
Programmierparadigmen

0. Auflage, 1. April 2014 Martin Thoma

Vorwort

Dieses Skript wird/wurde im Wintersemester 2013/2014 von Mar-
tin Thoma zur Vorlesung von Prof. Dr. Snelting und Jun.-Prof. Dr. Hum-
mel geschrieben. Dazu wurden die Folien von Prof. Dr. Snelting
und Jun.-Prof. Dr. Hummel benutzt, die Struktur sowie einige
Beispiele, Definitionen und Sätze übernommen.

Das Ziel dieses Skriptes ist vor allem in der Klausur als Nach-
schlagewerk zu dienen; es soll jedoch auch vorher schon für die
Vorbereitung genutzt werden können und nach der Klausur als
Nachschlagewerk dienen.

Ein Link auf das Skript ist unter
martin-thoma.com/programmierparadigmen
zu finden.

Anregungen, Verbesserungsvorschläge,
Ergänzungen

Noch ist das Skript im Aufbau. Es gibt viele Baustellen und es ist
fraglich, ob ich bis zur Klausur alles in guter Qualität bereitstellen
kann. Daher freue ich mich über jeden Verbesserungsvorschlag.

Anregungen, Verbesserungsvorschläge und Ergänzungen können
per Pull-Request gemacht werden oder mir per E-Mail an info@martin-
thoma.de geschickt werden.

http://martin-thoma.com/programmierparadigmen/

iv

Erforderliche Vorkenntnisse

Grundlegende Kenntnisse vom Programmieren, insbesondere mit
Java, wie sie am KIT in „Programmieren“ vermittelt werden, wer-
den vorausgesetzt. Außerdem könnte ein grundlegendes Verständnis
für das O-Kalkül aus „Grundbegriffe der Informatik“ hilfreich sein.

Die Unifikation wird wohl auch in „Formale Systeme“ erklärt; das
könnte also hier von Vorteil sein.

Die Grundlagen des Kapitels „Parallelität“ wurden in Software-
technik I (kurz: SWT I) gelegt.

Inhaltsverzeichnis

1 Programmiersprachen 3
1.1 Abstraktion . 3
1.2 Paradigmen . 5
1.3 Typisierung . 7
1.4 Kompilierte und interpretierte Sprachen 10
1.5 Dies und das . 10

2 Programmiertechniken 15
2.1 Rekursion . 15
2.2 Backtracking . 18
2.3 Funktionen höherer Ordnung 18

3 Logik 19
3.1 Prädikatenlogik erster Stufe 19

3.1.1 Symbole . 19
3.1.2 Terme . 20
3.1.3 Ausdrücke 21
3.1.4 1. Stufe . 22
3.1.5 Freie Variablen 23
3.1.6 Metasprachliche Ausdrücke 23
3.1.7 Substitutionen 24

4 λ-Kalkül 27
4.1 Reduktionen . 28
4.2 Auswertungsstrategien 29
4.3 Church-Zahlen . 30
4.4 Church-Booleans 32
4.5 Weiteres . 32

Inhaltsverzeichnis vi

4.6 Fixpunktkombinator 33
4.7 Literatur . 35

5 Typinferenz 37
5.1 Typsystem . 39
5.2 Let-Polymorphismus 40
5.3 Beispiele . 42

5.3.1 λx. λy. x y 42
5.3.2 Selbstapplikation 44

6 Parallelität 47
6.1 Architekturen . 48
6.2 Prozesskommunikation 50
6.3 Parallelität in Java 52
6.4 Message Passing Modell 52

7 Java 55
7.1 Thread, ThreadPool, Runnable und ExecutorService 55
7.2 Futures . 57
7.3 Beispiele . 58
7.4 Literatur . 61

8 Haskell 63
8.1 Erste Schritte . 63

8.1.1 Hello World 63
8.2 Syntax . 64

8.2.1 Klammern und Funktionsdeklaration 64
8.2.2 if / else . 65
8.2.3 Rekursion 65
8.2.4 Listen . 66
8.2.5 Strings . 68
8.2.6 Let und where 68
8.2.7 Funktionskomposition 69
8.2.8 $ (Dollar-Zeichen) und ++ 69
8.2.9 Logische Operatoren 70

vii Inhaltsverzeichnis

8.3 Typen . 70
8.3.1 Standard-Typen 70
8.3.2 Typinferenz 71
8.3.3 type . 73
8.3.4 data . 73

8.4 Lazy Evaluation 73
8.5 Beispiele . 74

8.5.1 Quicksort 74
8.5.2 Fibonacci 74
8.5.3 Polynome 75
8.5.4 Hirsch-Index 76
8.5.5 Lauflängencodierung 77
8.5.6 Intersections 77
8.5.7 Funktionen höherer Ordnung 78
8.5.8 Chruch-Zahlen 79
8.5.9 Trees . 79
8.5.10 Standard Prelude 80

8.6 Weitere Informationen 81

9 Prolog 83
9.1 Erste Schritte . 83

9.1.1 Hello World 83
9.2 Syntax . 83

9.2.1 Arithmetik 84
9.2.2 Listen . 85

9.3 Beispiele . 86
9.3.1 Humans . 86
9.3.2 Splits . 87
9.3.3 Delete . 87
9.3.4 Zebrarätsel 88

9.4 Weitere Informationen 89

10 Scala 91
10.1 Erste Schritte . 91

10.1.1 Hello World 91
10.2 Vergleich mit Java 92

Inhaltsverzeichnis viii

10.3 Syntax . 93
10.3.1 Logische Operatoren 94

10.4 Companion Object 94
10.5 actor . 94

10.5.1 Message Passing 94
10.6 Weiteres . 95
10.7 Beispiele . 95

10.7.1 Wetter . 95
10.8 Weitere Informationen 96

11 X10 97
11.1 Erste Schritte . 98
11.2 Syntax . 98

11.2.1 Logische Operatoren 98
11.2.2 Closures . 98
11.2.3 async . 99
11.2.4 atomic . 99
11.2.5 Bedingtes Warten 100
11.2.6 Lokalisierung 101

