γ(1− s+ s) = γ(1)
⇒ H ist Homotopie. �
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a

b

γ1γ2

(a) Kreis mit zwei Wegen

a

b

(b) Torus mit drei Wegen

Abbildung 3.3: Beispiele für (nicht)-Homotopie von Wegen

Definition 43
Seien γ1, γ2 Wege in X mit γ1(1) = γ2(0). Dann ist

γ(t) =

{
γ1(2t) falls 0 ≤ t < 1

2

γ2(2t− 1) falls 1
2 ≤ t ≤ 1

ein Weg in X. Er heißt zusammengesetzter Weg und man schreibt γ = γ1 ∗ γ2.

Bemerkung 43
Das Zusammensetzen von Wegen ist nur bis auf Homotopie assoziativ, d. h.:

γ1 ∗ (γ2 ∗ γ3) 6= (γ1 ∗ γ2) ∗ γ3

γ1 ∗ (γ2 ∗ γ3) ∼ (γ1 ∗ γ2) ∗ γ3

mit γ1(1) = γ2(0) und γ2(1) = γ3(0).

γ1 γ2 γ3

0 1/2 3/4 1

(a) γ1 ∗ (γ2 ∗ γ3)

γ1 γ2 γ3

0 1/4 1/2 1

(b) (γ1 ∗ γ2) ∗ γ3

Abbildung 3.4: Das Zusammensetzen von Wegen ist nicht assoziativ

Beweis: Das Zusammensetzen von Wegen ist wegen Bemerkung 42 bis auf Homotopie assoziativ.
Verwende dazu

ϕ(t) =


1
2 t falls 0 ≤ t < 1

2

t− 1
4 falls 1

2 ≤ t < 3
4

2t− 1 falls 3
4 ≤ t ≤ 1

Bemerkung 44
Sei X ein topologischer Raum, a, b, c ∈ X, γ1, γ

′
1 Wege von a nach b und γ2, γ

′
2 Wege von b

nach c.

Sind γ1 ∼ γ′1 und γ2 ∼ γ′2, so ist γ1 ∗ γ2 ∼ γ′1 ∗ γ′2.
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γ1γ′1

a
b

c

γ′2

γ2

Abbildung 3.5: Situation aus Bemerkung 44
.

Beweis: Sei Hi eine Homotopie zwischen γi und γ′i, i = 1, 2.

Dann ist

H(t, s) :=

{
H1(2t, s) falls 0 ≤ t ≤ 1

2 ∀s ∈ I
H2(2t− 1, s) falls 1

2 ≤ t ≤ 1

eine Homotopie zwischen γ1 ∗ γ2 und γ′1 ∗ γ′2.

Eine spezielle Homotopieäquivalenz sind sog. Deformationsretraktionen:

Definition 44
Sei X ein topologischer Raum, A ⊆ X, r : X → A eine stetige Abbildung und ι = (idX)|A.

a) ι : A→ X mit ι(x) = x heißt die Inklusionsabbildung und man schreibt: ι : A ↪→ X.

b) r heißt Retraktion, wenn r|A = idA ist.

c) A heißt Deformationsretrakt, wenn es eine Retraktion r auf A mit ι ◦ r ∼ idX gibt.

Beispiel 31 (Zylinder auf Kreis)
Sei X = S1 × R ein topologischer Raum und

r : S1 × R→ S1 × { 0 } ∼= S1

mit
r(x, y) := (x, 0)

eine Abbildung. r ist eine Retraktion, da r|S1
∼= idS1 .

ι ◦ r : S1 × R→ S1 × R
(x, y) 7→ (x, 0)

H : (S1 × R)× I → S1 × R
(x, y, t) 7→ (x, ty)

3.2 Fundamentalgruppe

Für einen Weg γ sei [γ] seine Homotopieklasse.

Definition 45
Sei X ein topologischer Raum und x ∈ X. Sei außerdem

π1(X,x) := { [γ] | γ ist Weg in X mit γ(0) = γ(1) = x }
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Durch [γ1] ∗G [γ2] := [γ1 ∗ γ2] wird π1(X,x) zu einer Gruppe. Diese Gruppe heißt Funda-
mentalgruppe von X im Basispunkt x.

Bemerkung 45
Im R2 gibt es nur eine Homotopieklasse.

Beweis: (Fundamentalgruppe ist eine Gruppe)

a) Abgeschlossenheit folgt direkt aus der Definition von ∗G
b) Assoziativität folgt aus Bemerkung 43

c) Neutrales Element e = [γ0], γ0(t) = x ∀t ∈ I. e ∗ [γ] = [γ] = [γ] ∗ e, da γ0 ∗ γ ∼ γ

d) Inverses Element [γ]−1 = [γ] = [γ(1− t)], denn γ ∗ γ ∼ γ0 ∼ γ ∗ γ
Beispiel 32

1) S1 = { z ∈ C | |z| = 1 } =
{

(cosϕ, sinϕ) ∈ R2
∣∣ 0 ≤ ϕ ≤ 2π

}
π1(S1, 1) =

{
[γk]

∣∣ k ∈ Z
} ∼= Z. Dabei ist γ(t) = e2πit = cos(2πt) + i sin(2πt) und

γk := γ ∗ · · · ∗ γ︸ ︷︷ ︸
k mal

[γk] 7→ k ist ein Isomorphismus.

2) π1(R2, 0) = π1(R2, x) = { e } für jedes x ∈ R2

3) π1(Rn, x) = { e } für jedes x ∈ Rn

4) G ⊆ Rn heißt sternförmig bzgl. x ∈ G, wenn für jedes y ∈ G auch die Strecke
[x, y] ⊆ G ist.

Für jedes sternförmige G ⊆ Rn ist π1(G, x) = { e }

x

Abbildung 3.6: Sternförmiges Gebiet
.

5) π1(S2, x0) = { e }, da im R2 alle Wege homotop zu { e } sind. Mithilfe der stereogra-
phischen Projektion kann von S2 auf den R2 abgebildet werden.

Dieses Argument funktioniert nicht mehr bei flächenfüllenden Wegen, d. h. wenn
γ : I → S2 surjektiv ist.

Bemerkung 46
Sei X ein topologischer Raum, a, b ∈ X, δ : I → X ein Weg von a nach b.

Dann ist die Abbildung

α : π1(X, a)→ π1(X, b) [γ] 7→ [δ ∗ γ ∗ δ]
ein Gruppenisomorphismus.
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a b

γ

δ

Abbildung 3.7: Situation aus Bemerkung 46
.

Beweis:

α([γ1] ∗ [γ2]) = [δ ∗ (γ1 ∗ γ2) ∗ δ]
= [δ ∗ γ1 ∗ δ ∗ δ ∗ γ2 ∗ δ]
= [δ ∗ γ1 ∗ δ] ∗ [δ ∗ γ2 ∗ δ]
= α([γ1]) ∗ α([γ2])

Definition 46
Ein wegzusammenhängender topologischer Raum X heißt einfach zusammenhängend,
wenn π1(X,x) = { e } für ein x ∈ X.

Wenn π1(X,x) = { e } für ein x ∈ X gilt, dann wegen Bemerkung 46 sogar für alle x ∈ X.

Bemerkung 47
Es seien X,Y topologische Räume, f : X → Y eine stetige Abbildung, x ∈ X, y := f(x) ∈ Y .

a) Dann ist die Abbildung f∗ : π1(X,x)→ π1(Y, y), [γ]→ [f ◦ γ] ein Gruppenhomomor-
phismus.

b) Ist Z ein weiterer topologischer Raum und g : Y → Z eine stetige Abbildung z := g(y).
Dann ist (g ◦ f)∗ = g∗ ◦ f∗ : π1(X,x)→ π1(Z, z)

Beweis:

a) f∗ ist wohldefiniert: Seien γ1, γ2 homotope Wege von x. z.Z.: f ◦ γ1 ∼ f ◦ γ2: Nach
Voraussetzung gibt es stetige Abbildungen H : I × I → X mit

H(t, 0) = γ1(t),

H(t, 1) = γ2(t),

H(0, s) = H(1, s) = x.

Dann ist f ◦H : I×I → Y stetig mit (f ◦H)(t, 0) = f(H(t, 0)) = f(γ1(t)) = (f ◦γ1)(t)
etc. ⇒ f ◦ γ1 ∼ f ◦ γ2.

f∗([γ1] ∗ [γ2]) = [f ◦ (γ1 ∗ γ2)] = [(f ◦ γ1)] ∗ [(f ◦ γ2)] = f∗([γ1]) ∗ f∗([γ2])

b) (g ◦ f)∗([γ]) = [(g ◦ f) ◦ γ] = [g ◦ (f ◦ γ)] = g∗([f ◦ γ]) = g∗(f∗([γ])) = (g∗ ◦ f∗)([γ])

Beispiel 33
1) f : S1 ↪→ R2 ist injektiv, aber f∗ : π1(S1, 1) ∼= Z→ π1(R2, 1) = { e } ist nicht injektiv.
2) f : R→ S1, t 7→ (cos 2πt, sin 2πt) ist surjektiv, aber f∗ : π1(R, 0) = { e } → π1(S1, 1) ∼=

Z ist nicht surjektiv.
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Bemerkung 48
Sei f : X → Y ein Homöomorphismus zwischen topologischen Räumen X,Y . Dann gilt:

f∗ : π1(X,x)→ π1(Y, f(x))

ist ein Isomorphismus für jedes x ∈ X.

Beweis: Sei g : Y → X die Umkehrabbildung, d. h. g ist stetig und f ◦ g = idY , g ◦ f = idX

⇒ f∗ ◦ g∗ = (f ◦ g)∗ = (idY )∗ = idπ1(Y,f(X) und g∗ ◦ f∗ = idπ1(X,x).

Definition 47
Seien X,Y topologische Räume, x0 ∈ X, y0 ∈ Y, f, g : X → Y stetig mit f(x0) = y0 = g(x0).

f und g heißen homotop (f ∼ g), wenn es eine stetige Abbildung H : X × I → Y mit

H(x, 0) = f(x) ∀x ∈ X
H(x, 1) = g(x) ∀x ∈ X
H(x0, s) = y0 ∀s ∈ I

gibt.

Bemerkung 49
Sind f und g homotop, so ist f∗ = g∗ : π1(X,x0)→ π1(Y, y0).

Beweis: Sei γ ein geschlossener Weg in X um x0, d. h. [γ] ∈ π1(X,x0).

Z. z.: f ◦ γ ∼ g ◦ γ
Sei dazu Hγ : I × I → Y, (t, s) 7→ H(γ(t), s). Dann gilt:

Hγ(t, 0) = H(γ(t), 0) = (f ◦ γ)(t) ∀t ∈ I
Hγ(1, s) = H(γ(1), s) = H(x0, s) = y0 ∀s ∈ I
Hγ(t, 1) = H(γ(t), 1) = g(γ(t)) ∀t ∈ I

Beispiel 34
f : X → Y, g : Y → X mit g ◦ f ∼ idX , f ◦ g ∼ idY

⇒ f∗ ist Isomorphismus. Konkret: f : R2 → { 0 } , g : { 0 } → R2

⇒ f ◦ g = id{ 0 }, g ◦ f : R2 → R2, x 7→ 0 für alle x.

g ◦ f ∼ idR2 mit Homotopie: H : R2 × I → R2, H(x, s) = (1− s)x (stetig!)

⇒ H(x, 0) = x = idR2(x), H(x, 1) = 0, H(0, s) = 0 ∀s ∈ I.

Satz 3.1 (Satz von Seifert und van Kampen „light“)
Sei X ein topologischer Raum, U, V ⊆ X offen mit U ∪ V = X und U ∩ V wegzusam-
menhängend.

Dann wird π1(X,x) für x ∈ U ∩ V erzeugt von geschlossenen Wegen um x, die ganz in
U oder ganz in V verlaufen.
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Beweis: Sei γ : I → X ein geschlossener Weg um x. Überdecke I mit endlich vielen offenen
Intervallen I1, I2, . . . , In, die ganz in γ−1(U) oder ganz in γ−1(V ) liegen.

O. B. d. A. sei γ(I1) ⊆ U, γ(I2) ⊆ V , etc.

Wähle ti ∈ Ii ∩ Ii+1, also γ(ti) ∈ U ∩ V . Sei σi Weg in U ∩ V von x0 nach γ(ti) ⇒ γ ist
homotop zu

γ1 ∗ σ1︸ ︷︷ ︸
in U

∗σ1 ∗ γ2 ∗ σ2︸ ︷︷ ︸
in V

∗ · · · ∗ σn−1 ∗ γ2 mit γi := γ|Ii

a b

x

Abbildung 3.8: Topologischer Raum X

Beispiel 35 (Satz von Seifert und van Kampen)
1) Sei X wie in Abbildung 3.8. π1(X,x) wird „frei“ erzeugt von a und b, weil π1(U, x) =
〈a〉 ∼= Z, π1(V, x) = 〈b〉 ∼= Z, insbesondere ist a ∗ b nicht homotop zu b ∗ a.

2) Torus: π1(T 2, X) wird erzeugt von a und b.

V

U

a

b

V

a b

Abbildung 3.9: a ∗ b = b ∗ a⇔ a ∗ b ∗ a ∗ b ∼ e

3.3 Überlagerungen

Definition 48
Es seien X,Y zusammenhängende topologische Räume und p : Y → X eine stetige Abbil-
dung.

p heißt Überlagerung, wenn jedes x ∈ X eine offene Umgebung U = U(x) ⊆ X besitzt,
sodass p−1(U) disjunkte Vereinigung von offenen Teilmengen Vj ⊆ Y ist (j ∈ I) und
p|Vj : Vj → U ein Homöomorphismus ist.

Beispiel 36
1) siehe Abbildung 3.10
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Abbildung 3.10: R→ S1,
t 7→ (cos 2πt, sin 2πt)

2) siehe Abbildung 3.11

3) Rn → Tn = Rn/Zn

4) Sn → Pn(R)

5) S1 → S1, z 7→ z2, siehe Abbildung 3.12
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Abbildung 3.11: R2 → T 2 = R2/Z2

Bemerkung 50
Überlagerungen sind surjektiv.

Beweis: Sei p : Y → X eine Überlagerung und x ∈ X beliebig. Dann existiert eine offene
Umgebung U(x) ⊆ X und offene Teilmengen Vj ⊆ X mit p−1(U) =

⋃̇
Vj und p|Vj : Vj → U

ist Homöomorphismus.

D. h. es existiert ein y ∈ Vj , so dass p|Vj (y) = x. Da x ∈ X beliebig war und ein y ∈ Y
existiert, mit p(y) = x, ist p surjektiv. �

Definition 49
Seien (X,TX), (Y,TY ) topologische Räume und f : X → Y eine Abbildung.

f heißt offen :⇔ ∀U ∈ TX : f(U) ∈ TY .
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1

i
z

z2

ϕ
ϕ

z2

Abbildung 3.12: t 7→ (cos 4πt, sin 4πt)

Beispiel 37 (Offene und stetige Abbildungen)
Sei X ein topologischer Raum und seien fi : R → R mit i ∈ { 1, 2, 3 } und g : R → S1 =
{ z ∈ C | ‖z‖ = 1 } Abbildungen.

1) f1 := idR ist eine offene und stetige Abbildung.

2) g(x) := e2πix ist eine offene, aber keine stetige Abbildung (vgl. Abbildung 1.5).

3) f2(x) := 42 ist eine stetige, aber keine offene Abbildung.

4) f3(x) :=

{
0 falls x ∈ Q
42 falls x ∈ R \Q

ist weder stetig noch offen.

Bemerkung 51
Überlagerungen sind offene Abbildungen.

Beweis: Sei y ∈ V und x ∈ p(V ), sodass x = p(y) gilt. Sei weiter U = Ux eine offene Umgebung
von x wie in Definition 48 und Vj die Komponente von p−1(U), die y enthält.

Dann ist V ∩ Vj offene Umgebung von y.

⇒ p(V ∩Vj) ist offen in p(Vj), also auch offen in X. Außerdem ist p(y) = x ∈ p(V ∩Vj) und
p(V ∩ Vj) ⊆ p(V ).

⇒ p(V ) ist offen.

Definition 50
Sei X ein topologischer Raum und M ⊆ X.

M heißt diskret in X, wenn M in X keinen Häufungspunkt hat.

Bemerkung 52
Sei p : Y → X Überlagerung, x ∈ X.

a) X hausdorffsch ⇒ Y hausdorffsch

b) p−1(x) ist diskret in Y für jedes x ∈ X.

Beweis:

a) Seien y1, y2 ∈ Y .

1. Fall: p(y1) = p(y2) = x.

Sei U Umgebung von x wie in Definition 48, Vj1 bzw. Vj2 die Komponente von p−1(U),
die y1 bzw. y2 enthält.

Dann ist Vj1 6= Vj2 , weil beide ein Element aus p−1(x) enthalten.
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⇒ Vj1 ∩ Vj2 = ∅ nach Voraussetzung.

2. Fall: p(y1) 6= p(y2).

Dann seien U1 und U2 disjunkte Umgebungen von p(y1) und p(y2).