11.3 Datentypen . 102
11.3.1 Arrays . 102
11.3.2 struct . 102

11.4 Beispiele . 103
11.5 Weitere Informationen 104

12 C 105
12.1 Datentypen . 105
12.2 ASCII-Tabelle . 106
12.3 Syntax . 106

12.3.1 Logische Operatoren 106
12.4 Präzedenzregeln . 106
12.5 Beispiele . 106

12.5.1 Hello World 106
12.5.2 Pointer . 107

1 Inhaltsverzeichnis

13 MPI 111
13.1 Erste Schritte . 111
13.2 MPI Datatypes . 112
13.3 Funktionen . 112
13.4 Beispiele . 120

13.4.1 sum-reduce Implementierung 120
13.4.2 broadcast Implementierung 121

13.5 Weitere Informationen 122

14 Compilerbau 123
14.1 Funktionsweise . 125
14.2 Lexikalische Analyse 125

14.2.1 Reguläre Ausdrücke 125
14.2.2 Lex . 126

14.3 Syntaktische Analyse 127
14.4 Semantische Analyse 127
14.5 Zwischencodeoptimierung 128
14.6 Codegenerierung 128
14.7 Weiteres . 129

14.7.1 First- und Follow 129
14.8 Literatur . 131

15 Java Bytecode 133
15.1 Instruktionen . 133

15.1.1 if-Abfragen 134
15.1.2 Konstanten 135

15.2 Weiteres . 135
15.3 Polnische Notation 135
15.4 Weitere Informationen 136

Bildquellen 139

Abkürzungsverzeichnis 141

Ergänzende Definitionen 143

Symbolverzeichnis 147

Inhaltsverzeichnis 2

Stichwortverzeichnis 149

1 Programmiersprachen

Definition 1
Eine Programmiersprache ist eine formale Sprache, die
durch eine Spezifikation definiert wird und mit der Algorith-
men beschrieben werden können. Elemente dieser Sprache
heißen Programme.

Ein Beispiel für eine Sprachspezifikation ist die Java Language
Specification.1 Obwohl es kein guter Stil ist, ist auch eine Referenz-
implementierung eine Form der Spezifikation.

Im Folgenden wird darauf eingegangen, anhand welcher Kriterien
man Programmiersprachen unterscheiden kann.

1.1 Abstraktion

Wie nah an den physikalischen Prozessen im Computer ist die
Sprache? Wie nah ist sie an einer mathematisch / algorithmischen
Beschreibung?

Definition 2
Eine Maschinensprache beinhaltet ausschließlich Instruk-
tionen, die direkt von einer CPU ausgeführt werden können.
Die Menge dieser Instruktionen sowie deren Syntax wird Be-
fehlssatz genannt.

Beispiel 1 (Maschinensprachen)
1) x86

1Zu finden unter http://docs.oracle.com/javase/specs/

http://docs.oracle.com/javase/specs/

1.1. ABSTRAKTION 4

2) SPARC

Definition 3 (Assembler)
Eine Assemblersprache ist eine Programmiersprache, deren
Befehle dem Befehlssatz eines Prozessor entspricht.

Beispiel 2 (Assembler)
Folgendes Beispiel stammt von https://de.wikibooks.
org/wiki/Assembler-Programmierung_für_x86-Prozessoren/
_Das_erste_Assemblerprogramm:

firstp.asm
1 org 100h
2 start:
3 mov ax, 5522h
4 mov cx, 1234h
5 xchg cx,ax
6 mov al, 0
7 mov ah,4Ch
8 int 21h

Definition 4 (Höhere Programmiersprache)
Eine Programmiersprache heißt höher, wenn sie nicht aus-
schließlich für eine Prozessorarchitektur geschrieben wurde
und turing-vollständig ist.

Beispiel 3 (Höhere Programmiersprachen)
Java, Python, Haskell, Ruby, TCL, . . .

Definition 5 (Domänenspezifische Sprache)
Eine domänenspezifische Sprache (engl. domain-specific lan-
guage; kurz DSL) ist eine formale Sprache, die für ein bestimm-
tes Problemfeld entworfen wurde.

Beispiel 4 (Domänenspezifische Sprache)
1) HTML

2) VHDL

https://de.wikibooks.org/wiki/Assembler-Programmierung_f�r_x86-Prozessoren/_Das_erste_Assemblerprogramm
https://de.wikibooks.org/wiki/Assembler-Programmierung_f�r_x86-Prozessoren/_Das_erste_Assemblerprogramm
https://de.wikibooks.org/wiki/Assembler-Programmierung_f�r_x86-Prozessoren/_Das_erste_Assemblerprogramm

5 1. PROGRAMMIERSPRACHEN

1.2 Paradigmen

Eine weitere Art, wie man Programmiersprachen unterscheiden
kann ist das sog. „Programmierparadigma“, also die Art wie man
Probleme löst.
Definition 6 (Imperatives Paradigma)

In der imperativen Programmierung betrachtet man Program-
me als eine Folge von Anweisungen, die vorgibt auf welche Art
etwas Schritt für Schritt gemacht werden soll.

Beispiel 5 (Imperative Programmierung)
In folgenden Programm erkennt man den imperativen Pro-
grammierstil vor allem an den Variablenzuweisungen:

int fib(int n) {
if (n < 0) {

return -1;
}

int fib[2] = {0, 1}, tmp;

for (; n > 0; n--) {
tmp = fib[1];
fib[1] = fib[0] + fib[1];
fib[0] = tmp;

}
return fib[0];

}

Definition 7 (Prozedurales Paradigma)
Die prozeduralen Programmierung ist eine Erweiterung des
imperativen Programmierparadigmas, bei dem man versucht
die Probleme in kleinere Teilprobleme zu zerlegen.