⇒ p−1(U1) und p−1(U2) sind disjunkte Umgebungen von y1 und y2.

b) Sei x ∈ X beliebig, aber fest.

Zu zeigen: ∀yi ∈ p−1(x) : ∃Vi ∈ TY mit yi ∈ Vi, sodass gilt:i 6= j ⇒ Vi ∩ Vj = ∅.

Die Vi existieren wegen der Definition einer Überlagerung: p heißt Überlagerung
:⇔ ∀x ∈ X∃U = U(x) ∈ TX : p−1(U) =

⋃̇
Vi∈TY Vi und p|Vi ist Homöomorphismus.

⇒ (p|Vi)−1(x) = { yi }
⇒ Alle yi liegen diskret in Y , da Häufungspunkte unendlich viele Elemente in jeder
Umgebung benötigen. �

Bemerkung 53
Sei p : Y → X Überlagerung, x1, x2 ∈ X.

Dann ist |p−1(x1)| = |p−1(x2)|.1

Beweis: Sei U Umgebung von x1 wie in Definition 48, x ∈ U . Dann enthält jedes Vj , j ∈ IX
genau ein Element von p−1(x)

⇒ |p−1(x)| ist konstant auf U
Xzhgd.
====⇒ |p−1(x)| ist konstant auf X

Definition 51
Es seien X,Y, Z topologische Räume, p : Y → X eine Überlagerung und f : Z → X stetig.

Eine stetige Abbildung f̃ : Z → Y heißt Liftung von f , wenn p ◦ f̃ = f ist.

Y

X

Z

p

f̃

f

Bemerkung 54 (Eindeutigkeit der Liftung)
Sei Z zusammenhängend und f0, f1 : Z → Y Liftungen von f .

∃z0 ∈ Z : f0(z0) = f1(z0)⇒ f0 = f1

Beweis: Sei T = { z ∈ Z | f0(z) = f1(z) }.
Z. z.: T ist offen und Z \ T ist auch offen.

Sei z ∈ T, x = f(z), U Umgebung von x wie in Definition 48, V die Komponente von p−1(U),
die y := f0(z) = f1(z) enthält.

Sei q : U → V die Umkehrabbildung zu p|V .
Sei W := f−1(U) ∩ f−1

0 (V ) ∩ f−1
1 (V ). W ist offene Umgebung in Z von z.

Behauptung: W ⊆ T
1|p−1(x1)| =∞ ist erlaubt!
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Liften−−−→ R2/Z2

Abbildung 3.13: Beim Liften eines Weges bleiben geschlossene Wege im allgemeinen nicht ge-
schlossen

Denn für w ∈W ist q(f(w)) = q((p ◦ f0))(w) = ((q ◦ p) ◦ f0)(w) = f0(w) = q(f(w)) = f1(w)

⇒ T ist offen.

Analog: Z \ T ist offen.

Satz 3.2
Sei p : Y → X Überlagerung, γ : I → X ein Weg, y ∈ Y mit p(y) = γ(0) =: x.

Dann gibt es genau einen Weg γ̃ : I → Y mit γ̃(0) = y und p ◦ γ̃ = γ.

p : Y → X Überlagerung, X,Y wegzusammenhängend. p stetig und surjektiv, zu x ∈ X∃
Umgebung U , so dass p−1(U) =

⋃
Vj

p|Vj : Vj → U Homöomorphismus.

Bemerkung 55
Wege in X lassen sich zu Wegen in Y liften.

Zu jedem y ∈ p−1(γ(0)) gibt es genau einen Lift von γ.

Proposition 3.3
Seien p : Y → X eine Überlagerung, a, b ∈ X, γ0, γ1 : I → X homotope Wege von a
nach b, ã ∈ p−1(a), γ̃0, γ̃1 Liftungen von γ0 bzw. γ1 mit γ̃i(0) = ã.

Dann ist γ̃0(1) = γ̃1(1) und γ̃0 ∼ γ̃1.

Beweis: Sei H : I × I → X Homotopie zwischen γ1 und γ2.



57 3.3. ÜBERLAGERUNGEN

Für s ∈ I sei γs : I → X, t 7→ H(t, s).

Sei γ̃s Lift von γs mit γ̃s(0) = ã

Sei H̃ : I × I → Y, H̃(t, s) := (γ̃s(t), s)

Dann gilt:

(i) H̃ ist stetig (Beweis wie für Bemerkung 54)

(ii) H̃(t, 0) = γ̃0(t), H̃(t, 1) = γ̃1(t)

(iii) H̃(0, s) = γ̃s(0) = ã

(iv) H̃(1, s) ∈ p−1(b)

Da p−1(b) diskrete Teilmenge von Y ist
⇒ b̃s = H̃(1, s) = H̃(1, 0) ∀s ∈ I
⇒ b̃0 = b̃1 und H̃ ist Homotopie zwischen γ̃0 und γ̃1. �

Folgerung 3.4
Sei p : Y → X eine Überlagerung, x0 ∈ X, y0 ∈ p−1(x0)

a) p∗ : π1(Y, y0)→ π1(X,x0) ist injektiv

b) [π1(X,x0) : p∗(π1(Y, y0))] = deg(p)

Beweis:

a) Sei γ̃ ein Weg in Y um y0 und p∗([γ̃]) = e, also p ◦ γ̃ ∼ γx0
Nach Proposition 3.3 ist dann γ̃ homotop zum Lift des konstanten Wegs γx0 mit
Anfangspunkt y0, also zu γy0 ⇒ [γ̃] = e

b) Sei d = deg p und p−1(x0) = { y0, y1, . . . , yd−1 }. Für einen geschlossenen Weg γ in X
um x0 sei γ̃ die Liftung mit γ̃(0) = y0.

γ̃(1) ∈ { y0, . . . , yd−1 } hängt nur von [γ] ∈ π1(X,x0) ab.

Für geschlossene Wege γ0, γ1 um x gilt:

γ̃0(1) = γ̃1(1)

⇔[γ̃0 ∗ γ̃1
−1] ∈ π1(Y, y0)

⇔[γ0 ∗ γ−1
1 ] ∈ p∗(π1(Y, y0))

⇔[γ0] und [γ1]liegen in der selben Nebenklasse bzgl. p∗(π1(Y, y0))

Zu i ∈ { 0, . . . , d− 1 } gibt es Weg δi in Y mit δi(0) = y0 und δi(1) = yi
⇒ p ∪ δi ist geschlossener Weg in X um x0.
⇒ Jedes yi mit i = 0, . . . , d− 1 ist γ̃(1) für ein [γ] ∈ π1(X,x0).

Bemerkung 56
Sei p : Y → X Überlagerung und X einfach zusammenhängend.

Dann ist p ein Homöomorphismus.

Beweis: Wegen Bemerkung 55.a ist auch Y einfach zusammenhängend und wegen Bemer-
kung 55.b ist deg(p) = 1, p ist also bijektiv.

Nach Bemerkung 51 ist p offen ⇒ p−1 ist stetig. ⇒ p ist Homöomorphismus. �
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Definition 52
Eine Überlagerung p : X̃ → X heißt universell, wenn X̃ einfach zusammenhängend ist.

Beispiel 38 (Universelle Überlagerungen)
R→ S1, t 7→ (cos 2πt, sin 2πt)

R2 → T 2 = R2/Z2

Sn → Pn(R) für n ≥ 2

Satz 3.5
Sei p : X̃ → X eine universelle Überlagerung, q : Y → X weitere Überlagerung.

Sei x0 ∈ X, x̃0 ∈ X̃, y0 ∈ Y mit q(y0) = x0 = p(x̃0).

Dann gibt es genau eine Überlagerung p̃ : X̃ → Y mit p̃(x̃0) = y0.

Beweis: Sei z ∈ X̃, γz : I → X̃ ein Weg von x̃0 nach z.

Sei δz die eindeutige Liftung von p ◦ γz nach Y mit δz(0) = y0.

Setze p̃(z) = δz(1).

Da X̃ einfach zusammenhängend ist, hängt p̃(z) nicht vom gewählten Weg γz ab.

Offensichtlich ist q(p̃(z)) = p(z).

Zu zeigen: p̃ ist stetig in z ∈ X̃:

Sei W ⊆ Y offene Umgebung von p̃(z).

q offen
====⇒ q(W ) ist offene Umgebung von p(z) · d(p̃(z)).

Sei U ⊆ q(W ) offen wie in Definition 48 und V ⊆ q−1(U) die Komponente, die p̃(z) enthält.

O. B. d. A. sei V ⊆W .

Sei Z := p−1(U). Für u ∈ Z sei δ ein Weg in Z von z nach u.

⇒ γz ∗ δ ist Weg von x0 nach u
⇒ p̃(u) ∈ V
⇒ Z ⊆ ˜p−1(W )
⇒ p̃ ist stetig

Folgerung 3.6
Sind p : X̃ → X und q : Ỹ → X universelle Überlagerungen, so sind X̃ und Ỹ homöomorph.

Beweis: Seien x0 ∈ X, x̃0 ∈ X̃ mit p(x̃0) = x0 und ỹ0 ∈ q−1(x0) ⊆ Ỹ .

Nach Satz 3.5 gibt es genau eine Überlagerung

f : X̃ → Ỹ mit f(x0) = Ỹ0 und q ◦ f = p

und genau eine Überlagerung

g : Ỹ → X̃ mit g(ỹ0) = x̃0 und p ◦ g = q



59 3.3. ÜBERLAGERUNGEN

Damit gilt: p ◦ q ◦ f = q ◦ f = p, q ◦ f ◦ g = p ◦ g = q. Also ist g ◦ f : X̃ → X̃ Lift von
p : X̃ → X mit (g ◦ f)(x̃0) = x̃0.

Da auch idx̃ diese Eigenschaft hat, folgt mit Bemerkung 53: g ◦ f = idX̃ .
Analog gilt f ◦ g = idỸ . �

Die Frage, wann es eine universelle Überlagerung gibt, beantwortet der folgende Satz:

Satz 3.7
Es sei X ein wegzusammenhängender topologischer Raum in dem jeder Punkt eine
Umgebungsbasis aus einfach zusammenhängenden Mengen hat.

Dann gibt es eine universelle Überlagerung.

Beweis: Sei x0 ∈ X und X̃ := { (x, [γ]) | x ∈ X, γ Weg von xo nach x } und p : X̃ → X, (x, [γ]) 7→
x.

Die Topologie auf X̃ ist folgende: Definiere eine Umgebungsbasis von (x, [γ]) wie folgt: Es
sei U eine einfach zusammenhängende Umgebung von x und

Ũ = Ũ(x, [γ]) := { (y, [γ ∗ α]) | y ∈ U,α Weg in U von x nach y }

p ist Überlagerung: p|Ũ : Ũ → U bijektiv. p ist stetig und damit p|Ũ ein Homöomorphismus.

Sind γ1, γ2 Wege von x0 nach x und γ1 ∼ γ2, so ist Ũ(x, [γ1]) ∩ Ũ(x, [γ2]) = ∅, denn: Ist
γ1 ∗ α ∼ γ2 ∗ α, so ist auch γ1 ∼ γ2. Also ist p eine Überlagerung.

X̃ ist einfach zusammenhängend: Es sei x̃0 := (x0, e) und γ̃ : I → X̃ ein geschlossener Weg
um x̃0.

Sei γ := p(γ̃).

Annahme: [γ̃] 6= e

Mit Bemerkung 55.a folgt dann: [γ] 6= e.

Dann ist der Lift von γ nach x̃ mit Anfangspunkt x̃0 ein Weg von x̃0 nach (x0, [γ]). Wider-
spruch.

Definition 53
Es sei p : Y → X eine Überlagerung und f : Y → Y ein Homöomorphismus.

a) f heißt Decktransformation von p :⇔ p ◦ f = p.

b) p heißt regulär, wenn |Deck(Y/X)| = deg p gilt.

Bemerkung 57 (Eigenschaften der Decktransformation)
a) Die Decktransformationen von p : Y → X bilden mit der Verkettung eine Gruppe,

die sog. Decktransformationsgruppe. Man schreibt: Deck(p), Deck(Y/X) oder
Deck(Y → X).

b) Ist f ∈ Deck(Y/X) und f 6= id, dann hat f keinen Fixpunkt.

c) |Deck(Y/X)| ≤ deg p
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d) Ist f eine reguläre Überlagerung, dann gilt: ∀x ∈ X : Deck(Y/X) operiert transitiv
auf der Menge der Urbilder f−1(x).

Beweis:

a) Es gilt:

• idY ∈ DeckY/X,

• f, g ∈ DeckY/X ⇒ p ◦ (f ◦ g) = (p ◦ f) ◦ g = p ◦ g ⇒ f ◦ g ∈ DeckY/X

• f ∈ DeckY/X ⇒ p ◦ f = p ⇒ p ◦ f−1 = (p ◦ f) ◦ f−1 = p ◦ (f ◦ f−1) = p ⇒
f−1 ∈ DeckY/X

b) Die Menge
Fix(f) = { y ∈ Y | f(y) = y }

ist abgeschlossen als Urbild der Diagonale ∆ ⊆ Y × Y unter der stetigen Abbildung
y 7→ (f(y), y). Außerdem ist Fix(f) offen, denn ist y ∈ Fix(f), so sei U eine Umgebung
von p(y) ∈ X wie in Definition 48 und U ⊆ p−1(U) die Komponente, die y enthält;
also p : V → U ein Homöomorphismus. Dann ist W := f−1(V ) ∩ V offene Umgebung
von y.

Für z ∈ W ist f(z) ∈ V und p(f(z)) = p(z). Da p injektiv auf V ist, folgt f(z) = z,
d. h. Fix(f) 6= ∅.
Da Y zusammenhängend ist, folgt aus Fix(f̃) 6= ∅ schon Fix(f) = Y , also f = idY .

c) Es sei x0 ∈ X, deg(p) = d und p−1(x0) = { y0, . . . , yd−1 }. Für f ∈ Deck(Y/X) ist
f(y0) = { y0, . . . , yd−1 }.
Zu i ∈ { 0, . . . , d− 1 } gibt es höchstens ein f ∈ Deck(Y/X) mit f(y0) = y1, denn ist
f(y0) = g(y0), so ist (g−1 ◦ f)(y0) = y0, also nach Bemerkung 57.c g−1 ◦ f = idY .

Beispiel 39 (Decktransformationen)
1) p : R→ S1 : Deck(R/S1) = { t 7→ t+ n | n ∈ Z } ∼= Z

2) p : R2 → T 2 : Deck(R2/T 2) ∼= Z× Z = Z2

3) p : Sn → Pn(R) : Deck(Sn/Pn(R)) = { x 7→ ±x } ∼= Z/2Z

Nun werden wir eine Verbindung zwischen der Decktransformationsgruppe und der Fundamen-
talgruppe herstellen:

Satz 3.8
Ist p : X̃ → X eine universelle Überlagerung, so gilt:

Deck(X̃/X) ∼= π1(X,x0) ∀x0 ∈ X

Beweis: Wähle x̃0 ∈ p−1(x0). Es sei ρ : Deck(x̃/x)→ π1(X,x0) die Abbildung, die f auf [p(γf )]
abbildet, wobei γf ein Weg von x̃0 nach f(x̃0) sei. Da x̃ einfach zusammenhängend ist, ist
γf bis auf Homotopie eindeutig bestimmt und damit auch ρ wohldefiniert.

• ρ ist Gruppenhomomorphismus: Seien f, g ∈ Deck(X̃/X) ⇒ γg◦f = γg ∗ g(γf ) ⇒
p(γg◦f ) = p(γg) ∗ (p ◦ g)︸ ︷︷ ︸

=p

(γf ) = ρ(g) 6= ρ(f)
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• ρ ist injektiv: ρ(f) = e ⇒ p(γf ) ∼ γx0
Satz 3.2
====⇒ γf ∼ γx̃0 ⇒ f(x0) = x̃0

Bem. 57.c
======⇒ f =

idx̃.

• ρ ist surjektiv: Sei [γ] ∈ π1(X,x0), γ̃ Lift von γ nach x̃ mit Anfangspunkt x̃0. Der
Endpunkt von γ̃ sei x̃1.

p ist reguläre Überlagerung: Seien x̃0, x̃1 ∈ X̃ mit p(x̃0) = p(x̃1). Nach Satz 3.5 gibt
es genau eine Überlagerung p̃ : X̃ → X mit p = p ◦ p̃ und p̃(x̃0) = x̃1. Somit ist p̃ eine
Decktransformation und damit p eine reguläre Überlagerung.

Da p reguläre Überlagerung ist, gibt es ein f ∈ Deck(X̃/X) mit f(x̃0) = x̃1.

Aus der Definition von ρ folgt: ρ(f) = p(γf ) = γ

�

Beispiel 40 (Bestimmung von π1(S
1))

p : R→ S1, t 7→ (cos 2πt, sin 2πt) ist universelle Überlagerung, da R zusammenhängend ist.

Für n ∈ Z sei fn : R→ R, t 7→ t+ n die Translation um n.

Es gilt: (p ◦ fn)(t) = p(fn(t)) = p(t) ∀t ∈ R, d. h. fn ist Decktransformation.