Definition 8 (Funktionales Paradigma)
In der funktionalen Programmierung baut man auf Funktionen
und ggf. Funktionen höherer Ordnung, die eine Aufgabe ohne
Nebeneffekte lösen.

1.2. PARADIGMEN 6

Beispiel 6 (Funktionale Programmierung)
Der Funktionale Stil kann daran erkannt werden, dass keine
Werte zugewiesen werden:

fibAkk n n1 n2
| (n == 0) = n1
| (n == 1) = n2
| otherwise = fibAkk (n - 1) n2 (n1 + n2)

fib n = fibAkk n 0 1

Haskell ist eine funktionale Programmiersprache, C ist eine nicht-
funktionale Programmiersprache.

Wichtige Vorteile von funktionalen Programmiersprachen sind:

• Sie sind weitgehend (jedoch nicht vollständig) frei von Sei-
teneffekten.

• Der Code ist häufig sehr kompakt und manche Probleme
lassen sich sehr elegant formulieren.

Definition 9 (Logisches Paradigma)
Das logische Programmierparadigma baut auf der forma-
len Logik auf. Man verwendet Fakten und Regeln und einen
Inferenzalgorithmus um Probleme zu lösen.

Der Inferenzalgorithmus kann z. B. die Unifikation nutzen.

Beispiel 7 (Logische Programmierung)
Obwohl die logische Programmierung für Zahlenfolgen weni-
ger geeignet erscheint, sei hier zur Vollständigkeit das letzte
Fibonacci-Beispiel in Prolog:

fib(0, A, _, A).
fib(N, A, B, F) :- N1 is N - 1,

Sum is A + B,
fib(N1, B, Sum, F).

fib(N, F) :- fib(N, 0, 1, F).

7 1. PROGRAMMIERSPRACHEN

1.3 Typisierung

Programmiersprachen können anhand der Art ihrer Typisierung
unterschieden werden.
Definition 10 (Typisierungsstärke)

Es seien X,Y Programmiersprachen.

X heißt stärker typisiert als Y , wenn X mehr bzw. nützlichere
Typen hat als Y .

Beispiel 8 (Typisierungsstärke)
Die stärke der Typisierung ist abhängig von dem Anwendungs-
zenario. So hat C im Gegensatz zu Python, Java oder Haskell
beispielsweise keine booleschen Datentypen.

Im Gegensatz zu Haskell hat Java keine GADTs2.

Definition 11 (Polymorphie)

a) Ein Typ heißt polymorph, wenn er mindestens einen
Parameter hat.

b) Eine Funktion heißt polymorph, wenn ihr Verhalten nicht
von dem konkreten Typen der Parameter abhängt.

Beispiel 9 (Polymorphie)
In Java sind beispielsweise Listen polymorphe Typen:

ArrayList<String> l1 = new ArrayList<String>();
ArrayList<Integer> l2 = new ArrayList<Integer>();

Entsprechend sind auf Listen polymorphe Operationen wie
add und remove definiert.

Definition 12 (Statische und dynamische Typisierung)

a) Eine Programmiersprache heißt statisch typisiert, wenn
eine Variable niemals ihren Typ ändern kann.

2generalized algebraic data type

1.3. TYPISIERUNG 8

b) Eine Programmiersprache heißt dynamisch typisiert,
wenn eine Variable ihren Typ ändern kann.

Beispiele für statisch typisierte Sprachen sind C, Haskell und Java.
Beispiele für dynamisch typisierte Sprachen sind Python und PHP.

Vorteile statischer Typisierung sind:

• Performance: Der Compiler kann mehr Optimierungen vor-
nehmen.

• Syntaxcheck: Da der Compiler die Typen zur Compile-
Zeit überprüft, gibt es in statisch typisierten Sprachen zur
Laufzeit keine Typfehler.

Vorteile dynamischer Typisierung sind:

• Manche Ausdrücke, wie der Y-Combinator in Haskell, lassen
sich nicht typisieren.

Der Gedanke bei dynamischer Typisierung ist, dass Variablen keine
Typen haben. Nur Werte haben Typen. Man stellt sich also Varia-
blen eher als Beschriftungen für Werte vor. Bei statisch typisierten
Sprachen stellt man sich hingegen Variablen als Container vor.

Definition 13 (Explizite und implizite Typisierung)
Sei X eine Programmiersprache.

a) X heißt explizit typisiert, wenn für jede Variable der
Typ explizit genannt wird.

b) X heißt implizit typisiert, wenn der Typ einer Varia-
ble aus den verwendeten Operationen abgeleitet werden
kann.

Sprachen, die implizit typisieren können nutzen dazu Typinferenz.

Beispiele für explizit typisierte Sprachen sind C, C++ und Java.
Beispiele für implizit typisierte Sprachen sind JavaScript, Python,
PHP und Haskell.

9 1. PROGRAMMIERSPRACHEN

Mir ist kein Beispiel einer Sprache bekannt, die dynamisch und
explizit typisiert ist.

Vorteile expliziter Typisierung sind:

• Lesbarkeit

Vorteile impliziter Typisierung sind:

• Tippfreundlicher: Es ist schneller zu schreiben.

• Anfängerfreundlicher: Man muss sich bei einfachen Pro-
blemen keine Gedanken um den Typ machen.

Definition 14 (Duck-Typing und strukturelle Typisierung)

a) Eine Programmiersprache verwendetDuck-Typing, wenn
die Parameter einer Methode nicht durch die explizite
Angabe von Typen festgelegt werden, sondern durch die
Art wie die Parameter verwendet werden.

b) Eine Programmiersprache verwendet strukturelle Ty-
pisierung, wenn die Parameter einer Methode nicht
durch die explizite Angabe von Typen festgelegt werden,
sondern explizit durch die Angabe von Methoden.