Ist umgekehrt g irgendeine Decktransformation, so gilt insbesondere für t = 0:

(cos(2πg(0)), sin(2πg(0))) = (p ◦ g)(0) = p(0) = (1, 0)

Es existiert n ∈ Z mit g(0) = n. Da auch fn(0) = 0 + n = n gilt, folgt mit Bemerkung 57.c
g = fn. Damit folgt:

Deck(R/S1) = { fn | n ∈ Z } ∼= Z

Nach Satz 3.8 also π1(S1) ∼= Deck(R/S1) ∼= Z

3.4 Gruppenoperationen

Definition 54
Sei (G, ·) eine Gruppe und X eine Menge.

Eine Gruppenoperation von G auf X ist eine Abbildung ◦ : G×X → X für die gilt:

a) 1G ◦ x = x ∀x ∈ X
b) (g · h) ◦ x = g ◦ (h ◦ x) ∀g, h ∈ G∀x ∈ X

Beispiel 41
1) G = (Z,+), X = R, n ◦ x = x+ n

2) G operiert auf X = G durch g ◦ h := g · h
3) G operiert auf X = G durch g ◦ h := g · h · g−1, denn

i) 1G ◦ h = 1G · h · 1−1
G = h

ii) (g1 · g2) ◦ h = (g1 · g2) · h · (g · g2)−1

= g1 · (g2 · h · g−1
2 ) · g−1

1

= g1 ◦ (g2 ◦ h)
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Definition 55
Sei G eine Gruppe, X ein topologischer Raum und ◦ : G×X → X eine Gruppenoperation.

a) G operiert durch Homöomorphismen, wenn für jedes g ∈ G die Abbildung

mg : X → X,x 7→ g ◦ x

ein Homöomorphismus ist.

b) Ist G eine topologische Gruppe, so heißt die Gruppenoperation ◦ stetig, wenn

∀g ∈ G : mg ist stetig

gilt.

Bemerkung 58
Jede stetige Gruppenoperation ist eine Gruppenoperation durch Homöomorphismen.

Beweis: Nach Voraussetzung ist mg := ◦|{ g }×X : X → X,x 7→ g ◦ x stetig.

Die Umkehrabbildung zu mg ist mg−1 :

(mg−1 ◦mg)(x) = mg−1(mg(x))

= mg−1(g ◦ x)

= g−1 ◦ (g ◦ x)

Def. 54.b
= (g−1 · g) ◦ x
= 1G ◦ x

Def. 54.a
= x

Beispiel 42
In Beispiel 41.1 operiert Z durch Homöomorphismen.

Bemerkung 59
Sei G eine Gruppe und X eine Menge.

a) Die Gruppenoperation vonG aufX entsprechen bijektiv den Gruppenhomomorphismen
% : G→ Perm(X) = Sym(X) = { f : X → X | f ist bijektiv }

b) Ist X ein topologischer Raum, so entsprechen dabei die Gruppenoperationen durch
Homöomorphismus den Gruppenhomomorphismen G→ Homöo(X)

Beweis:

Sei ◦ : G × X → X eine Gruppenoperation von G auf X. Dann sei % : G → Perm(X)
definiert durch %(g)(X) = g · x ∀g ∈ G, x ∈ X, also %(g) = mg.

% ist Homomorphismus: %(g1 · g2) = mg1·g2 = mg1 ◦mg2 = %(g1) ◦ %(g2), denn für x ∈ X :
%(g1 · g2)(x) = (g1 · g2) ◦ x = g1 ◦ (g2 ◦ x) = %(g1)(%(g2)(x)) = (%(g1) ◦ %(g2))(x)

Umgekehrt: Sei % : G → Perm(X) Gruppenhomomorphismus. Definiere ◦ : G × X → X
durch g ◦ x = %(g)(x).

z. z. Definition 54.b:

g1 ◦ (g2 ◦ x) = %(g1)(g2 ◦ x)
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= %(g1)(%(g2)(x))

= (%(g1) ◦ %(g2))(x)

% ist Hom.
= %(g1 · g2)(x)

= (g1 · g2) ◦ x

z. z. Definition 54.a: 1G · x = %(1G)(x) = idX(x) = x, weil % ein Homomorphismus ist.

Beispiel 43
Sei X ein wegzusammenhängender topologischer Raum, p : X̃ → X eine universelle Überla-
gerung, x0 ∈ X, x̃0 ∈ X̃ mit p(x̃0) = x0.

Dann operiert π1(X,x0) auf X̃ durch Homöomorphismen wie folgt:

Für [γ] ∈ π1(X,x0) und x̃ ∈ X̃ sei [γ] ◦ x̃ = ˜γ ∗ %(1) wobei γ̃ ein Weg von x̃0 nach x̃ in X̃
sei, % := p(δ̃) = p ◦ δ.

Also: δ ist ein Weg in X von x0 nach x = p(x̃) und γ̃ ∗ δ die Liftung von γ ∗ δ mit
Anfangspunkt x̃0.

[γ] · x̃ hängt nicht von der Wahl von γ̃ ab; ist γ̃′ ein anderer Weg von x̃0 nach x̃, so sind δ̃
und δ̃′ homotop, also auch γ̃ ∗ δ und γ̃ ∗ δ′ homotop.

Gruppenoperation, denn:

i) [e] ◦ x̃ = ẽ ∗ δ = x̃

ii) ˜γ1 ∗ γ2 ∗ δ(1) = [γ1 ∗ γ2] ◦ x̃ = ([γ1] ∗ [γ2]) ◦ x̃
γ1 ∗ γ2 ∗ δ(1) = [γ1] ◦ ( ˜γ2 ∗ δ)(1) = [γ1] ◦ ([γ2] ◦ x̃)

Erinnerung:Die Konstruktion aus Bemerkung 59 induziert zu der Gruppenoperation π1(X,x0)
aus Beispiel 43 einen Gruppenhomomorphismus % : π1(X,x0)→ Homöo(X). Nach Satz 3.8 ist

%(π1(X,x0)) = Deck(X̃/X)

=
{
f : X̃ → X̃ Homöomorphismus

∣∣∣ p ◦ f = p
}

Beispiel 44
Sei X := S2 ⊆ R3 und τ die Drehung um die z-Achse um 180◦.

g = 〈τ〉 = { id, τ } operiert auf S2 durch Homöomorphismen.

Frage: Was ist S2/G? Ist S2/G eine Mannigfaltigkeit?



4 Euklidische und nichteuklidische
Geometrie

Definition 56
Das Tripel (X, d,G) heißt genau dann eine Geometrie, wenn (X, d) ein metrischer Raum

und ∅ 6= G ⊆ P(X) gilt. Dann heißt G die Menge aller Geraden.

4.1 Axiome für die euklidische Ebene

Axiome bilden die Grundbausteine jeder mathematischen Theorie. Eine Sammlung aus Axiomen
nennt man Axiomensystem. Da der Begriff des Axiomensystems so grundlegend ist, hat man
auch ein paar sehr grundlegende Forderungen an ihn: Axiomensysteme sollen widerspruchsfrei
sein, die Axiome sollen möglichst unabhängig sein und Vollständigkeit wäre auch toll. Mit
Unabhängigkeit ist gemeint, dass kein Axiom sich aus einem anderem herleiten lässt. Dies scheint
auf den ersten Blick eine einfache Eigenschaft zu sein. Auf den zweiten Blick muss man jedoch
einsehen, dass das Parallelenproblem, also die Frage ob das Parallelenaxiom unabhängig von
den restlichen Axiomen ist, über 2000 Jahre nicht gelöst wurde. Ein ganz anderes Kaliber ist
die Frage nach der Vollständigkeit. Ein Axiomensystem gilt als Vollständig, wenn jede Aussage
innerhalb des Systems verifizierbar oder falsifizierbar ist. Interessant ist hierbei der Gödelsche
Unvollständigkeitssatz, der z. B. für die Arithmetik beweist, dass nicht alle Aussagen formal
bewiesen oder widerlegt werden können.

Kehren wir nun jedoch zurück zur Geometrie. Euklid hat in seiner Abhandlung „Die Elemente“
ein Axiomensystem für die Geometrie aufgestellt.

Euklids Axiome

• Strecke zwischen je zwei Punkten

• Jede Strecke bestimmt genau eine Gerade

• Kreis (um jeden Punkt mit jedem Radius)

• Je zwei rechte Winkel sind gleich (Isometrie, Bewegung)

• Parallelenaxiom von Euklid:
Wird eine Gerade so von zwei Geraden geschnitten, dass die Summe der Innenwinkel
kleiner als zwei Rechte ist, dann schneiden sich diese Geraden auf der Seite dieser Winkel.

Man mache sich klar, dass das nur dann nicht der Fall ist, wenn beide Geraden par-
allel sind und senkrecht auf die erste stehen.

Definition 57
Eine euklidische Ebene ist eine Geometrie (X, d,G), die Axiome §1 - §5 erfüllt:

§1) Inzidenzaxiome:
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(i) Zu P 6= Q ∈ X gibt es genau ein g ∈ G mit { P,Q } ⊆ g.
(ii) |g| ≥ 2 ∀g ∈ G
(iii) X /∈ G

§2) Abstandsaxiom: Zu P,Q,R ∈ X gibt es genau dann ein g ∈ G mit { P,Q,R } ⊆ g,
wenn gilt:

• d(P,R) = d(P,Q) + d(Q,R) oder

• d(P,Q) = d(P,R) + d(R,Q) oder

• d(Q,R) = d(Q,P ) + d(P,R)

Definition 58
Sei (X, d,G) eine Geometrie und seien P,Q,R ∈ X.

a) P,Q,R liegen kollinear, wenn es g ∈ G gibt mit { P,Q,R } ⊆ g.

b) Q liegt zwischen P und R, wenn d(P,R) = d(P,Q) + d(Q,R)

c) Strecke PR := {Q ∈ X | Q liegt zwischen P und R }

d) Halbgeraden:
PR+ := {Q ∈ X | Q liegt zwischen P und R oder R liegt zwischen P und Q }
PR− := {Q ∈ X | P liegt zwischen Q und R }

P R

PR− PR

PR+

Abbildung 4.1: Halbgeraden

Bemerkung 60
a) PR+ ∪ PR− = PR

b) PR+ ∩ PR− = { P }

Beweis:

a) „⊆“ folgt direkt aus der Definition von PR+ und PR−

„⊇“: Sei Q ∈ PR⇒ P,Q,R sind kollinear.

2⇒


Q liegt zwischen P und R⇒ Q ∈ PR
R liegt zwischen P und Q⇒ Q ∈ PR
P liegt zwischen Q und R⇒ Q ∈ PR

b) „⊇“ ist offensichtlich
„⊆“: Sei PR+ ∩ PR−. Dann ist d(Q,R) = d(P,Q) + d(P,R) weil Q ∈ PR− und{

d(P,R) = d(P,Q) + d(Q,R) oder
d(P,Q) = d(P,R) + d(R,Q)

}
⇒ d(Q,R) = 2d(P,Q) + d(Q,R)
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⇒ d(P,Q) = 0

⇒ P = Q

d(P,Q) = 2d(P,R) + d(P,Q)

⇒ P = R

⇒Widerspruch

Definition 59
§3) Anordnungsaxiome

(i) Zu jeder Halbgerade H mit Anfangspunkt P ∈ X und jedem r ∈ R≥0 gibt es
genau ein Q ∈ H mit d(P,Q) = r.

(ii) Jede Gerade zerlegt X \g = H1 ∪̇H2 in zwei nichtleere Teilmengen H1, H2, sodass
für alle A ∈ Hi, B ∈ Hj mit i, j ∈ { 1, 2 } gilt: AB ∩ g 6= ∅ ⇔ i 6= j.

Diese Teilmengen Hi heißen Halbebenen bzgl. g.

§4) Bewegungsaxiom: Zu P,Q, P ′, Q′ ∈ X mit d(P,Q) = d(P ′, Q′) gibt es mindestens
2 Isometrien ϕ1, ϕ2 mit ϕi(P ) = P ′ und ϕi(Q) = Q′ mit i = 1, 2.1

§5) Parallelenaxiom: Zu jeder Geraden g ∈ G und jedem Punkt P ∈ X \ g gibt es
höchstens ein h ∈ G mit P ∈ h und h ∩ g = ∅. h heißt Parallele zu g durch P .

Satz 4.1 (Satz von Pasch)
Seien P , Q, R nicht kollinear, g ∈ G mit g ∩ { P,Q,R } = ∅ und g ∩ PQ 6= ∅.

Dann ist entweder g ∩ PR 6= ∅ oder g ∩QR 6= ∅.

Dieser Satz besagt, dass Geraden, die eine Seite eines Dreiecks (also nicht nur eine Ecke)
schneiden, auch eine weitere Seite schneiden.

Beweis: g ∩ PQ 6= ∅
3(ii)⇒ P und Q liegen in verschiedenen Halbebenen bzgl. g
⇒ o. B. d. A. R und P liegen in verschieden Halbebenen bzgl. g
⇒ g ∩RP 6= ∅

Bemerkung 61
Sei P,Q ∈ X mit P 6= Q sowie A,B ∈ X \ PQ mit A 6= B. Außerdem seien A und B in der
selben Halbebene bzgl. PQ sowie Q und B in der selben Halbebene bzgl. PA.

Dann gilt: PB+ ∩AQ 6= ∅

Auch Bemerkung 61 lässt sich umgangssprachlich sehr viel einfacher ausdrücken: Die Diagonalen
eines konvexen Vierecks schneiden sich.

Beweis: Sei P ′ ∈ PQ−, P ′ 6= P
Satz 4.1
====⇒ PB schneidet AP ′ ∪AQ

Sei C der Schnittpunkt. Dann gilt:

(i) C ∈ PB+, denn A und B liegen in derselben Halbebene bzgl. PQ = P ′Q, also auch
AP ′ und AQ.

1Die „Verschiebung“ von P ′Q′ nach PQ und die Isometrie, die zusätzlich an der Gerade durch P und Q spiegelt.
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P
P ′

Q

A B

C

Abbildung 4.2: Situation aus Bemerkung 61

(ii) C liegt in derselben Halbebene bzgl. PA wie B, weil das für Q gilt.

AP ′ liegt in der anderen Halbebene bzgl. PA⇒ C /∈ P ′A⇒ C ∈ AQ
Da C ∈ PB+ und C ∈ AQ folgt nun direkt: ∅ 6= { C } ⊆ PB+ ∩AQ �

Bemerkung 62
Seien P,Q ∈ X mit P 6= Q und A,B ∈ X \PQ in der selben Halbebene bzgl. PQ. Außerdem
sei d(A,P ) = d(B,P ) und d(A,Q) = d(B,Q).

Dann ist A = B.

P

Q

A

B

Abbildung 4.3: Bemerkung 62: Die beiden roten und die beiden blauen Linien sind gleich lang.
Intuitiv weiß man, dass daraus folgt, dass A = B gilt.

Beweis: durch Widerspruch
Annahme: A 6= B

Dann ist B /∈ (PA ∪QA) wegen §2.

1. Fall: Q und B liegen in derselben Halbebene bzgl. PA
Bem. 61
=====⇒ PB+ ∩AQ 6= ∅.
Sei C der Schnittpunkt vom PB und AQ.

Dann gilt:

(i) d(A,C) + d(C,Q) = d(A,Q)
Vor.
= d(B,Q) < d(B,C) + d(C,Q)⇒ d(A,C) < d(B,C)

(ii) a) B liegt zwischen P und C.

d(P,A) + d(A,C) > d(P,C) = d(P,B) + d(B,C) = d(P,A) + d(B,C) ⇒
d(A,C) > d(B,C)⇒ Widerspruch zu Punkt (i)
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P Q

B

C

A

(a) 1. Fall

P

Q

AB

(b) 2. Fall

Abbildung 4.4: Fallunterscheidung aus Bemerkung 62

b) C liegt zwischen P und B

d(P,C) + d(C,A) > d(P,A) = d(P,B) = d(P,C) + d(C,B)
⇒ d(C,A) > d(C,B)
⇒ Widerspruch zu Punkt (i)

2. Fall: Q und B liegen auf verschieden Halbebenen bzgl. PA.

Dann liegen A und Q in derselben Halbebene bzgl. PB.

Tausche A und B ⇒ Fall 1 �

Bemerkung 63
Sei (X, d,G) eine Geometrie, die §1 - §3 erfüllt, P,Q ∈ X mit P 6= Q und ϕ eine Isometrie
mit ϕ(P ) = P und ϕ(Q) = Q.

Dann gilt ϕ(S) = S ∀S ∈ PQ.

Beweis:

O. B. d. A. sei S ∈ PQ 2⇔ d(P,Q) = d(P, S) + d(S,Q)

ϕ∈Iso(X)⇒ d(ϕ(P ), ϕ(Q)) = d(ϕ(P ), ϕ(S)) + d(ϕ(S), ϕ(Q))

P,Q∈Fix(ϕ)⇒ d(P,Q) = d(P,ϕ(S)) + d(ϕ(S), Q)

⇒ ϕ(S) liegt zwischen P und Q
⇒ d(P, S) = d(ϕ(P ), ϕ(S)) = d(P,ϕ(S))

3(i)⇒ ϕ(S) = S

�

Proposition 4.2
In einer Geometrie, die §1 - §3 erfüllt, gibt es zu P, P ′, Q,Q′ mit d(P,Q) = d(P ′, Q′)
höchstens zwei Isometrien mit ϕ(P ) = P ′ und ϕ(Q) = Q′

Aus den Axiomen folgt, dass es in der Situation von §4 höchstens zwei Isometrien mit
ϕi(P ) = P ′ und ϕi(Q) = Q′ gibt.
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Beweis: Seien ϕ1, ϕ2, ϕ3 Isometrien mit ϕi(P ) = P ′, ϕi(Q) = Q′ mit i = 1, 2, 3.

Der Beweis von Proposition 4.2 erfolgt über zwei Teilaussagen:

(Teil i) ∃R ∈ X \ PQ mit ϕ1(R) = ϕ2(R).

(Teil ii) Hat ϕ 3 Fixpunkte, die nicht kollinear sind, so ist ϕ = idX .

Aus (Teil i) und (Teil ii) folgt, dass ϕ−1
2 ◦ϕ1 = idX , also ϕ2 = ϕ1, da P , Q und R in diesem

Fall Fixpunkte sind.

Nun zu den Beweisen der Teilaussagen:

(Teil i) Sei R ∈ X \ PQ. Von den drei Punkten ϕ1(R), ϕ2(R), ϕ3(R) liegen zwei in der selben
Halbebene bzgl. P ′Q′ = ϕi(PQ).

O. B. d. A. seien ϕ1(R) und ϕ2(R) in der selben Halbebene.

Es gilt: d(P ′, ϕ1(R)) = d(ϕ1(P ), ϕ1(R))

= d(P,R)

= d(ϕ2(P ), ϕ2(R))

= d(P ′, ϕ2(R))
und analog d(Q′, ϕ1(R)) = d(Q′, ϕ2(R))

(Teil ii) Seien P , Q und R Fixpunkte von ϕ, R /∈ PQ und A /∈ PQ ∪ PR ∪ QR. Sei B ∈
PQ \ { P,Q }. Dann ist ϕ(B) = B wegen Bemerkung 63.

Ist R ∈ AB, so enthält AB 2 Fixpunkte von ϕ Bem. 63
=====⇒ ϕ(A) = A.

P B Q

C

RA

Abbildung 4.5: P,Q,R sind Fixpunkte, B ∈ PQ \ { P,Q }, A /∈ PQ ∪ PR ∪QR

Ist R /∈ AB, so ist AB ∩ PR 6= ∅ oder AB ∈ RQ 6= ∅ nach Satz 4.1. Der Schnittpunkt
C ist dann Fixpunkt von ϕ′ nach Bemerkung 63 ⇒ ϕ(A) = A.

Bemerkung 64 (SWS-Kongruenzsatz)
Sei (X, d,G) eine Geometrie, die §1 - §4 erfüllt. Seien außerdem 4ABC und 4A′B′C ′
Dreiecke, für die gilt:

(i) d(A,B) = d(A′, B′)

(ii) ∠CAB ∼= ∠C ′A′B′

(iii) d(A,C) = d(A′, C ′)

Dann ist 4ABC kongruent zu 4A′B′C ′ .
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Beweis: Sei ϕ die Isometrie mit ϕ(A′) = A, ϕ(A′C ′+) = AC+ und ϕ(A′B′+) = AB+. Diese
Isometrie existiert wegen Punkt §4.

⇒ C ∈ ϕ(A′C ′+) und B ∈ ϕ(A′B′+).

d(A′, C ′) = d(ϕ(A′), ϕ(C ′)) = d(A,ϕ(C ′))
3(i)
==⇒ ϕ(C ′) = C

d(A′, B′) = d(ϕ(A′), ϕ(B′)) = d(A,ϕ(B′))
3(i)
==⇒ ϕ(B′) = B

Also gilt insbesondere ϕ(4A′B′C ′) = 4ABC. �

Bemerkung 65 (WSW-Kongruenzsatz)
Sei (X, d,G) eine Geometrie, die §1 - §4 erfüllt. Seien außerdem 4ABC und 4A′B′C ′
Dreiecke, für die gilt:

(i) d(A,B) = d(A′, B′)

(ii) ∠CAB ∼= ∠C ′A′B′

(iii) ∠ABC ∼= ∠A′B′C ′

Dann ist 4ABC kongruent zu 4A′B′C ′ .
Beweis: Sei ϕ die Isometrie mit ϕ(A′) = A, ϕ(B′) = B und ϕ(C ′) liegt in der selben Halbebene

bzgl. AB wie C. Diese Isometrie existiert wegen §4.

Aus ∠CAB = ∠C ′A′B′ = ∠ϕ(C ′)ϕ(A′)ϕ(B′) = ∠ϕ(C ′)AB folgt, dass ϕ(C ′) ∈ AC+.
Analog folgt aus ∠ABC = ∠A′B′C ′ = ∠ϕ(A′)ϕ(B′)ϕ(C ′) = ∠ABϕ(C ′), dass ϕ(C ′) ∈
BC+.

Dann gilt ϕ(C ′) ∈ AC ∩BC = { C } ⇒ ϕ(C ′) = C.

Es gilt also ϕ(4A′B′C ′) = 4ABC. �

Definition 60
a) Ein Winkel ist ein Punkt P ∈ X zusammen mit 2 Halbgeraden mit Anfangspunkt P .

Man schreibt: ∠R1PR2 bzw. ∠R2PR1
2

b) Zwei Winkel sind gleich, wenn es eine Isometrie gibt, die den einen Winkel auf den
anderen abbildet.

c) ∠R′1P ′R′2 heißt kleiner als ∠R1PR2, wenn es eine Isometrie ϕ gibt, mit ϕ(P ′) = P ,
ϕ(P ′R′+1 ) = PR+

1 und ϕ(R′2) liegt in der gleichen Halbebene bzgl. PR1 wie R2 und in
der gleichen Halbebene bzgl. PR2 wie R1

d) Im Dreieck 4PQR gibt es Innenwinkel und Außenwinkel.

Bemerkung 66
In einem Dreieck ist jeder Innenwinkel kleiner als jeder nicht anliegende Außenwinkel.

Beweis: Zeige ∠PRQ < ∠RQP ′.

Sei M der Mittelpunkt der Strecke QR und P ′ ∈ PQ+ \ PQ. Sei A ∈MP− mit d(P,M) =
d(M,A).

Es gilt: d(Q,M) = d(M,R) und d(P,M) = d(M,A) sowie ∠PMR = ∠AMQ ⇒ 4MRQ
ist kongruent zu 4AMQ, denn eine der beiden Isometrien, die ∠PMR auf ∠AMQ abbildet,
bildet R auf Q und P auf A ab.

2Für dieses Skript gilt: ∠R1PR2 = ∠R2PR1. Also sind insbesondere alle Winkel ≤ 180◦.
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P R′1 R1

R′2

R2

(a) ∠R′1P ′R′2 ist kleiner als ∠R1PR2,
vgl. Definition 60.c

P

Q R

(b) Innenwinkel und Außenwin-
kel in 4PQR, vgl. Definiti-
on 60.d

Abbildung 4.6: Situation aus Definition 60

Q M

A

P

R

(a) Parallelogramm AQPR

α

β

R

Q P

(b) Innen- und Außenwin-
kel von 4PQR

Abbildung 4.7: Situation aus Bemerkung 66

⇒ ∠MQA = ∠MRP = ∠QRP = ∠PRQ.

Noch zu zeigen: ∠MQA < ∠RQP ′, denn A liegt in der selben Halbebene bzgl. PQ wie M .

Proposition 4.3 (Existenz der Parallelen)
Sei (X, d,G) eine Geometrie mit den Axiomen §1 - §4.

Dann gibt es zu jeder Geraden g ∈ G und jedem Punkt P ∈ X \ g mindestens eine
Parallele h ∈ G mit P ∈ h und g ∩ h = ∅.

Beweis: Seien P,Q ∈ f ∈ G und ϕ die Isometrie, die Q auf P und P auf P ′ ∈ f mit
d(P, P ′) = d(P,Q) abbildet und die Halbebenen bzgl. f erhält.

Annahme: ϕ(g) ∩ g 6= ∅
⇒ Es gibt einen Schnittpunkt {R } = ϕ(g) ∩ g.
Dann ist ∠RQP = ∠RQP ′ < ∠RPP ′ nach Bemerkung 66 und ∠RQP = ∠RPP ′, weil
ϕ(∠RQP ) = ∠RPP ′.
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Q

h

f

g

P

Abbildung 4.8: Situation aus Proposition 4.3

⇒ Widerspruch
⇒ ϕ(g) ∩ g = ∅ �

Folgerung 4.4
Die Summe zweier Innenwinkel in einem Dreieck ist kleiner als π.

D. h. es gibt eine Isometrie ϕ mit ϕ(Q) = P und ϕ(QP+) = PR+, sodass ϕ(R) in der gleichen
Halbebene bzgl. PQ liegt wie R.

Beweis: Die Summe eines Innenwinkels mit den anliegenden Außenwinkeln ist π, d. h. die
beiden Halbgeraden bilden eine Gerade.

Abbildung 4.9: In der sphärischen Geometrie gibt es, im Gegensatz zur euklidischen Geometrie,
Dreiecke mit drei 90◦-Winkeln.

Proposition 4.5
In einer Geometrie mit den Axiomen §1 - §4 ist in jedem Dreieck die Summe der
Innenwinkel ≤ π.

Sei im Folgenden „IWS“ die „Innenwinkelsumme“.
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(b) Situation aus Proposition 4.5

Abbildung 4.10: Situation aus Proposition 4.5

Beweis: Sei 4 ein Dreieck mit IWS(4) = π + ε

Sei α ein Innenwinkel von 4.

Beh.: Es gibt ein Dreieck 4′ mit IWS(4′) = IWS(4) und einem Innenwinkel α′ ≤ α
2 .

Dann gibt es für jedes n ein 4n mit IWS(4n) = IWS(4) und Innenwinkel α′ ≤ α
2n . Für

α
2n < ε ist dann die Summe der beiden Innenwinkel um 4n größer als π ⇒ Widerspruch
zu Folgerung 4.4.

Beweis: Es seien A,B,C ∈ X und 4 das Dreieck mit den Eckpunkten A,B,C und α sei
der Innenwinkel bei A, β der Innenwinkel bei B und γ der Innenwinkel bei C.

Sei M der Mittelpunkt der Strecke BC. Sei außerdem α1 = ∠CAM und α2 = ∠BAM .

Sei weiter A′ ∈MA− mit d(A′,M) = d(A,M).

Die Situation ist in Abbildung 4.10b skizziert.

⇒ 4(MA′C) und 4(MAB) sind kongruent. ⇒ ∠ABM = ∠A′CM und ∠MA′C =
∠MAB.⇒ α+β+γ = IWS(4ABC) = IWS(4AA′C) und α1 +α2 = α, also o. B. d. A.
α1 ≤ α

2

Bemerkung 67
In einer euklidischen Ebene ist in jedem Dreieck die Innenwinkelsumme gleich π.

α′
α′′

α β

β′

γ

A B

C
g

Abbildung 4.11: Situation aus Bemerkung 67

Beweis: Sei g eine Parallele von AB durch C.

• Es gilt α′ = α wegen Proposition 4.3.

• Es gilt β′ = β wegen Proposition 4.3.

• Es gilt α′′ = α′ wegen Aufgabe 8.

⇒ IWS(4ABC) = γ + α′′ + β′ = π
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Aus der Eigenschaft, dass die Innenwinkelsumme von Dreiecken in der euklidischen Ebene gleich
π ist, folgen direkt die Kongruenzsätze SWW und WWS über den Kongruenzsatz WSW.

4.2 Weitere Eigenschaften einer euklidischen Ebene

Satz 4.6 (Strahlensatz)
In ähnlichen Dreiecken sind Verhältnisse entsprechender Seiten gleich.
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Abbildung 4.12: Strahlensatz

Der Beweis wird hier nicht geführt. Für Beweisvorschläge wäre ich dankbar.
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C ′
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c

b a

c′
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Abbildung 4.13: Die Dreiecke 4ABC und 4AB′C ′ sind ähnlich.

4.2.1 Flächeninhalt

Definition 61
„Simplizialkomplexe“ in euklidischer Ebene (X, d) heißen flächengleich, wenn sie sich in
kongruente Dreiecke zerlegen lassen.
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(a) Zwei kongruente Dreiecke (b) Zwei weitere kongruente Drei-
ecke

Abbildung 4.14: Flächengleichheit
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(a) 1/2 · |AB| · |hc|

·
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C

LA
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c

(b) 1/2 · |BC| · |ha|

Abbildung 4.15: Flächenberechnung im Dreieck

Der Flächeninhalt eines Dreiecks ist 1/2 ·Grundseite ·Höhe.

Zu zeigen: Unabhängigkeit von der gewählten Grundseite.
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Abbildung 4.16: 4ABLa und 4CLCB sind ähnlich, weil IWS = π

Strahlensatz
=======⇒ a

hc
= c

ha
→ a · ha = c · hc

Satz 4.7 (Satz des Pythagoras)
Im rechtwinkligen Dreieck gilt a2 + b2 = c2, wobei c die Hypotenuse und a, b die beiden
Katheten sind.

Beweis: (a+ b) · (a+ b) = a2 + 2ab+ b2 = c2 + 4 · (1
2 · a · b)
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(a) a, b sind Katheten und c ist die Hypo-
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(b) Beweisskizze

Abbildung 4.17: Satz des Pythagoras

Satz 4.8
Bis auf Isometrie gibt es genau eine euklidische Ebene (X, d,G), nämlich X = R2,
d = euklidischer Abstand, G = Menge der üblichen Geraden.

Beweis:

(i) (R2, dEuklid) ist offensichtlich eine euklidische Ebene.

(ii) Sei (X, d) eine euklidische Ebene und g1, g2 Geraden in X, die sich in einem Punkt 0
im rechten Winkel schneiden.

Sei P ∈ X \ (g1 ∪ g2) ein Punkt und PX der Fußpunkt des Lots von P auf g1 (vgl.
Aufgabe 9 (c)) und PY der Fußpunkt des Lots von P auf g2.

Sei xP := d(PX , 0) und yP := d(PY , 0).

In Abbildung 4.19 wurde die Situation skizziert.

Sei h : X → R2 eine Abbildung mit h(P ) := (xP , yP ) Dadurch wird h auf dem
Quadranten definiert, in dem P liegt, d. h.

∀Q ∈ X mit PQ ∩ g1 = ∅ = PQ ∩ g2

Fortsetzung auf ganz X durch konsistente Vorzeichenwahl.

Im Folgenden werden zwei Aussagen gezeigt:

(i) h ist surjektiv

(ii) h ist eine Isometrie

Da jede Isometrie injektiv ist, folgt aus (i) und (ii), dass h bijektiv ist.

Nun zu den Beweisen der Teilaussagen:

(i) Sei (x, y) ∈ R2, z. B. x ≥ 0, y ≥ 0. Sei P ′ ∈ g1 mit d(0, P ′) = x und P ′ auf der
gleichen Seite von g2 wie P .
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(a) Schritt 1
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(b) Schritt 2

Abbildung 4.18: Beweis zu Satz 4.8
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Abbildung 4.19: Beweis zu Satz 4.8
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(ii) Zu Zeigen: d(P,Q) = d(h(P ), h(Q))

d(P,Q)2 Pythagoras
= d(P,R)2 + d(R,Q)2 = (yQ − yP )2 + (xQ − xP )2.

h(Q) = (xQ, yQ)

4.3 Hyperbolische Geometrie

Definition 62
Sei

H := { z ∈ C | =(z) > 0 } =
{

(x, y) ∈ R2
∣∣ y > 0

}
die obere Halbebene bzw. Poincaré-Halbebene und G = G1 ∪G2 mit

G1 = { g1 ⊆ H | ∃m ∈ R, r ∈ R>0 : g1 = { z ∈ H : | z −m| = r } }
G2 = { g2 ⊆ H | ∃x ∈ R : g2 = { z ∈ H : <(z) = x } }

Die Elemente aus G heißen hyperbolische Geraden.

Bemerkung 68 (Eigenschaften der hyperbolischen Geraden)
Die hyperbolischen Geraden erfüllen. . .

a) . . . die Inzidenzaxiome §1

b) . . . das Anordnungsaxiom §3 (ii)

c) . . . nicht das Parallelenaxiom §5

Beweis:

a) Offensichtlich sind §1 (iii) und §1 (ii) erfüllt. Für §1 (i) gilt:
Gegeben z1, z2 ∈ H
Existenz:

Fall 1 <(z1) = <(z2)
⇒ z1 und z2 liegen auf

g = { z ∈ C | <(z) = <(z1) ∧H }

Siehe Abbildung 4.20a.

Fall 2 <(z1) 6= <(z2)
Betrachte nun z1 und z2 als Punkte in der euklidischen Ebene. Die Mittelsenkrech-
te zu diesen Punkten schneidet die x-Achse. Alle Punkte auf der Mittelsenkrechten
zu z1 und z2 sind gleich weit von z1 und z2 entfernt. Daher ist der Schnittpunkt mit
der x-Achse der Mittelpunkt eines Kreises durch z1 und z2 (vgl. Abbildung 4.20b)

b) Sei g ∈ G1 ∪̇G2 eine hyperbolische Gerade.