Strukturelle Typsierung wird auch typsicheres Duck-Typing ge-
nannt. Der Satz, den man im Zusammenhang mit Duck-Typing
immer höhrt, ist

„When I see a bird that walks like a duck and swims like a duck
and quacks like a duck, I call that bird a duck.“

Beispiel 10 (Strukturelle Typisierung)
Folgende Scala-Methode erwartet ein Objekt, das eine Methode
namens quack besitzt:

def quacker(duck:
{def quack(value: String): String}) {

println (duck.quack("like a duck!"))
}

1.4. KOMPILIERTE UND INTERPRETIERTE SPRACHEN 10

Diese Funktion ist vom Typ (duck: AnyRefdef quack(value:
String): String)Unit.

1.4 Kompilierte und interpretierte Sprachen

Sprachen werden überlicherweise entweder interpretiert oder kompi-
liert, obwohl es Programmiersprachen gibt, die beides unterstützen.

C und Java werden kompiliert, Python und TCL interpretiert.

1.5 Dies und das

Definition 15 (Seiteneffekt)
Seiteneffekte sind Veränderungen des Zustandes eines Pro-
gramms.

Manchmal werden Seiteneffekte auch als Nebeneffekt oder Wirkung
bezeichnet. Meistens meint man insbesondere unerwünschte oder
überaschende Zustandsänderungen.

Definition 16 (Unifikation)
Die Unifikation ist eine Operation in der Logik und dient zur
Vereinfachung prädikatenlogischer Ausdrücke. Der Unifikator
ist also eine Abbildung, die in einem Schritt dafür sorgt, dass
auf beiden Seiten der Gleichung das selbe steht.

Beispiel 11 (Unifikation3)
Gegeben seien die Ausdrücke

A1 = (X,Y, f(b))

A2 = (a, b, Z)

Großbuchstaben stehen dabei für Variablen und Kleinbuchsta-
ben für atomare Ausdrücke.

11 1. PROGRAMMIERSPRACHEN

Ersetzt man in A1 nun X durch a, Y durch b und in A2 die
Variable Z durch f (b), so sind sie gleich oder „unifiziert“. Man
erhält

σ(A1) = (a, b, f(b))

σ(A2) = (a, b, f(b))

mit
σ = {X 7→ a, Y 7→ b, Z 7→ f(b)}

Definition 17 (Allgemeinster Unifikator)
Ein Unifikator σ heißt allgemeinster Unifikator, wenn es für
jeden Unifikator γ eine Substitution δ mit

γ = δ ◦ σ

gibt.

Beispiel 12 (Allgemeinster Unifikator4)
Sei

C = { f(a,D) = Y,X = g(b), g(Z) = X }

eine Menge von Gleichungen über Terme.

Dann ist
γ = [Y 	f(a, b), D	b,X	g(b), Z	b]

ein Unifikator für C. Jedoch ist

σ = [Y 	f(a,D), X	g(b), Z	b]

der allgemeinste Unifikator. Mit

δ = [D	b]

gilt γ = δ ◦ σ.

1.5. DIES UND DAS 12

Algorithmus 1 Klassischer Unifikationsalgorithmus
function unify(Gleichungsmenge C)

if C == ∅ then
return []

else
Es sei { θl = θr } ∪ C ′ == C
if θl == θr then

unify(C ′)
else if θl == Y and Y /∈ FV (θr) then

unify([Y 	θr]C ′) ◦[Y 	θr]
else if θr == Y and Y /∈ FV (θl) then

unify([Y 	θl]C ′) ◦[Y 	θl]
else if θl == f(θ1l , . . . , θ

n
l) and θr == f(θ1r , . . . , θ

n
r then

unify(C ′ ∪
{
θ1l = θ1r , . . . θ

n
l = θnr

}
)

else
fail

Dieser klassische Algorithmus hat eine Laufzeit von O(2n) für
folgendes Beispiel:

f(X1, X2, . . . , Xn) = f(g(X0, X0), g(X1, X1), . . . , g(Xn−1, Xn−1))

Der Paterson-Wegman-Unifikationsalgorithmus ist deutlich effizien-
ter. Er basiert auf dem Union-Find-Algorithmus und funktioniert
wie folgt:

4Folie 268 von Prof. Snelting
4https://de.wikipedia.org/w/index.php?title=Unifikation_
(Logik)&oldid=116848554#Beispiel

https://de.wikipedia.org/w/index.php?title=Unifikation_(Logik)&oldid=116848554#Beispiel
https://de.wikipedia.org/w/index.php?title=Unifikation_(Logik)&oldid=116848554#Beispiel

13 1. PROGRAMMIERSPRACHEN

Algorithmus 2 Paterson-Wegeman Unifikationsalgorithmus
function unify(Knoten p, Knoten q)

s← find(p)
t← find(q)
if s == t oder s.getAtom == t.getAtom then

return True
if s, t Knoten für gleichen Funktor, mit Nachfolgern

s1, . . . , sn bzw. t1, . . . , tn then
union(s, t)
k ← 1
b← True
while k ≤ n and b do

b← unify(sk, tk)
k ← k + 1

return True
if s oder t ist Variablen-Knoten then

union(s, t)
return True

return False

2 Programmiertechniken

2.1 Rekursion

Definition 18 (rekursive Funktion)
Eine Funktion f : X → X heißt rekursiv definiert, wenn in
der Definition der Funktion die Funktion selbst wieder steht.

Beispiel 13 (rekursive Funktionen)
1) Fibonacci-Funktion:

fib : N0 → N0

fib(n) =

{
n falls n ≤ 1

fib(n− 1) + fib(n− 2) sonst

Erzeugt die Zahlen 0, 1, 1, 2, 3, 5, 8, 13, . . .