Es existieren disjunkte Zerlegungen von H \ g:
Fall 1: g = { z ∈ H ‖ z −m| = r } ∈ G1

Dann gilt:
H = { z ∈ H ‖ z −m| < r }︸ ︷︷ ︸

=:H1 (Kreisinneres)

∪̇ { z ∈ H ‖ z −m| > r }︸ ︷︷ ︸
=:H2 (Kreisäußeres)
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Abbildung 4.20: Zwei Punkte liegen in der hyperbolischen Geometrie immer auf genau einer
Geraden

Da r > 0 ist H1 nicht leer, da r ∈ R ist H2 nicht leer.

Fall 2: g = { z ∈ H | <z = x } ∈ G2

Die disjunkte Zerlegung ist:

H = { z ∈ H | <(z) < x }︸ ︷︷ ︸
=:H1 (Links)

∪̇ { z ∈ H | <(z) > x }︸ ︷︷ ︸
=:H2 (Rechts)

Zu zeigen: ∀A ∈ Hi, B ∈ Hj mit i, j ∈ { 1, 2 } gilt: AB ∩ g 6= ∅ ⇔ i 6= j

„⇐“: A ∈ H1, B ∈ H2 : AB ∩ g 6= ∅
Da dH stetig ist, folgt diese Richtung direkt. Alle Punkte in H1 haben einen Abstand
von m der kleiner ist als r und alle Punkte in H2 haben einen Abstand von m der
größer ist als r. Da man jede Strecke von A nach B insbesondere auch als stetige
Abbildung f : R→ R>0 auffassen kann, greift der Zwischenwertsatz ⇒ AB ∩ g 6= ∅
„⇒“: A ∈ Hi, B ∈ Hj mit i, j ∈ { 1, 2 } : AB ∩ g 6= ∅ ⇒ i 6= j

Sei h die Gerade, die durch A und B geht.

Da A,B /∈ g, aber A,B ∈ h gilt, haben g und h insbesondere mindestens einen
unterschiedlichen Punkt. Aus §1 (i) folgt, dass sich g und h in höchstens einen Punkt
schneiden. Sei C dieser Punkt.

Aus A,B /∈ g folgt: C 6= A und C 6= B. Also liegt C zwischen A und B. Daraus folgt,
dass A und B bzgl. g in verschiedenen Halbebenen liegen.

c) Siehe Abbildung 4.21.

Definition 63
Es seien a, b, c, d ∈ R mit ad− bc 6= 0 und σ : C→ C eine Abbildung definiert durch

σ(z) :=
az + b

cz + d

σ heißt Möbiustransformation.
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Proposition 4.9
a) Die Gruppe SL2(R) operiert auf H durch die Möbiustransformation

σ(z) :=

(
a b
c d

)
◦ z :=

az + b

cz + d

b) Die Gruppe PSL2(R) = SL2(R)/(±I) operiert durch σ auf H.

c) PSL2(R) operiert auf R ∪ {∞ }. Diese Gruppenoperation ist 3-fach transitiv, d. h.
zu x0 < x1 < x∞ ∈ R gibt es genau ein σ ∈ PSL2(R) mit σ(x0) = 0, σ(x1) = 1,
σ(x∞) =∞.

d) SL2(R) wird von den Matrizen(
λ 0
0 λ−1

)
︸ ︷︷ ︸

=:Aλ

,

(
1 t
0 1

)
︸ ︷︷ ︸

=:Bt

und
(

0 1
−1 0

)
︸ ︷︷ ︸

=:C

mit t, λ ∈ R×

erzeugt.

e) PSL2(R) operiert auf G.

Beweis:

a) Sei z = x+ iy ∈ H, d. h. y > 0 und σ =

(
a b
c d

)
∈ SL2(R)

⇒ σ(z) =
a(x+ iy) + b

c(x+ iy) + d

=
(ax+ b) + iay

(cx+ d) + icy
· (cx+ d)− icy

(cx+ d)− icy

=
(ax+ b)(cx+ d) + aycy

(cx+ d)2 + (cy)2
+ i

ay(cx+ d)− (ax+ b)cy

(cx+ d)2 + (cy)2

=
axcx+ axd+ bcx+ bd+ aycy

(cx+ d)2 + (cy)2
+ i

(ad− bc)y
(cx+ d)2 + (cy)2

SL2(R)
=

ac(x2 + y2) + adx+ bcx+ bd

(cx+ d)2 + (cy)2
+ i

y

(cx+ d)2 + (cy)2

⇒ =(σ(z)) = y
(cx+d)2+(cy)2

> 0

Die Abbildung bildet also nach H ab. Außerdem gilt:(
1 0
0 1

)
◦ z =

x+ iy

1
= x+ iy = z

und (
a b
c d

)
◦
((

a′ b′

c′ d′

)
◦ z
)

=

(
a b
c d

)
◦ a
′z + b′

c′z + d′

=
aa
′z+b′

c′z+d′ + b

ca
′z+b′

c′z+d′ + d
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=

a(a′z+b′)+b(c′z+d′)
c′z+d′

c(a′z+b′)+d(c′z+d′)
c′z+d′

=
a(a′z + b′) + b(c′z + d′)

c(a′z + b′) + d(c′z + d′)

=
(aa′ + bc′)z + ab′ + bd′

(ca′ + db′)z + cb′ + dd′

=

(
aa′ + bc′ ab′ + bd′

ca′ + db′ cb′ + dd′

)
◦ z

=

((
a b
c d

)
·
(
a′ b′

c′ d′

))
◦ z

b) Es gilt σ(z) = (−σ)(z) für alle σ ∈ SL2(R) und z ∈ H.

c) Ansatz: σ =

(
a b
c d

)
σ(x0) = ax0+b

cx0+d
!

= 0 ⇒ ax0 + b = 0⇒ b = −ax0

σ(x∞) =∞⇒ cx∞ + d = 0⇒ d = −cx∞
σ(x1) = 1⇒ ax1 + b = cx1 + d
a(x1 − x0) = c(x1 − x∞)⇒ c = a x1−x0

x1−x∞
⇒ −a2 · x∞ x1−x0

x1−x∞ + a2x0
x1−x0
x1−x∞ = 1

⇒ a2 x1−x0
x0−x∞ (x0 − x∞) = 1 ⇒ a2 = x1−x∞

(x1−x∞)(x1−x0)

d) Es gilt:

A−1
λ = A 1

λ

B−1
t = B−t

C−1 = C3

Daher genügt es zu zeigen, dass man mit Aλ, Bt und C alle Matrizen aus SL2(R)
erzeugen kann, genügt es also von einer beliebigen Matrix durch Multiplikation mit
Matrizen der Form Aλ, Bt und C die Einheitsmatrix zu generieren.

Sei also

M =

(
a b
c d

)
∈ SL2(R)

beliebig.

Fall 1: a = 0
Da M ∈ SL2(R) ist, gilt detM = 1 = ad− bc = −bc. Daher ist insbesondere c 6= 0. Es
folgt: (

0 1
−1 0

)
·
(
a b
c d

)
=

(
c d
−a −b

)
Gehe zu Fall 2.

Fall 2: a 6= 0
Nun wird in M durch M ·A 1

a
an der Stelle von a eine 1 erzeugt:

(
a b
c d

)
·
(

1
a 0
0 a

)
=

(
1 ab
c
a ad

)
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Gehe zu Fall 3.

Fall 3: a = 1 (
1 b
c d

)
·
(

1 −b
0 1

)
=

(
1 0
c d− bc

)
Da wir detM = 1 = ad− bc = d− bc wissen, gilt sogar M2,2 = 1.

Gehe zu Fall 4.

Fall 4: a = 1, b = 0, d = 1

A−1CBcC

(
1 0
c 1

)
=

(
1 0
0 1

)
Daher erzeugen Matrizen der Form Aλ, Bt und C die Gruppe SL2R. �

e) Es genügt die Aussage für Matrizen aus Proposition 4.9 (d) zu zeigen.

• σ =

(
λ 0
0 λ−1

)
, also σ(z) = λ2z. Daraus ergeben sich die Situationen, die in

Abbildung 4.22a und Abbildung 4.22b dargestellt sind.

• Offensichtlich gilt die Aussage für σ =

(
1 a
0 1

)
• Sei nun σ =

(
0 1
−1 0

)
, also σ(z) = −1

z

Bemerkung 69
Zu hyperbolischen Geraden g1, g2 gibt es σ ∈ PSL2(R) mit σ(g1) = g2.

Beweis: Nach Proposition 4.9 (c) gibt es σ mit σ(a1) = b1 und σ(a2) = b2. Dann existiert
σ(g1) := g2 wegen dem Inzidenzaxiom §1 und ist eindeutig bestimmt.

Definition 64
Seien z1, z2, z3, z4 ∈ C paarweise verschieden.

Dann heißt

DV(z1, z2, z3, z4) :=
z1−z4
z1−z2
z3−z4
z3−z2

=
(z1 − z4) · (z3 − z2)

(z1 − z2) · (z3 − z4)

Doppelverhältnis von z1, . . . , z4.
Bemerkung 70 (Eigenschaften des Doppelverhältnisses)

a) DV(z1, . . . , z4) ∈ C \ { 0, 1 }
b) DV(z1, z4, z3, z2) = 1

DV(z1,z2,z3,z4)

c) DV(z3, z2, z1, z4) = 1
DV(z1,z2,z3,z4)

d) DV ist auch wohldefiniert, wenn eines der zi =∞ oder wenn zwei der zi gleich sind.

e) DV(0, 1,∞, z4) = z4 (Der Fall z4 ∈ { 0, 1,∞} ist zugelassen).
f) Für σ ∈ PSL2(C) und z1, . . . , z4 ∈ C ∪ {∞ } ist

DV(σ(z1), σ(z2), σ(z3), σ(z4)) = DV(z1, z2, z3, z4)

und für σ(z) = 1
z gilt

DV(σ(z1), σ(z2), σ(z3), σ(z4)) = DV(z1, z2, z3, z4)
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g) DV(z1, z2, z3, z4) ∈ R ∪ {∞ } ⇔ z1, . . . , z4 liegen auf einer hyperbolischen Geraden.

Beweis:

a) DV(z1, . . . , z4) 6= 0, da zi paarweise verschieden
DV(z1, . . . , z4) 6= 1, da:

Annahme: DV(z1, . . . , z4) = 1

⇔ (z1 − z2)(z3 − z4) = (z1 − z4)(z3 − z2)

⇔ z1z3 − z2z3 − z1z4 + z2z4 = z1z3 − z3z4 − z1z2 + z2z4

⇔ z2z3 + z1z4 = z3z4 + z1z2

⇔ z2z3 − z3z4 = z1z2 − z1z4

⇔ z3(z2 − z4) = z1(z2 − z4)

⇔ z3 = z1 oder z2 = z4

Alle zi sind paarweise verschieden ⇒ Widerspruch �

b) DV(z1, z4, z3, z2) = (z1−z2)·(z3−z4)
(z1−z4)·(z3−z2) = 1

DV(z1,z2,z3,z4)

c) DV(z3, z2, z1, z4) = (z3−z4)·(z1−z2)
(z3−z2)·(z1−z4) = 1

DV(z1,z2,z3,z4)

d) Zwei der zi dürfen gleich sein, da:

Fall 1 z1 = z4 oder z3 = z2

In diesem Fall ist DV(z1, . . . , z4) = 0

Fall 2 z1 = z2 oder z3 = z4

Mit der Regel von L’Hospital folgt, dass in diesem Fall DV(z1, . . . , z4) =∞ gilt.

Fall 3 z1 = z3 oder z2 = z4

Durch Einsetzen ergibt sich DV(z1, . . . , z4) = 1.

Im Fall, dass ein zi =∞ ist, ist entweder DV(0, 1,∞, z4) = 0 oder DV(0, 1,∞, z4)±∞

e) DV(0, 1,∞, z4) = (0−z4)·(∞−1)
(0−1)·(∞−z4) = z4·(∞−1)

∞−z4 = z4

f) Wenn jemand diesen Beweis führt, bitte an info@martin-thoma.de schicken.

g) Sei σ ∈ PSL2(C) mit σ(z1) = 0, σ(z2) = 1, σ(z3) =∞. Ein solches σ existiert, da man
drei Parameter von σ wählen darf.

Bem. 70.f⇒ DV(z1, . . . , z4) = DV(0, 1,∞, σ(z4))
⇒ DV(z1, . . . , z4) ∈ R ∪ {∞ }
⇔ σ(z4) ∈ R ∪ {∞ }
Behauptung folgt, weil σ−1(R ∪∞) ein Kreis oder eine Gerade in C ist.

Definition 65
Für z1, z2 ∈ H sei gz1,z2 die eindeutige hyperbolische Gerade durch z1 und z2 und a1, a2 die
„Schnittpunkte“ von gz1,z2 mit R ∪ {∞ }.
Dann sei dH(z1, z2) := 1

2 | ln DV(a1, z1, a2, z2)| und heiße hyperbolische Metrik.

Beh.: Für z1, z2 ∈ H sei gz1,z2 die eindeutige hyperbolische Gerade durch z1 und z2 und a1, a2

die „Schnittpunkte“ von gz1,z2 mit R ∪ {∞ }.
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Dann gilt:
1

2
| ln DV(a1, z1, a2, z2)| = 1

2
| ln DV(a2, z1, a1, z2)|

Beweis: Wegen Bemerkung 70.c gilt:

DV(a1, z1, a2, z2) =
1

DV(a2, z1, a1, z2)

Außerdem gilt:

ln
1

x
= lnx−1 = (−1) · lnx = − lnx

Da der ln im Betrag steht, folgt direkt:

1

2
| ln DV(a1, z1, a2, z2)| = 1

2
| ln DV(a2, z1, a1, z2)|

Es ist also egal in welcher Reihenfolge die „Schnittpunkte“ mit der x-Achse im Doppelver-
hältnis genutzt werden. �

Beh.: Die hyperbolische Metrik ist eine Metrik auf H.

Beweis: Wegen Bemerkung 70.f ist

d(z1, z2) := d(σ(z1), σ(z2)) mit σ(a1) = 0, σ(a2) =∞

d. h. σ(gz1,z2) = iR (imaginäre Achse).

also gilt o. B. d. A. z1 = ia und z2 = ib mit a, b ∈ R und a < b.

2d(ia, ib) =| ln DV(0, ia,∞, ib) |

=| ln (0− ib)(∞− ia)

(0− ia)(∞− ib) |

=| ln b
a
|

= ln b− ln a

Also: d(z1, z2) ≥ 0, d(z1, z2) = 0⇔ z1 = z2

2d(z2, z1) =| ln DV(a2, z2, a1, z1) |
=| ln DV(∞, ib, 0, ia) |

Bem. 70.b
= | ln DV(0, ib,∞, ia) |
= 2d(z1, z2)

Liegen drei Punkte z1, z2, z3 ∈ C auf einer hyperbolischen Geraden, so gilt d(z1, z3) =
d(z1, z2) + d(z2, z3) (wenn z2 zwischen z1 und z3 liegt).

Dreiecksungleichung: Beweis ist umständlich und wird hier nicht geführt. Es sei auf die
Vorlesung „Hyperbolische Geometrie“ verwiesen.
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Satz 4.10
Die hyperbolische Ebene H mit der hyperbolischen Metrik d und den hyperbolischen
Geraden bildet eine „nichteuklidische Geometrie“, d. h. die Axiome §1 - §4 sind erfüllt,
aber Axiom §5 ist verletzt.
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Abbildung 4.21: Hyperbolische Geraden erfüllen §5 nicht.
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Abbildung 4.22: Beweis von Proposition 4.9 (e) für eine Diagonalmatrix
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Abbildung 4.23: Inversion am Kreis
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Übungsaufgaben

Aufgabe 8

Seien (X, d) eine absolute Ebene und P,Q,R ∈ X Punkte. Der Scheitelwinkel des Winkels
∠PQR ist der Winkel, der aus den Halbgeraden QP− und QR− gebildet wird. Die
Nebenwinkel von ∠PQR sind die von QP+ und QR− bzw. QP− und QR+ gebildeten
Winkel.

Zeigen Sie:

(a) Die beiden Nebenwinkel von ∠PQR sind gleich.

(b) Der Winkel ∠PQR ist gleich seinem Scheitelwinkel.

Aufgabe 9

Sei (X, d) eine absolute Ebene. Der Abstand eines Punktes P zu einer Menge Y ⊆ X von
Punkten ist definiert durch d(P, Y ) := inf d(P, y)|y ∈ Y .

Zeigen Sie:

(a) Ist 4ABC ein Dreieck, in dem die Seiten AB und AC kongruent sind, so sind die
Winkel ∠ABC und ∠BCA gleich.

(b) Ist 4ABC ein beliebiges Dreieck, so liegt der längeren Seite der größere Winkel
gegenüber und umgekehrt.

(c) Sind g eine Gerade und P /∈ g ein Punkt, so gibt es eine eindeutige Gerade h mit

P ∈ h und die g im rechten Winkel schneidet. Diese Grade heißt Lot von P auf g
und der Schnittpunkt des Lots mit g heißt Lotfußpunkt .

Aufgabe 10

Seien f, g, h ∈ G und paarweise verschieden.

Zeigen Sie: f ‖ g ∧ g ‖ h⇒ f ‖ h

Aufgabe 11

Beweise den Kongruenzsatz SSS.



5 Krümmung

Definition 66
Sei f : [a, b]→ Rn eine eine Funktion aus C∞. Dann heißt f Kurve.

5.1 Krümmung von Kurven

Definition 67
Sei γ : I = [a, b]→ Rn eine Kurve.

a) Die Kurve γ heißt durch Bogenlänge parametrisiert, wenn gilt:

‖γ′(t)‖2 = 1 ∀t ∈ I

Dabei ist γ′(t) = (γ′1(t), γ′2(t), . . . , γ′n(t)).

b) l(γ) =
∫ b
a ‖γ′(t)‖dt heißt Länge von γ.

Bemerkung 71 (Eigenschaften von Kurven I)
Sei γ : I = [a, b]→ Rn eine C∞-Funktion.

a) Ist γ durch Bogenlänge parametrisiert, so ist l(γ) = b− a.
b) Ist γ durch Bogenlänge parametrisiert, so ist γ′(t) orthogonal zu γ′′(t) für alle t ∈ I.

Beweis:

a) l(γ) =
∫ b
a ‖γ′(t)‖dt =

∫ b
a 1dt = b− a.

b) Im Folgenden wird die Aussage nur für γ : [a, b]→ R2 bewiesen. Allerdings funktioniert
der Beweis im Rn analog. Es muss nur die Ableitung angepasst werden.

1 = ‖γ′(t)‖ = ‖γ′(t)‖2 = 〈γ′(t), γ′(t)〉

⇒ 0 =
d

dt
〈γ′(t), γ′(t)〉

=
d

dt
(γ′1(t)γ′1(t) + γ′2(t)γ′2(t))

= 2 · (γ′′1 (t) · γ′1(t) + γ′′2 (t) · γ′2(t))

= 2 · 〈γ′′(t), γ′(t)〉

Definition 68
Sei γ : I → R2 eine durch Bogenlänge parametrisierte Kurve.

a) Für t ∈ I sei n(t) Normalenvektor an γ in t wenn gilt:

〈n(t), γ′(t)〉 = 0, ‖n(t)‖ = 1 und det((γ′(t), n(t))) = +1
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b) Seit κ : I → R so, dass gilt:
γ′′(t) = κ(t) · n(t)

Dann heißt κ(t) Krümmung von γ in t.

Da n(t) und γ′′(t) nach Bemerkung 71.b linear abhängig sind, existiert κ(t).

Beispiel 45
Gegeben sei ein Kreis mit Radius r, d. h. mit Umfang 2πr. Es gilt:

γ(t) =

(
r · cos

t

r
, r · sin t

r

)
für t ∈ [0, 2πr]

ist parametrisiert durch Bogenlänge, da gilt:

γ′(t) =

(
(r · 1

r
)(− sin

t

r
), r

1

r
cos

t

r

)
=

(
− sin

t

r
, cos

t

r

)

Der Normalenvektor von γ in t ist

n(t) =

(
− cos

t

r
,− sin

t

r

)
da gilt:

〈n(t), γ′(t)〉 =

〈(
− cos t

r
− sin t

r

)
,

(
− sin t

r
cos t

r

)〉
= (− cos

t

r
) · (− sin

t

r
) + (− sin

t

r
) · (cos

t

r
)

= 0

‖n(t)‖ =

∥∥∥∥(− cos
t

r
,− sin

t

r
)

∥∥∥∥
= (− cos

t

r
)2 + (− sin

t

r
)2

= 1

det(γ′1(t), n(t)) =

∥∥∥∥(− sin t
r − cos t

r
cos t

r − sin t
r

)∥∥∥∥
= (− sin

t

r
)2 − (− cos

t

r
) · cos

t

r
= 1

Die Krümmung ist für jedes t konstant 1
r , da gilt:

γ′′(t) =

(
−1

r
cos

t

r
,−1

r
sin

t

r

)
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=
1

r
·
(
− cos

t

r
,− sin

t

r

)
⇒ κ(t) =

1

r

Definition 69
Sei γ : I → R3 eine durch Bogenlänge parametrisierte Kurve.

a) Für t ∈ I heißt κ(t) := ‖γ′′(t)‖ die Krümmung von γ in t.

b) Ist für t ∈ I die Ableitung γ′′(t) 6= 0, so heißt γ′′(t)
‖γ′′(t)‖ Normalenvektor an γ in t.

c) b(t) sei ein Vektor, der γ′(t), n(t) zu einer orientierten Orthonormalbasis von R3 ergänzt.
Also gilt:

det(γ′(t), n(t), b(t)) = 1

b(t) heißt Binormalenvektor, die Orthonormalbasis{
γ′(t), n(t), b(t)

}
heißt begleitendes Dreibein.

Bemerkung 72 (Eigenschaften von Kurven II)
Sei γ : I → R3 durch Bogenlänge parametrisierte Kurve.

a) n(t) ist orthogonal zu γ′(t).

b) b(t) aus Definition 69.c ist eindeutig.

5.2 Tangentialebene

Erinnerung Sie sich an Definition 32 „reguläre Fläche“.

Äquivalent dazu ist: S ist lokal von der Form

V (f) =
{
x ∈ R3

∣∣ f(x) = 0
}

für eine C∞-Funktion f : R3 → R.

Definition 70
Sei S ⊆ R3 eine reguläre Fläche, s ∈ S, F : U → V ∩ S eine lokale Parametrisierung um
s ∈ V :

(u, v) 7→ (x(u, v), y(u, v), z(u, v))

Für p = F−1(s) ∈ U sei

JF (p) =

∂x
∂u(p) ∂x

∂v (p)
∂y
∂u(p) ∂y

∂v (p)
∂z
∂u(p) ∂z

∂v (p)


und DpF : R2 → R3 die durch JF (p) definierte lineare Abbildung.

Dann heißt TsS := Bild(DpF ) die Tangentialebene an s ∈ S.
Bemerkung 73 (Eigenschaften der Tangentialebene)

a) TsS ist 2-dimensionaler Untervektorraum von R3.
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b) TsS = 〈ũ, ṽ〉, wobei ũ, ṽ die Spaltenvektoren der Jacobi-Matrix JF (p) sind.

c) TsS hängt nicht von der gewählten Parametrisierung ab.

d) Sei S = V (f) eine reguläre Fläche in R3, also f : V → R eine C∞-Funktion, V ⊆ R3

offen, grad(f)(x) 6= 0 für alle x ∈ S.
Dann ist TsS = (grad(f)(s))⊥ für jedes s ∈ S.

Beweis:

a) JF ist eine 3 × 2-Matrix, die mit einem 2 × 1-Vektor multipliziert wird. Das ist
eine lineare Abbildung und aus der linearen Algebra ist bekannt, das das Bild ein
Vektorraum ist. Da Rg(JF ) = 2, ist auch dim(TsS) = 2.

b) Hier kann man wie in Punkt a) argumentieren

c) TsS = {x ∈ R3|∃parametrisierte Kurve γ : [−ε,+ε] → S für ein ε > 0 mit γ(0) =
s und γ′(0) = x}
Wenn jemand diesen Beweis führt, bitte an info@martin-thoma.de schicken.

d) Sei x ∈ TsS, γ : [−ε,+ε] → S eine parametrisierte Kurve mit ε > 0 und γ′(0) = s,
sodass γ′(0) = x gilt. Da γ(t) ∈ S für alle t ∈ [−ε, ε], ist f ◦ γ = 0
⇒ 0 = (f ◦ γ)′(0) = 〈grad(f)(γ(0)), γ′(0)〉
⇒ TsS ⊆ grad(f)(s)⊥

dim=2
====⇒ TsS = (grad(f)(s))⊥

Definition 71
a) Ein Normalenfeld auf der regulären Fläche S ⊆ R3 ist eine Abbildung n : S → S2 ⊆

R3 mit n(s) ∈ TsS⊥ für jedes s ∈ S.

b) S heißt orientierbar, wenn es ein stetiges Normalenfeld auf S gibt.

Manchmal wird zwischen einem Normalenfeld und einem Einheitsnormalenfeld unterschieden.
Im Folgenden werden diese Begriffe jedoch synonym benutzt.

Bemerkung 74 (Eigenschaften von Normalenfeldern)
a) Ein Normalenfeld auf S ist genau dann stetig, wenn es glatt ist (also C∞).

b) Zu jedem s ∈ S gibt es eine Umgebung V ⊆ R3 von s und eine lokale Parametrisierung
F : U → V von S um s, sodass auf F (U) = V ∩ S ein stetiges Normalenfeld existiert.

c) S ist genau dann orientierbar, wenn es einen differenzierbaren Atlas von S aus lokalen
Parametrisierungen Fi : Ui → Vi, i ∈ I gibt, sodass für alle i, j ∈ F und alle
s ∈ Vi ∩ Vj ∩ S gilt:

det(Ds

Vi→Vj︷ ︸︸ ︷
Fj ◦ F−1

i︸ ︷︷ ︸
∈R3×3

) > 0

Beweis: Wird hier nicht geführt.

Beispiel 46 (Normalenfelder)
1) S = S2, n1 = idS2 ist ein stetiges Normalenfeld.

Auch n2 = −idS2 ist ein stetiges Normalenfeld.

2) S = Möbiusband (vgl. Abbildung 5.1) ist nicht orientierbar. Es existiert ein Norma-
lenfeld, aber kein stetiges Normalenfeld.
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Abbildung 5.1: Möbiusband

5.3 Gauß-Krümmung

Bemerkung 75
Sei S eine reguläre Fläche, s ∈ S, n(s) ist ein Normalenvektor in s, x ∈ TsS, ‖x‖ = 1.

Sei E der von x und n(s) aufgespannte 2-dimensionale Untervektorraum von R3.

Dann gibt es eine Umgebung V ⊆ R3 von s, sodass

C := (s+ E) ∩ S ∩ V

das Bild einer durch Bogenlänge parametrisierten Kurve γ : [−ε, ε]→ S enthält mit γ(0) = s
und γ′(0) = x.

Beweis: „Satz über implizite Funktionen“1

Definition 72
In der Situation aus Bemerkung 75 heißt die Krümmung κγ(0) der Kurve γ in der Ebene
(s+ E) im Punkt s die Normalkrümmung von S in s in Richtung x = γ′(0).

Man schreibt: κNor(s, x) := κγ(0)

Hinweis: Die Krümmung ist nur bis auf das Vorzeichen bestimmt.

Beispiel 47 (Gauß-Krümmung)
1) S = S2 = V (X2 + Y 2 + Z2 − 1) ist die Kugel um den Ursprung mit Radius 1, n = id,

s = (0, 0, 1), x = (1, 0, 0)
⇒ E = R · x+ R · n(s) (x, z-Ebene)

C = E ∩ S ist Kreislinie
κNor(s, x) = 1

r = 1

2) S = V (X2 + Z2 − 1) ⊆ R3 ist ein Zylinder (siehe Abbildung 5.2a). s = (1, 0, 0)
x1 = (0, 1, 0)⇒ E1 = R · e1 + R · e2 (x, y-Ebene)
S ∩ E1 = V (X2 + Y 2 − 1) ∩ E, Kreislinie in E
⇒ κNor(s, x1) = ±1
x2 = (0, 0, 1), E2 = R · e1 + R · e3 (x, z-Ebene)

1Siehe z. B. https://github.com/MartinThoma/LaTeX-examples/tree/master/documents/Analysis%20II

https://github.com/MartinThoma/LaTeX-examples/tree/master/documents/Analysis%20II
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V ∩ E2 ∩ S =
{

(1, 0, z) ∈ R3
∣∣ z ∈ R

}
ist eine Gerade

⇒ κNor(s, x2) = 0

3) S = V (X2 − Y 2 − Z), s = (0, 0, 0) (Hyperbolisches Paraboloid, siehe Abbildung 5.2b)
x1 = (1, 0, 0), n(s) = (0, 0, 1)
x2 = (0, 1, 0)
κNor(s, x1) = 2
κNor(s, x2) = −2
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(a) S = V (X2 + Z2 − 1)
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(b) S = V (X2 − Y 2 − Z)

Abbildung 5.2: Beispiele für reguläre Flächen

Definition 73
Sei S ⊆ R3 eine reguläre Fläche, s ∈ S und n ein stetiges Normalenfeld auf S.

γ : [−ε, ε] → S eine nach Bogenlänge parametrisierte Kurve (ε > 0) mit γ(0) = s und
γ′′(0) 6= 0.

Sei n(0) := γ′′(0)
‖γ′′(0)‖ . Zerlege

n(0) = n(0)t + n(0)⊥ mit n(0)t ∈ TsS und n(0)⊥ ∈ (TsS)⊥

Dann ist n(0)⊥ = 〈n(0), n(s)〉 · n(s)
κNor(s, γ) := 〈γ′′(0), n(s)〉 die Normalkrümmung.

Bemerkung 76
Sei γ(t) = γ(−t), t ∈ [−ε, ε]. Dann ist κNor(s, γ) = κNor(s, γ).

Beweis: γ′′(0) = γ′′(0), da γ′(0) = −γ′(0).

Es gilt: κNor(s, γ) hängt nur von |γ′(0)| ab und ist gleich κNor(s, γ′(0)).

Bemerkung 77
Sei S eine reguläre Fläche und n = n(s) ein Normalenvektor an S in s.

Sei T 1
s S = { x ∈ TsS | ‖x‖ = 1 } ∼= S1. Dann ist

κnNor(s) : T 1
s S → R, x 7→ κNor(s, x)

eine glatte Funktion und BildκnNor(s) ist ein abgeschlossenes Intervall.

Definition 74
Sei S eine reguläre Fläche und n = n(s) ein Normalenvektor an S in s.
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a) κn1 (s) : = min
{
κnNor(s, x)

∣∣ x ∈ T 1
s S
}

und

κn2 (s) : = max
{
κnNor(s, x)

∣∣ x ∈ T 1
s S
} heißen Hauptkrümmungen von S in s.

b) K(s) := κn1 (s) · κn2 (s) heißt Gauß-Krümmung von S in s.

Bemerkung 78
Ersetzt man n durch −n, so gilt:

κ−nNor(s, x) = −κnNor(x) ∀x ∈ T 1
s S

⇒ κ−n1 (s) = −κn2 (s)

κ−n2 (s) = −κn1 (s)

und K−n(s) = Kn(s) =: K(s)

Beispiel 48
1) S = S2. Dann ist κ1(s) = κ2(s) = ±1 ∀s ∈ S2

⇒ K(s) = 1

2) Zylinder:
κ1(s) = 0, κ2(s) = 1⇒ K(s) = 0

3) Sattelpunkt auf hyperbolischem Paraboloid:
κ1(s) < 0, κ2(s) = 0→ K(s) < 0

4) S = Torus. Siehe Abbildung 5.3

s1

s2

s3

Abbildung 5.3: K(s1) > 0, K(s2) = 0, K(s3) < 0

Bemerkung 79
Sei S eine reguläre Fläche, s ∈ S ein Punkt.
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a) Ist K(s) > 0, so liegt S in einer Umgebung von s ganz auf einer Seite von TsS + s.

b) Ist K(s) < 0, so schneidet jede Umgebung von s in S beide Seiten von TsS + s.

5.4 Erste und zweite Fundamentalform

Sei S ⊆ R3 eine reguläre Fläche, s ∈ S, TsS die Tangentialebene an S in s und F : U → V eine
lokale Parametrisierung von S um s. Weiter sei p := F−1(s).

Definition 75
Sei IS ∈ R2×2 definiert als

IS : =

(
g1,1(s) g1,2(s)
g1,2(s) g2,2(s)

)
=

(
E(s) F (s)
F (s) G(s)

)
mit gi,j = gs(DpF (ei), DpF (ej))

= 〈 ∂F
∂ui

(p),
∂F

∂uj
(p)〉 i, j ∈ { 1, 2 }

Die Matrix IS heißt erste Fundamentalform von S bzgl. der Parametrisierung F .

Bemerkung 80
a) Die Einschränkung des Standardskalarproduktes des R3 auf TsS macht TsS zu einem

euklidischen Vektorraum.

b) {DpF (e1), DpF (e2) } ist eine Basis von TsS.

c) Bzgl. der Basis {DpF (e1), DpF (e2) } hat das Standardskalarprodukt aus Bemer-
kung 80.a die Darstellungsmatrix IS .

d) gi,j(s) ist eine differenzierbare Funktion von s.