2) Fakultät:

! : N0 → N0

n! =

{
1 falls n ≤ 1

n · (n− 1)! sonst

3) Binomialkoeffizient:(
·
·

)
: N0 × N0 → N0(

n

k

)
=

{
1 falls k = 0 ∨ k = n(
n−1
k−1
)

+
(
n−1
k

)
sonst

2.1. REKURSION 16

Ein Problem von rekursiven Funktionen in Computerprogrammen
ist der Speicherbedarf. Für jeden rekursiven Aufruf müssen alle
Umgebungsvariablen der aufrufenden Funktion („stack frame“)
gespeichert bleiben, bis der rekursive Aufruf beendet ist. Im Fall der
Fibonacci-Funktion sieht ist der Call-Stack in Abb. 2.1 abgebildet.

Abbildung 2.1: Call-Stack der Fibonacci-Funktion

Bemerkung 1
Die Anzahl der rekursiven Aufrufe der Fibonacci-Funktion fC
ist:

fC(n) =

{
1 falls n = 0

2 · fib(n)− 1 falls n ≥ 1

Beweis:

• Offensichtlich gilt fC(0) = 1

• Offensichtlich gilt fC(1) = 1 = 2 · fib(1)− 1

• Offensichtlich gilt fC(2) = 3 = 2 · fib(2)− 1

• Für n ≥ 3:

fC(n) = 1 + fC(n− 1) + fC(n− 2)

= 1 + (2 · fib(n− 1)− 1) + (2 · fib(n− 2)− 1)

17 2. PROGRAMMIERTECHNIKEN

= 2 · (fib(n− 1) + fib(n− 2))− 1

= 2 · fib(n)− 1

Mit Hilfe der Formel von Moivre-Binet folgt:

fC ∈ O
(
ϕn − ψn

ϕ− ψ

)
mit ϕ :=

1 +
√

5

2
und ψ := 1− ϕ

Dabei ist der Speicherbedarf O(n). Dieser kann durch das Benutzen
eines Akkumulators signifikant reduziert werden. TODOTODO

Definition 19 (linear rekursive Funktion)
Eine Funktion heißt linear rekursiv, wenn in jedem Definitions-
zweig der Funktion höchstens ein rekursiver Aufruf vorkommt.

Definition 20 (endrekursive Funktion)
Eine Funktion heißt endrekursiv, wenn in jedem Definitions-
zweig der Rekursive aufruf am Ende des Ausdrucks steht. Der
rekursive Aufruf darf also insbesondere nicht in einen anderen
Ausdruck eingebettet sein.

Auf Englisch heißen endrekursive Funktionen tail recursive.

Beispiel 14 (Linear- und endrekursive Funktionen)
1) fak n = if (n==0) then 1 else (n * fak (n-1))

ist eine linear rekursive Funkion, aber nicht endrekur-
siv, da nach der Rückgabe von fak (n-1) noch die
Multiplikation ausgewertet werden muss.

2) fakAcc n acc = if (n==0) then acc else fakAcc
(n-1) (n*acc)
ist eine endrekursive Funktion.

3) fib n = n <= 1 ? n : fib(n-1) + fib (n-2)
ist weder linear- noch endrekursiv.

Wenn eine rekursive Funktion nicht terminiert oder wenn

2.2. BACKTRACKING 18

2.2 Backtracking

Unter Backtracking versteht man eine Programmiertechnik, die
(eventuell implizit) auf einem Suchbaum arbeitet und mittels Tie-
fensuche versucht eine Lösung zu finden.

Beispiel 15 (Backtracking)
Probleme, bei deren (vollständigen) Lösung Backtracking ver-
wendet wird, sind:

1) Damenproblem

2) Springerproblem

3) Rucksackproblem

2.3 Funktionen höherer Ordnung

Funktionen höherer Ordnung sind Funktionen, die auf Funktionen
arbeiten. Bekannte Beispiele sind:

• map(function, list)
map wendet function auf jedes einzelne Element aus list
an.

• filter(function, list)
filter gibt eine Liste aus Elementen zurück, für die function
mit true evaluiert.

• reduce(function, list)
function ist für zwei Elemente aus list definiert und gibt
ein Element des gleichen Typs zurück. Nun steckt reduce
zuerst zwei Elemente aus list in function, merkt sich
dann das Ergebnis und nimmt so lange weitere Elemente aus
list, bis jedes Element genommen wurde.
Bei reduce ist die Assoziativität wichtig (vgl. Seite 78)

3 Logik

3.1 Prädikatenlogik erster Stufe

Folgendes ist von http://de.wikipedia.org/wiki/Pr%C3%
A4dikatenlogik_erster_Stufe

Die Prädikatenlogik erster Stufe ist ein Teilgebiet der mathema-
tischen Logik. Sie befasst sich mit der Struktur gewisser mathe-
matischer Ausdrücke und dem logischen Schließen, mit dem man
von derartigen Ausdrücken zu anderen gelangt. Dabei gelingt es,
sowohl die Sprache als auch das Schließen rein syntaktisch, das
heißt ohne Bezug zu mathematischen Bedeutungen, zu definieren.
[...]

Wir beschreiben hier die verwendete Sprache auf rein syntaktische
Weise, das heißt wir legen die betrachteten Zeichenketten, die
wir Ausdrücke der Sprache nennen wollen, ohne Bezug auf ihre
Bedeutung fest.

3.1.1 Symbole

Eine Sprache erster Stufe wird aus folgenden Symbolen aufgebaut:

• ∀,∃,∧,∨,→,↔,¬, (,),≡

• sogenannte Variablensymbole v0, v1, v2, . . .,

• eine (möglicherweise leere) Menge C von Konstantensymbo-
len,

• eine (möglicherweise leere) Menge F von Funktionssymbolen,

http://de.wikipedia.org/wiki/Pr%C3%A4dikatenlogik_erster_Stufe
http://de.wikipedia.org/wiki/Pr%C3%A4dikatenlogik_erster_Stufe

3.1. PRÄDIKATENLOGIK ERSTER STUFE 20

• eine (möglicherweise leere) Menge R von Relationssymbolen.