Bemerkung 81

det(IS) =

∥∥∥∥ ∂F∂u1
(p)× ∂F

∂u2
(p)

∥∥∥∥2

Beweis: Sei ∂F
∂u1

(p) =

x1

x2

x3

 , ∂F
∂u2

(p) =

y1

y2

y3


Dann ist ∂F

∂u1
(p)× ∂F

∂u2
(p) =

z1

z2

z3

 mit

z1 = x2y3 − x3y2

z2 = x3y1 − x1y3

z3 = x1y2 − x2y1

⇒ ‖ ∂F
∂u1

(p)× ∂F

∂u2
(p)‖ = z2

1 + z2
2 + z2

3
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det(IS) = g1,1g2,2 − g2
1,2

=

〈x1

x2

x3

 ,

x1

x2

x3

〉〈y1

y2

y3

 ,

y1

y2

y3

〉−〈
x1

x2

x3

 ,

y1

y2

y3

〉2

= (x2
1 + x2

2 + x2
3)(y2

1 + y2
2 + y2

3)− (x1y1 + x2y2 + x3y3)2

Definition 76

a) Das Differential dA =
√

det(I)du1du2 heißt Flächenelement von S bzgl. der Para-
metrisierung F .

b) Für eine Funktion f : V → R heißt∫
V
fdA :=

∫
U
f(F (u1, u2)︸ ︷︷ ︸

=:s

)
√

det I(s)du1du2

der Wert des Integrals von f über V , falls das Integral rechts existiert.

Bemerkung 82
a)
∫
V fdA ist unabhängig von der gewählten Parametrisierung.

b) Sei f : S → R eine Funktion, die im Sinne von Definition 76.b lokal integrierbar ist.

Dann ist
∫
S fdA wohldefiniert, falls (z. B.) S kompakt ist.

Etwa: ∫
S
fdA =

n∑
i=1

∫
Vi

fdA

−
∑
i 6=j

∫
Vi∩Vj
fdA

+
∑
i,j,k

∫
Vi∩Vj∩Vk
fdA

− . . .

Beweis:

a) Mit Transformationsformel.

b) Ist dem Leser überlassen.

Proposition 5.1
Sei S ⊆ R3 eine reguläre, orientierbare Fläche mit glatten Normalenfeld n : S → S2.
Dann gilt:

a) n induziert für jedes s ∈ S eine lineare Abbildung dsn : TsS → Tn(s)S
2 durch

dsn(x) =
d

dt
n(s„+“tx︸ ︷︷ ︸

Soll auf Fläche S bleiben

)
∣∣∣
t=0

Die Abbildung dsn heißt Weingarten-Abbildung
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b) Tn(s)S
2 = TsS.

c) dsn ist ein Endomorphismus von TsS.

d) dsn ist selbstadjungiert bzgl. des Skalarproduktes IS .

Hinweis: Die Weingarten-Abbildung wird auch Formoperator genannt.

Beweis:

a) Wenn jemand diesen Beweis führt, bitte an info@martin-thoma.de schicken.

b) Tn(S)S
2 = 〈n(s)〉⊥ = TsS

c) Wegen Proposition 5.1 (a) ist dsn ein Homomorphismus.
TODO: Warum sollte das ein Endomorphismus sein?

d) Zu zeigen: ∀x, y ∈ IsS : 〈x, dsn(y)〉 = 〈dsn(x), y〉
Aufgrund der Bilinearität des Skalarproduktes genügt es diese Eigenschaft für die
Basisvektoren zu zeigen.

Sei xi = DpF (ei) = ∂F
∂ui

(p) i = 1, 2

Beh.: 〈xi, dsn(xj)〉 = 〈 ∂2F
∂ui∂uj

(p), dsn(xi)〉

⇒ 〈 ∂2F
∂ui∂uj

(p), dsn(xi)〉 = 〈xj , dsn(xi)〉

Bew.: 0 = 〈∂F
∂u

(p+ tej), n(p+ tej)〉

⇒ 0 =
d

dt

(
〈∂F
∂u

(p+ tej), n(p+ tej)〉
)∣∣∣

t=0

= 〈 d

dt

∂F

∂ui
(p+ tej)︸ ︷︷ ︸

∂2F
∂uj∂ui

(p)

∣∣∣
t=0

, n(s)〉+ 〈xi, dsnDpF (ej)︸ ︷︷ ︸
xj

〉

Definition 77
Die durch −dsn definierte symmetrische Bilinearform auf TsS heißt zweite Fundamental-
form von S in s bzgl. F .

Man schreibt: IIs(x, y) = 〈−dsn(x), y〉 = Is(−dsn(x), y)

Bemerkung 83
Bezüglich der Basis { x1, x2 } von TsS hat IIs die Darstellungsmatrix

(h
(s)
i,j )i,j=1,2 mit hi,j(s) = 〈 ∂2F

∂ui∂uj
(p), n(s)〉

Proposition 5.2
Sei γ : [−ε, ε]→ S eine nach Bogenlänge parametrisierte Kurve mit γ(0) = s. Dann gilt:

κNor(s, γ) = IIs(γ
′(0), γ′(0))
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Beweis: Nach Definition 73 ist κNor(s, γ) = 〈γ′′(0), n(s)〉. Nach Voraussetzung gilt

n(γ(t)) ⊥ γ′(t)⇔ 〈γ′′(0), n(s)〉 = 0

Die Ableitung nach t ergibt

0 =
d

dt
(〈n(γ(t)), γ′(t))

=

〈
d

dt
n(γ(t))

∣∣∣
t=0

, γ′(0)

〉
+ 〈n(s), γ′′(0)〉

= 〈dsn(γ′(0)), γ′(0)〉+ κNor(s, γ)

= −IIs(γ′(0), γ′(0)) + κNor(s, γ)

Folgerung 5.3
Die beiden Definitionen von Normalkrümmung in Abschnitt 5.1 stimmen überein:

κNor(s, γ) = κNor(s, γ
′(0))

Satz 5.4
Sei S ⊆ R3 eine reguläre, orientierbare Fläche und s ∈ S.

a) Die Hauptkrümmungen κ1(s), κ2(s) sind die Eigenwerte von IIs.

b) Für die Gauß-Krümmung gilt: K(s) = det(IIs)

Beweis:

a) IIs ist symmetrisch, IsS hat also eine Orthonormalbasis aus Eigenvektoren y1, y2 von
IIs. Ist x ∈ TsS, ‖x‖ = 1, so gibt es ϕ ∈ [0, 2π) mit x = cosϕ · y1 + sinϕ · y2.

Seien λ1, λ2 die Eigenwerte von IIs, also IIs(yi, yi) = λi. Dann gilt:

IIs(x, x) = cos2 ϕλ1 + sin2 ϕλ2

= (1− sin2 ϕ)λ1 + sin2 ϕλ2

= λ1 + sin2 ϕ(λ2 − λ1) ≥ λ1

= cos2 ϕ+ (1− cos2 ϕ)λ2

= λ2 − cos2 ϕ(λ2 − λ1) ≤ λ2

Prop. 5.2
=====⇒ λ1 = min

{
κNor(s, x)

∣∣ x ∈ T 1
s S
}

λ2 = max
{
κNor(s, x)

∣∣ x ∈ T 1
s S
}

Satz 5.5 (Satz von Gauß-Bonnet)
Sei S ⊆ R3 eine kompakte orientierbare reguläre Fläche. Dann gilt:∫

S
K(s)dA = 2πχ(S)

Dabei ist χ(S) die Euler-Charakteristik von S.

Beweis: Der Beweis wird hier nicht geführt. Er kann in „Elementare Differentialgeometrie“ von
Christian Bär (2. Auflage), ISBN 978-3-11-022458-0, ab Seite 281 nachgelesen werden.



Lösungen der Übungsaufgaben

Lösung zu Aufgabe 1

Teilaufgabe a) Es gilt:

(i) ∅, X ∈ TX .

(ii) TX ist offensichtlich unter Durchschnitten abgeschlossen, d. h. es gilt für alle U1, U2 ∈
TX : U1 ∩ U2 ∈ TX .

(iii) Auch unter beliebigen Vereinigungen ist TX abgeschlossen, d. h. es gilt für eine
beliebige Indexmenge I und alle Ui ∈ TX für alle i ∈ I :

⋃
i∈I Ui ∈ TX

Also ist (X,TX) ein topologischer Raum.

Teilaufgabe b) Wähle x = 1, y = 0. Dann gilt x 6= y und die einzige Umgebung von x
ist X. Da y = 0 ∈ X können also x und y nicht durch offene Mengen getrennt werden.
(X,TX) ist also nicht hausdorffsch.

Teilaufgabe c) Nach Bemerkung 4 sind metrische Räume hausdorffsch. Da (X,TX) nach
(b) nicht hausdorffsch ist, liefert die Kontraposition der Trennungseigenschaft, dass (X,TX)
kein metrischer Raum sein kann.

Lösung zu Aufgabe 2

Teilaufgabe a)

Beh.: ∀a ∈ Z : { a } ist abgeschlossen.
Sei a ∈ Z beliebig. Dann gilt:

Wenn jemand diese Aufgabe gemacht hat, bitte die Lösung an info@martin-thoma.de
schicken.

Teilaufgabe b)

Beh.: { −1, 1 } ist nicht offen
Bew.: durch Widerspruch

Annahme: { −1, 1 } ist offen.
Dann gibt es T ⊆ B, sodass

⋃
M∈T M = { −1, 1 }. Aber alle U ∈ B haben unendlich viele

Elemente. Auch endlich viele Schnitte von Elementen in B haben unendlich viele Elemente
⇒ keine endliche nicht-leere Menge kann in dieser Topologie offen sein ⇒ {−1, 1 } ist
nicht offen. �

Teilaufgabe c)

Beh.: Es gibt unendlich viele Primzahlen.
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Bew.: durch Widerspruch

Annahme: Es gibt nur endlich viele Primzahlen p ∈ P

Dann ist
Z \ { −1,+1 } FS d. Arithmetik

=
⋃
p∈P

U0,p

endlich. Das ist ein Widerspruch zu |Z| ist unendlich und | { −1, 1 } | ist endlich. �

Lösung zu Aufgabe 3

(a) Beh.: Die offenen Mengen von P sind Vereinigungen von Mengen der Form∏
j∈J

Uj ×
∏

i∈N,i 6=j
Pi

wobei J ⊆ N endlich und Uj ⊆ Pj offen ist.

Beweis: Nach Definition der Produkttopologie bilden Mengen der Form∏
i∈J

Uj ×
∏
i∈N
i/∈J

Pi, wobei J ⊆ N endlich und Uj ⊆ Pjoffen ∀j ∈ J

eine Basis der Topologie. Damit sind die offenen Mengen von P Vereinigungen
von Mengen der obigen Form. �

(b) Beh.: Die Zusammenhangskomponenten von P sind alle einpunktig.

Beweis: Es seinen x, y ∈ P und x sowie y liegen in der gleichen Zusammenhangs-
komponente Z ⊆ P . Da Z zusammenhängend ist und ∀i ∈ I : pi : P → Pi ist
stetig, ist pi(Z) ⊆ Pi zusammenhängend für alle i ∈ N. Die zusammenhängenden
Mengen von Pi sind genau { 0 } und { 1 }, d. h. für alle i ∈ N gilt entweder
pi(Z) ⊆ { 0 } oder pi(Z) ⊆ { 1 }. Es sei zi ∈ { 0, 1 } so, dass pi(Z) ⊆ { zi } für
alle i ∈ N. Dann gilt also:

pi(x)︸ ︷︷ ︸
=xi

= zi = pi(y)︸ ︷︷ ︸
=yi

∀i ∈ N

Somit folgt: x = y �

Lösung zu Aufgabe 4

(a) Beh.: GLn(R) ist nicht kompakt.
Bew.: det : GLn(R) → R \ { 0 } ist stetig. Außerdem ist det(GLn(R)) = R \ { 0 }
nicht kompakt. 22⇒ GLn(R) ist nicht kompakt. �

(b) Beh.: SL1(R) ist nicht kompakt, für n > 1 ist SLn(R) kompakt.
Bew.: Für SL1(R) gilt: SL1(R) =

{
A ∈ R1×1

∣∣ detA = 1
}

=
(
1
) ∼= { 1 }. 22⇒ SL1(R)

ist kompakt.
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SLn(R) ⊆ GLn(R) lässt sich mit einer Teilmenge des Rn2 identifizieren. Nach Satz 1.1
sind diese genau dann kompakt, wenn sie beschränkt und abgeschlossen sind. Definiere
nun für für n ∈ N≥2,m ∈ N:

Am = diagn(m,
1

m
, . . . , 1)

Dann gilt: detAm = 1, d. h. Am ∈ SLn(R), und Am ist unbeschränkt, da ‖Am‖∞ =
m −−−−→

m→∞
∞. �

(c) Beh.: P(R) ist kompakt.
Bew.: P(R) ∼= Sn/x∼−x. Per Definition der Quotiententopologie ist die Klassenabbil-
dung stetig. Da Sn als abgeschlossene und beschränkte Teilmenge des Rn+1 kompakt
ist 22⇒ P(R) ist kompakt. �

Lösung zu Aufgabe 5

Die Definition von Homöomorphismus kann auf Seite 9 nachgelesen werden.
Definition 78

Seien (G, ∗) und (H, ◦) Gruppen und ϕ : G→ H eine Abbildung.

ϕ heißt Homomorphismus, wenn

∀g1, g2 ∈ G : ϕ(g1 ∗ g2) = ϕ(g1) ◦ ϕ(g2)

gilt.

Es folgt direkt:

1) Sei X = R mit der Standarttopologie und ϕ1 : idR und R = (R,+). Dann ist ϕ1 ein
Gruppenhomomorphismus und ein Homöomorphismus.

2) Sei G = (Z,+) und H = (Z/3Z,+). Dann ist ϕ2 : G → H,x 7→ x mod 3 ein
Gruppenhomomorphismus. Jedoch ist ϕ2 nicht injektiv, also sicher kein Homöomor-
phismus.

3) Sei X ein topologischer Raum. Dann ist idX ein Homöomorphismus. Da keine
Verknüpfung auf X definiert wurde, ist X keine Gruppe und daher auch kein Grup-
penhomomorphismus.

Also: Obwohl die Begriffe ähnlich klingen, werden sie in ganz unterschiedlichen Kontexten
verwendet.

Lösung zu Aufgabe 6

Die Definition einer Isotopie kann auf Seite 20 nachgelesen werden, die einer Isometrie auf
Seite 7.
Definition 79

Seien (G, ∗) und (H, ◦) Gruppen und ϕ : G→ H eine Abbildung.

ϕ heißt Isomorphismus, wenn ϕ ein bijektiver Homomorphismus ist.

Eine Isotopie ist also für Knoten definiert, Isometrien machen nur in metrischen Räumen
Sinn und ein Isomorphismus benötigt eine Gruppenstruktur.
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Lösung zu Aufgabe 7

(a) Vor.: Sei M eine topologische Mannigfaltigkeit.
Beh.: M ist wegzusammehängend ⇔M ist zusammenhängend

Beweis: „⇒“: Da M insbesondere ein topologischer Raum ist folgt diese Richtung
direkt aus Bemerkung 23.

„⇐“: Seien x, y ∈M und

Z := { z ∈M | ∃Weg von x nach z }

Es gilt:

(i) Z 6= ∅, da M lokal wegzusammenhängend ist

(ii) Z ist offen, da M lokal wegzusammenhängend ist

(iii) ZC := { z̃ ∈M | @Weg von x nach z̃ } ist offen
Da M eine Mannigfaltigkeit ist, existiert zu jedem z̃ ∈ ZC eine offene und
wegzusammenhängende Umgebung Uz̃ ⊆M .

Es gilt sogar Uz̃ ⊆ ZC , denn gäbe es ein Uz̃ 3 z ∈ Z, so gäbe es Wege γ2 :
[0, 1] → M,γ2(0) = z, γ2(1) = x und γ1 : [0, 1] → M,γ1(0) = z̃, γ1(1) = z.
Dann wäre aber

γ : [0, 1]→M,

γ(x) =

{
γ1(2x) falls 0 ≤ x ≤ 1

2

γ2(2x− 1) falls 1
2 < x ≤ 1

ein stetiger Weg von z̃ nach x ⇒ Widerspruch.

DaM zusammenhängend ist undM = Z︸︷︷︸
offen

∪ ZC︸︷︷︸
offen

, sowie Z 6= ∅ folgt ZC = ∅.

Also ist M = Z wegzusammenhängend. �

(b) Beh.: X ist wegzusammenhängend.

Beweis: X := (R \ { 0 }) ∪ { 01, 02 } und (R \ { 0 }) ∪ { 02 } sind homöomorph zu R.
Also sind die einzigen kritischen Punkte, die man nicht verbinden können könnte
01 und 02.