Das Komma wird hier nur als Trennzeichen für die Aufzählung
der Symbole benutzt, es ist nicht Symbol der Sprache.

3.1.2 Terme

Die nach folgenden Regeln aufgebauten Zeichenketten heißen Ter-
me:

• Ist v ein Variablensymbol, so ist v ein Term.

• Ist c ein Konstantensymbol, so ist c ein Term.

• Ist f ein 1-stelliges Funktionssymbol und ist t1 ein Term, so
ist ft1 ein Term.

• Ist f ein 2-stelliges Funktionssymbol und sind t1, t2 Terme,
so ist ft1t2 ein Term.

• Ist f ein 3-stelliges Funktionssymbol und sind t1, t2, t3 Terme,
so ist ft1t2t3 ein Term.

• und so weiter für 4,5,6,...-stellige Funktionssymbole.

Ist zum Beispiel c eine Konstante und sind f und g 1- bzw. 2-
stellige Funktionssymbole, so ist fgv2fc ein Term, da er sich durch
Anwendung obiger Regeln erstellen lässt: c ist ein Term, daher auch
fc; fc und v2 sind Terme, daher auch gv2fc und damit schließlich
auch fgv2fc.

Wir verzichten hier auf Klammern und Kommata als Trennzeichen,
das heißt wir schreiben fgv2fc und nicht f(g(v2, f(c))). Wir setzen
damit implizit voraus, dass unsere Symbole derart beschaffen sind,
dass eine eindeutige Lesbarkeit gewährleistet ist.

Die Regeln für die Funktionssymbole fasst man oft so zusammen:

• Ist f ein n-stelliges Funktionssymbol und sind t1, . . . , tn
Terme, so ist ft1 . . . tn ein Term.

21 3. LOGIK

Damit ist nichts anderes als die oben angedeutete unendliche Folge
von Regeln gemeint, denn die drei Punkte . . . gehören nicht zu
den vereinbarten Symbolen. Dennoch wird manchmal von dieser
Schreibweise Gebrauch gemacht.

Über den Aufbau der Terme lassen sich weitere Eigenschaften
definieren. So definieren wir offenbar durch die folgenden drei
Regeln rekursiv, welche Variablen in einem Term vorkommen:

• Ist v ein Variablensymbol, so sei var(v) = {v}.

• Ist c ein Konstantensymbol, so sei var(c) = ∅.

• Ist f ein n-stelliges Funktionssymbol und sind t1, . . . , tn
Terme, so sei var(ft1 . . . tn) = var(t1) ∪ . . . ∪ var(tn).

3.1.3 Ausdrücke

Wir erklären nun durch Bildungsgesetze, welche Zeichenketten wir
als Ausdrücke der Sprache ansehen wollen.

Atomare Ausdrücke

• Sind t1 und t2 Terme, so ist t1 ≡ t2 ein Ausdruck.

• Ist R ein 1-stelliges Relationssymbol und ist t1 ein Term, so
ist Rt1 ein Ausdruck.

• Ist R ein 2-stelliges Relationssymbol und sind t1, t2 Terme,
so ist Rt1t2 ein Ausdruck.

• und so weiter für 3,4,5,...-stellige Relationssymbole.

Dabei gelten die oben zur Schreibweise bei Termen gemachten
Bemerkungen.

3.1. PRÄDIKATENLOGIK ERSTER STUFE 22

Zusammengesetzte Ausdrücke

Wir beschreiben hier, wie sich aus Ausdrücken weitere gewinnen
lassen.

• Ist ϕ ein Ausdruck, so ist auch ¬ϕ ein Ausdruck.

• Sind ϕ und ψ Ausdrücke, so sind auch (ϕ ∧ ψ), (ϕ ∨ ψ),
(ϕ→ ψ) und (ϕ↔ ψ) Ausdrücke.

• Ist ϕ ein Ausdruck und ist x eine Variable, so sind auch ∀xϕ
und ∃xϕ Ausdrücke.

Damit sind alle Ausdrücke unserer Sprache festgelegt. Ist zum
Beispiel f ein 1-stelliges Funktionssymbol und R ein 2-stelliges
Relationssymbol, so ist : ∀v0((Rv0v1 ∨ v0 ≡ fv1) → ∃v2¬Rv0v2)
ein Ausdruck, da er sich durch Anwendung obiger Regeln aufbauen
lässt. Es sei noch einmal darauf hingewiesen, dass wir die Ausdrücke
mittels der genannten Regeln rein mechanisch erstellen, ohne dass
die Ausdrücke zwangsläufig irgendetwas bezeichnen müssten.

3.1.4 1. Stufe

Unterschiedliche Sprachen erster Stufe unterscheiden sich lediglich
in den Mengen C, F und R, die man üblicherweise zur Symbol-
menge S zusammenfasst und auch die Signatur der Sprache nennt.
Man spricht dann auch genauer von S-Termen bzw. S-Ausdrücken.
Die Sprache, das heißt die Gesamtheit aller nach obigen Regeln
gebildeten Ausdrücke, wird mit L(S), LS oder LSI bezeichnet. Bei
letzterem steht die römische I für die 1-te Stufe. Dies bezieht
sich auf den Umstand, dass gemäß letzter Erzeugungsregel nur
über Variable quantifiziert werden kann. LSI sieht nicht vor, über
alle Teilmengen einer Menge oder über alle Funktionen zu quan-
tifizieren. So lassen sich die üblichen [[Peano-Axiome]] nicht in
LSI ausdrücken, da das Induktionsaxiom eine Aussage über alle
Teilmengen der natürlichen Zahlen macht. Das kann als Schwä-
che dieser Sprache angesehen werden, allerdings sind die Axiome

23 3. LOGIK

der Zermelo-Fraenkel-Mengenlehre sämtlich in der ersten Stufe
mit dem einzigen Symbol ∈ formulierbar, so dass die erste Stufe
prinzipiell für die Mathematik ausreicht.

3.1.5 Freie Variablen

Weitere Eigenschaften von Ausdrücken der Sprache LSI lassen sich
ebenfalls rein syntaktisch definieren. Gemäß dem oben beschriebe-
nen Aufbau durch Bildungsregeln definieren wir die Menge frei(ϕ)
der im Ausdruck ϕ frei vorkommenden Variablen wie folgt:

• frei(t1 ≡ t2) = var(t1) ∪ var(t2)

• frei(Rt1 . . . tn) = var(t1) ∪ . . . ∪ var(tn)

• frei(¬ϕ) = frei(ϕ)

• frei(ϕ ∧ ψ) = frei(ϕ) ∪ frei(ψ) und genauso für ∨,→,↔

• frei(∀xϕ) = frei(ϕ) \ {x}

• frei(∃xϕ) = frei(ϕ) \ {x}

Nicht-freie Variable heißen gebundene Variable. Ausdrücke ϕ oh-
ne freie Variable, das heißt solche mit frei(ϕ) = ∅, nennt man
Sätze. Sämtliche in obigem motivierenden Beispiel angegebenen
Axiome der geordneten abelschen Gruppen sind bei entsprechen-
der Übersetzung in die Sprache L{0,+,−,≤}I Sätze, so zum Beispiel
∀v0∀v1 +v0v1 ≡ +v1v0 für das Kommutativgesetz.

3.1.6 Metasprachliche Ausdrücke

Das gerade gegebene Beispiel ∀v0∀v1 +v0v1 ≡ +v1v0 als Symboli-
sierung des Kommutativgesetzes in der Sprache L{0,+,−,≤}I zeigt,
dass die entstehenden Ausdrücke oft schwer lesbar sind. Daher
kehrt der Mathematiker, und oft auch der Logiker, gern zur klassi-
schen Schreibweise ∀x, y : x+ y = y + x zurück. Letzteres ist aber

3.1. PRÄDIKATENLOGIK ERSTER STUFE 24

kein Ausdruck der Sprache L{0,+,−,≤}I sondern nur eine Mitteilung
eines solchen Ausdrucks unter Verwendung anderer Symbole ei-
ner anderen Sprache, hier der sogenannten [[Metasprache]], das
heißt derjenigen Sprache, in der man über L{0,+,−,≤}I spricht. Aus
Gründen der besseren Lesbarkeit lässt man auch gern überflüssige
Klammern fort. Das führt nicht zu Problemen, solange klar bleibt,
dass man die leichter lesbaren Zeichenketten jederzeit zurücküber-
setzen könnte.

3.1.7 Substitutionen

Häufig werden in der Mathematik Variablen durch Terme ersetzt.
Auch das lässt sich hier rein syntaktisch auf Basis unserer Symbole
erklären. Durch folgende Regeln legen wir fest, was es bedeuten
soll, den Term t für eine Variable x einzusetzen. Wir folgen da-
bei wieder dem regelhaften Aufbau von Termen und Ausdrücken.
Die Ersetzung wird als [] tx notiert, wobei die eckigen Klammern
weggelassen werden dürfen.

Für Terme s wird die Einsetzung s tx wie folgt definiert:

• Ist v ein Variablensymbol, so ist v tx gleich t falls v = x und
v sonst.

• Ist c ein Konstantensymbol, so ist c tx := c.

• Sind f ein n-stelliges Funktionssymbol und t1, . . . , tn Terme,
so ist [ft1 . . . tn] tx := ft1

t
x . . . tn

t
x .

Für Ausdrücke schreiben wir eckige Klammern um den Ausdruck,
in dem die Substitution vorgenommen werden soll. Wir legen fest:

• [t1 ≡ t2] tx := t1
t
x ≡ t2

t
x

• [Rt1 . . . tn] tx := Rt1
t
x . . . tn

t
x

• [¬ϕ] tx := ¬[ϕ] tx

• [(ϕ ∨ ψ)] tx := ([ϕ] tx ∨ [ψ] tx) und genauso für ∧,→,↔

25 3. LOGIK

• [∃xϕ] tx := ∃xϕ; analog für den Quantor ∀

• [∃yϕ] tx := ∃y[ϕ] tx falls x 6= y und y /∈ var(t); analog für den
Quantor ∀

• [∃yϕ] tx := ∃u[ϕ]uy
t
x falls x 6= y und y ∈ var(t), wobei u eine

Variable sei, die nicht in ϕ oder t vorkommt, zum Beispiel die
erste der Variablen v0, v1, v2, . . ., die diese Bedingung erfüllt.
Die analoge Festlegung wird für ∀ getroffen.

Bei dieser Definition wurde darauf geachtet, dass Variablen nicht
unbeabsichtigt in den Einflussbereich eines Quantors geraten. Falls
die gebundene Variable x im Term auftritt, so wird diese zuvor
durch eine andere ersetzt, um so die Variablenkollision zu vermei-
den.

Definition 21 (Freie Variable)
Eine Variable, die nicht gebunden ist, heißt frei.

Beispiel 16 (Freie Variablen1)
In dem Ausduck (λx→ xy) ist y eine freie Variable.

Definition 22 (Kombinator)
Ein Kombinator ist eine Funktion oder Definition ohne freie
Variablen.