Da (R\{ 0 })∪{ 01 } homöomorph zu R ist, exisitert ein Weg γ1 von 01 zu einem
beliebigen Punkt a ∈ R \ { 0 }.
Da (R \ { 0 }) ∪ { 02 } ebenfalls homöomorph zu R ist, existiert außerdem ein
Weg γ2 von a nach 02. Damit existiert ein (nicht einfacher) Weg γ von 01 nach
02. �

Lösung zu Aufgabe 9

Vor.: Sei (X, d) eine absolute Ebene, A,B,C ∈ X und 4ABC ein Dreieck.
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(a) Beh.: AB ∼= AC ⇒ ∠ABC ∼= ∠ACB
Bew.: Sei AB ∼= AC.
⇒ ∃ Isometrie ϕ mit ϕ(B) = C und ϕ(C) = B und ϕ(A) = A.
⇒ ϕ(∠ABC) = ∠ACB
⇒ ∠ABC ∼= ∠ACB �

(b) Beh.: Der längeren Seite von 4ABC liegt der größere Winkel gegenüber und umge-
kehrt.
Bew.: Sei d(A,C) > d(A,B). Nach §3 (i) gibt es C ′ ∈ AC+ mit d(A,C ′) = d(A,B)
⇒ C ′ liegt zwischen A und C.
Es gilt ]ABC ′ < ]ABC und aus Aufgabe 9 (a) folgt: ]ABC ′ = ]AC ′B.
∠BC ′A ist ein nicht anliegender Außenwinkel zu ∠BCA Bem. 66

=====⇒ ]BC ′A > ]BCA
⇒ ]BCA < ]BC ′A = ]ABC ′ < ]ABC Sei umgekehrt ]ABC > ]BCA, kann
wegen 1. Teil von Aufgabe 9 (b) nicht d(A,B) > d(A,C) gelten.
Wegen Aufgabe 9 (a) kann nicht d(A,B) = d(A,C) gelten.
⇒ d(A,B) < d(A,C) �

(c) Vor.: Sei g eine Gerade, P ∈ X und P /∈ g
Beh.: ∃! Lot
Bew.: ÜB10 A4(a): Es gibt Geradenspiegelung ϕ an g. ϕ vertauscht die beiden
Halbebenen bzgl. g.
⇒ ϕ(P )P schneidet g in F .

Es gibt eine Geradenspiegelung ϕ an g. ϕ vertauscht die beiden Halbebenen bzgl. g
⇒ ϕ(P )P schneidet g in F .

Sei A ∈ g\{ F }. Dann gilt ϕ(∠AFP ) = ∠AFϕ(P ) = π ⇒ ∠AFP ist rechter Winkel.

Gäbe es nun G ∈ g \ { F }, so dass PG weiteres Lot von P auf g ist, wäre 4PFG
ein Dreieck mit zwei rechten Innenwinkeln (vgl. Abbildung 5.4).

·
·

A

G

P

F

g

Abbildung 5.4: Zwei Lote zu einer Geraden g durch einen Punkt P

Nach Folgerung 4.4 ist die Summe von zwei Innenwinkeln immer < π
⇒ G gibt es nicht. �

Lösung zu Aufgabe 10

Sei f ‖ h und o. B. d. A. f ‖ g.
f ∦ h⇒ f ∩ h 6= ∅, sei also x ∈ f ∩ h. Mit Axiom §5 folgt: Es gibt höchstens eine Parallele
zu g durch x, da x /∈ g. Diese ist f , da x ∈ f und f ‖ g. Da aber x ∈ h, kann h nicht
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parallel zu g sein, denn ansonsten gäbe es zwei Parallelen zu g durch x (f 6= h).⇒ g ∦ h �

Lösung zu Aufgabe 11

Sei (X, d,G) eine Geometrie, die §1-§4 erfüllt. Seien außerdem 4ABC und 4A′B′C ′
Dreiecke, für die gilt:

d(A,B) = d(A′, B′)

d(A,C) = d(A′, C ′)

d(B,C) = d(B′, C ′)

Sei ϕ die Isometrie mit ϕ(A) = A′, ϕ(B) = B′ und ϕ(C ′) liegt in der selben Halbebene
bzgl. AB wie C. Diese Isometrie existiert wegen §4.

Es gilt d(A,C) = d(A′, C ′) = d(ϕ(A′), ϕ(C ′)) = d(A,ϕ(C ′)) und d(B,C) = d(B′, C ′) =
d(ϕ(B′), ϕ(C ′)) = d(B,ϕ(C ′)).
Bem. 62
=====⇒ C = ϕ(C).

Es gilt also ϕ(4A′B′C ′) = 4ABC. �
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Ergänzende Definitionen und Sätze

Da dieses Skript in die Geometrie und Topologie einführen soll, sollten soweit wie möglich alle
benötigten Begriffe definiert und erklärt werden. Die folgenden Begriffe wurden zwar verwendet,
aber nicht erklärt, da sie Bestandteil der Vorlesungen „Analysis I und II“ sowie „Lineare Algebra
und analytische Geometrie I und II“ sind. Jedoch will ich zumindest die Definitionen bereitstellen.

Definition 80
Sei D ⊆ R und x0 ∈ R. x0 heißt ein Häufungspunkt von D :⇔ ∃ Folge xn in D \ { x0 }
mit xn → x0.

Folgende Definition wurde dem Skript von Herrn Prof. Dr. Leuzinger für Lineare Algebra
entnommen:

Definition 81
Es seien V und W K-Vektorräume und A(V ) und A(W ) die zugehörigen affinen Räume.
Eine Abbildung f : V →W heißt affin, falls für alle a, b ∈ V und alle λ, µ ∈ K mit λ+µ = 1
gilt:

f(λa+ µb) = λf(a) + µf(b)

Definition 82
Sei V ein Vektorraum und S ⊆ V eine Teilmenge.

S heißt eine Orthonormalbasis von V , wenn gilt:

(i) S ist eine Basis von V

(ii) ∀v ∈ S : ‖v‖ = 1

(iii) ∀v1, v2 ∈ S : v1 6= v2 ⇒ 〈v1, v2〉 = 0

Satz (Zwischenwertsatz)
Sei a < b und f ∈ C[a, b] := C([a, b]), weiter sei y0 ∈ R und f(a) < y0 < f(b) oder
f(b) < y0 < f(a). Dann existiert ein x0 ∈ [a, b] mit f(x0) = y0.

Definition 83
Sei V ein Vektorraum über einem Körper K und f : V → V eine lineare Abbildung.

v ∈ V \ { 0 } heißt Eigenvektor :⇔ ∃λ ∈ K : f(v) = λv.

Wenn ein solches λ ∈ K existiert, heißt es Eigenwert von f .

Satz (Binomischer Lehrsatz)
Sei x, y ∈ R. Dann gilt:

(x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk ∀n ∈ N0
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Definition 84
Seien a, b ∈ R3 Vektoren.

a× b :=

a1

b3
a3

×
a1

b3
a3

 =

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1


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Mengenoperationen

AC Komplement der Menge A
P(M) Potenzmenge von M
M Abschluss der Menge M
∂M Rand der Menge M
M◦ Inneres der Menge M
A×B Kreuzprodukt zweier Mengen
A ⊆ B Teilmengenbeziehung
A ( B echte Teilmengenbeziehung
A \B A ohne B
A ∪B Vereinigung
A ∪̇B Disjunkte Vereinigung
A ∩B Schnitt

Geometrie

AB Gerade durch die Punkte A und B
AB Strecke mit Endpunkten A und B
4ABC Dreieck mit Eckpunkten A,B,C
AB ∼= CD Die Strecken AB und CD sind
isometrisch
|K| Geometrische Realisierung des Simplizi-
alkomplexes K

Gruppen

Homöo(X) Homöomorphismengruppe
Iso(X) Isometriengruppe
GLn(K) Allgemeine lineare Gruppe2

SLn(K) Spezielle lineare Gruppe
PSLn(K) Projektive lineare Gruppe
Perm(X) Permutationsgruppe
Sym(X) Symmetrische Gruppe

2von General Linear Group

Wege

γ : I → X Ein Weg
[γ] Homotopieklasse von γ
γ1 ∗ γ2 Zusammenhängen von Wegen
γ1 ∼ γ2 Homotopie von Wegen
γ(x) = γ(1− x) Inverser Weg
C := γ([0, 1]) Bild eines Weges γ

Weiteres

B Basis einer Topologie
S Subbasis einer Topologie
Bδ(x) δ-Kugel um x
T Topologie

A Atlas
P Projektiver Raum
〈·, ·〉 Skalarprodukt
X/∼ X modulo ∼
[x]∼ Äquivalenzklassen von x bzgl. ∼
‖x‖ Norm von x
|x| Betrag von x
〈a〉 Erzeugnis von a

Sn Sphäre
Tn Torus

f ◦ g Verkettung von f und g
πX Projektion auf X
f |U f eingeschränkt auf U
f−1(M) Urbild von M
Rg(M) Rang von M
χ(K) Euler-Charakteristik von K
∆k Standard-Simplex
X#Y Verklebung von X und Y
dn Lineare Abbildung aus Bemerkung 37
A ∼= B A ist isometrisch zu B
f∗ Abbildung zwischen Fundamentalgruppen
(vgl. Seite 50)
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Zahlenmengen

N = { 1, 2, 3, . . . } Natürliche Zahlen
Z = N ∪ { 0,−1,−2, . . . } Ganze Zahlen
Q = Z ∪

{
1
2 ,

1
3 ,

2
3

}
=
{
z
n mit z ∈ Z und n ∈ Z \ { 0 }

}
Rationale Zahlen

R = Q ∪
{√

2,− 3
√

3, . . .
}

Reele Zahlen
R+ Echt positive reele Zahlen
Rn+,0 := { (x1, . . . , xn) ∈ Rn | xn ≥ 0 } Halbraum
R× = R \ { 0 } Einheitengruppe von R
C = { a+ ib | a, b ∈ R } Komplexe Zahlen
P = { 2, 3, 5, 7, . . . } Primzahlen
H = { z ∈ C | =z > 0 } obere Halbebene
I = [0, 1] ( R Einheitsintervall

f : S1 ↪→ R2 Einbettung der Kreislinie in die Ebene
π1(X,x) Fundamentalgruppe im topologischen Raum X um x ∈ X
Fix(f) Menge der Fixpunkte der Abbildung f
‖ · ‖2 2-Norm; Euklidische Norm
κ Krümmung
κNor Normalenkrümmung
V (f) Nullstellenmenge von f3

Krümmung

DpF : R2 → R3 Lineare Abbildung mit Jacobi-Matrix in p (siehe Seite 90)
TsS Tangentialebene an S ⊆ R3 durch s ∈ S
dsn(x) lineare Abbildung (siehe Seite 96)

3von Vanishing Set
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Abbildung
affine, 107
differenzierbare, 30
homotope, 51
offene, 53
simpliziale, 36
stetige, 9

Abschluss, 4
Abstand, 87
Abstandsaxiom, 65
Achterknoten, 20
Aktion, siehe Gruppenoperation
Anordnungsaxiome, 66
Atlas, 25
Außenwinkel, 70
Axiom, 64
Axiomensystem, 64

Basis, 4
Baum, 38
Betti-Zahl, 42
Bewegungsaxiom, 66
Binormalenvektor, 90

Cantorsches Diskontinuum, 23
Ck-Struktur, 30

Decktransformation, 59
Decktransformationsgruppe, 59
Deformationsretrakt, 48
dicht, 4
Diffeomorphismus, 30
Dimension, 35
diskret, 54
Doppelverhältnis, 82
Dreibein

begleitendes, 90

Ebene
euklidische, 64

Eigenvektor, 107
Eigenwert, 107

einfach zusammenhängend, 50
Einheitsnormalenfeld, 91
Euler-Charakteristik, siehe Eulerzahl
Eulersche Polyederformel, 39
Eulerzahl, 37

Färbbarkeit, 21
Faser, siehe Urbild
Fläche

orientierbare, 91
reguläre, 31

Flächenelement, 96
Formoperator, siehe Weingarten-Abbildung
Fundamentalform

erste, 95
zweite, 97

Fundamentalgruppe, 48

Gauß-Krümmung, 93, 92–95
Geometrie, 64
Gerade, 64

hyperbolische, 78
Graph, 38
Grenzwert, 9
Gruppe

allgemeine lineare, 23, 27
spezielle lineare, 23
topologische, 34

Gruppe operiert durch Homöomorphismen,
62

Gruppenaktion, siehe Gruppenoperation
Gruppenoperation, 61, 61–63

stetige, 62

Häufungspunkt, 107
Hülle

konvexe, 35
Halbebene, 66
Halbgerade, 65
Halbraum, 29
Hauptkrümmung, 93
Hilbert-Kurve, 19, 19



112 Stichwortverzeichnis

Homöomorphismengruppe, 10
Homöomorphismus, 9
Homologiegruppe, 42
Homomorphismus, 101
Homotopie, 45
Homotopieklasse, 48

Inklusionsabbildung, 48
Innenwinkel, 70
Inneres, 4
Inzidenzaxiome, 64
Isometrie, 7, 11
Isometriegruppe, 11
Isomorphismus, 101
Isotopie, 20

Jordankurve, 19
geschlossene, 19

Karte, 25
Kartenwechsel, 29
Kern

offener, 4
Kleeblattknoten, 20
Klumpentopologie, siehe triviale Topologie
Knoten, 20, 18–21

äquivalente, 20
trivialer, 20

Knotendiagramm, 21
kollinear, 65
kongruent, siehe isometrisch
Kongruenz, siehe Isometrie
Kongruenzsatz

SSS, 104
SWS, 69
SWW, 74
WSW, 70

Krümmung, 89, 90
Kreis, 38
Kreuzprodukt, 108
Kurve, 88

Länge einer, 88

Lage
allgemeine, 35

Lehrsatz
Binomischer, 107

Lie-Gruppe, 34
liegt zwischen, 65
Liftung, 55
Limes, 9

lokal, 4
Lot, 87
Lotfußpunkt, 87

Möbiusband, 92
Möbiustransformation, 79
Mannigfaltigkeit, 25

differenzierbare, 30
geschlossene, 26
glatte, 30
mit Rand, 29

Menge
abgeschlossene, 3
offene, 3
zusammenhängende, 12

Metrik, 7
diskrete, 7
hyperbolische, 83
SNCF, 8

Nebenwinkel, 87
Neilsche Parabel, 28
Normalenfeld, 91
Normalenvektor, 88, 90
Normalkrümmung, 92, 93, 98

Oktaeder, 35
Orthonormalbasis, 107

Paraboloid
hyperbolisches, 93

Parallele, 66
Parallelenaxiom, 64
parametrisiert

durch Bogenlänge, 88
Parametrisierung

reguläre, 31
Polyzylinder, 18
Produkttopologie, 5
Projektion

stereographische, 11
Punkt, 35

Quotiententopologie, 6, 11, 11

Rand, 4, 29
Raum

hausdorffscher, 8
kompakter, 15
metrischer, 7
projektiver, 6, 23, 26, 53
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topologischer, 3
zusammenhängender, 12

Realisierung
geometrische, 35

Retraktion, 48

Satz von
Gauß-Bonnet, 98

Scheitelwinkel, 87
Seite, 35
Sierpińskiraum, 4, 23
Simplex, 35
Simplizialkomplex, 35
Simplizialkomplexe

flächengleiche, 74
Sphäre

exotische, 30
Standard-Simplex, 35
Standardtopologie, 3
sternförmig, 49
Stetigkeit, 9–12
Strecke, 65
Struktur

differenzierbare, 30
Subbasis, 4

Tangentialebene, 90, 90–91
Teilraum, 5
Teilraumtopologie, 5
Teilsimplex, 35
Topologie

diskrete, 3, 7
euklidische, 3
feinste, 11
triviale, 3
Zariski, 3, 13, 15

Torus, iii, 6, 39, 52, 94
Total Unzusammenhängend, 100
Triangulierung, 39

Überdeckung, 14
Übergangsfunktion, siehe Kartenwechsel
Überlagerung, 52, 52–61

reguläre, 59
universelle, 58

Umgebung, 4

vanishing set, 27
Vektorprodukt, siehe Kreuzprodukt
Verklebung, 27
verträglich, 30

Würfel, 35
Weg, 18

einfacher, 18
geschlossener, 18
homotope, 45
inverser, 49
zusammengesetzter, 47

Wegzusammenhang, 18
Weingarten-Abbildung, 96
Winkel, 70

Zusammenhang, 12–14
Zusammenhangskomponente, 14
Zwischenwertsatz, 107


	1 Topologische Grundbegriffe
	1.1 Topologische Räume
	1.2 Metrische Räume
	1.3 Stetigkeit
	1.4 Zusammenhang
	1.5 Kompaktheit
	1.6 Wege und Knoten
	Übungsaufgaben

	2 Mannigfaltigkeiten und Simplizialkomplexe
	2.1 Topologische Mannigfaltigkeiten
	2.2 Differenzierbare Mannigfaltigkeiten
	2.3 Simplizialkomplex
	Übungsaufgaben

	3 Fundamentalgruppe und Überlagerungen
	3.1 Homotopie von Wegen
	3.2 Fundamentalgruppe
	3.3 Überlagerungen
	3.4 Gruppenoperationen

	4 Euklidische und nichteuklidische Geometrie
	4.1 Axiome für die euklidische Ebene
	4.2 Weitere Eigenschaften einer euklidischen Ebene
	4.2.1 Flächeninhalt

	4.3 Hyperbolische Geometrie
	Übungsaufgaben

	5 Krümmung
	5.1 Krümmung von Kurven
	5.2 Tangentialebene
	5.3 Gauß-Krümmung
	5.4 Erste und zweite Fundamentalform

	Lösungen der Übungsaufgaben
	Bildquellen
	Abkürzungsverzeichnis
	Ergänzende Definitionen und Sätze
	Symbolverzeichnis
	Stichwortverzeichnis