Beispiel 17 (Kombinatoren2)
1) λa→ a

2) λa→ λb→ a

3) λf → λa→ λb→ fba

1Quelle: http://www.haskell.org/haskellwiki/Free_variable
2Quelle: http://www.haskell.org/haskellwiki/Combinator

http://www.haskell.org/haskellwiki/Free_variable
http://www.haskell.org/haskellwiki/Combinator

4 λ-Kalkül

Der λ-Kalkül (gesprochen: Lambda-Kalkül) ist eine formale Spra-
che. In diesem Kalkül gibt es drei Arten von Termen T :

• Variablen: x

• Applikationen: (TS)

• Lambda-Abstraktion: λx.T

In der Lambda-Abstraktion nennt man den Teil vor dem Punkt die
Parameter der λ-Funktion. Wenn etwas dannach kommt, auf die
die Funktion angewendet wird so heißt dieser Teil das Argument :

(λ x︸︷︷︸
Parameter

.x2)

Argument︷︸︸︷
5 = 52

Beispiel 18 (λ-Funktionen)
1) λx.x heißt Identität.

2) (λx.x2)(λy.y + 3) = λy.(y + 3)2

3) (λx.
(
λy.yx

)
) ab

⇒(λy.ya)b

⇒ba

In Beispiel 18.3 sieht man, dass λ-Funktionen die Argumente
von Links nach rechts einziehen.

Die Funktionsapplikation sei linksassoziativ. Es gilt also:

4.1. REDUKTIONEN 28

a b c d = ((a b) c) d

Definition 23 (Gebundene Variable)
Eine Variable heißt gebunden, wenn sie der Parameter einer
λ-Funktion ist.

Definition 24 (Freie Variable)
Eine Variable heißt frei, wenn sie nicht gebunden ist.

Satz 4.1
Der untypisierte λ-Kalkül ist Turing-Äquivalent.

4.1 Reduktionen

Definition 25 (Redex)
Eine λ-Term der Form (λx.t1)t2 heißt Redex.

Definition 26 (α-Äquivalenz)
Zwei Terme T1, T2 heißen α-Äquivalent, wenn T1 durch kon-
sistente Umbenennung in T2 überführt werden kann.

Man schreibt dann: T1
α
= T2.

Beispiel 19 (α-Äquivalenz)

λx.x
α
= λy.y

λx.xx
α
= λy.yy

λx.(λy.z(λx.zy)y)
α
= λa.(λx.z(λc.zx)x)

Definition 27 (β-Äquivalenz)
Eine β-Reduktion ist die Funktionsanwendung auf einen Re-
dex:

(λx.t1) t2 ⇒ t1[x 7→ t2]

29 4. λ-KALKÜL

Beispiel 20 (β-Äquivalenz)
a) (λx. x) y

β⇒ x[x 7→ y] = y

b) (λx. x (λx. x))(y z)
β⇒ (x (λx. x))[x 7→ y z](y z)(λx. x)

Definition 28 (η-Äquivalenz1)
Die Terme λx.f x und f heißen η-Äquivalent, wenn x /∈ FV (f)
gilt.

Man schreibt: λx.f x η
= f .

Beispiel 21 (η-Äquivalenz2)

λx. λy. f z x y
η
= λx. f z x

f z
η
= λx. f z x

λx. x
η
= λx. (λx. x) x

λx. f x x
η

6= f x

4.2 Auswertungsstrategien

Definition 29 (Normalenreihenfolge)
In der Normalenreihenfolge-Auswertungsstrategie wird der
linkeste äußerste Redex ausgewertet.

Definition 30 (Call-By-Name)
In der Call-By-Name Auswertungsreihenfolge wird der linkeste
äußerste Redex reduziert, der nicht von einem λ umgeben ist.

Die Call-By-Name Auswertung wird in Funktionen verwendet.

Haskell verwendet die Call-By-Name Auswertungsreihenfolge zu-
sammen mit „sharing“. Dies nennt man Lazy Evaluation. Ein spezi-
alfall der Lazy-Evaluation ist die sog. Kurzschlussauswertung. Das
bezeichnet die Lazy-Evaluation von booleschen Ausdrücken.

4.3. CHURCH-ZAHLEN 30

Was ist sharing?

Definition 31 (Call-By-Value)
In der Call-By-Value Auswertung wird der linkeste Redex
reduziert, der nicht von einem λ umgeben ist und dessen
Argument ein Wert ist.

Die Call-By-Value Auswertungsreihenfolge wird in C und Java
verwendet. Auch in Haskell werden arithmetische Ausdrücke in
der Call-By-Name Auswertungsreihenfolge reduziert.

4.3 Church-Zahlen

Im λ-Kalkül lässt sich jeder mathematische Ausdruck darstellen,
also insbesondere beispielsweise auch λx.x+ 3. Aber „3“ und „+“
ist hier noch nicht das λ-Kalkül.

Zuerst müssen wir uns also Gedanken machen, wie man natürliche
Zahlen n ∈ N darstellt. Dafür dürfen wir nur Variablen und λ
verwenden. Eine Möglichkeit das zu machen sind die sog. Church-
Zahlen.

Dabei ist die Idee, dass die Zahl angibt wie häufig eine Funktion
f auf eine Variable z angewendet wird. Also:

• 0 := λf z.z

• 1 := λf z.fz

• 2 := λf z.f(fz)

• 3 := λf z.f(f(fz))

Auch die gewohnten Operationen lassen sich so darstellen.

Beispiel 22 (Nachfolger-Operation)

succ : = λnfz.f(nfz)

31 4. λ-KALKÜL

= λn.(λf(λzf(nfz)))

Dabei ist n die Zahl.

Will man diese Funktion anwenden, sieht das wie folgt aus:

succ 1 = (λnfz.f(nfz))1

= (λnfz.f(nfz)) (λf z.fz)︸ ︷︷ ︸
n

= λfz.f(λf z.fz)fz

= λfz.f(fz)

= 2

Beispiel 23 (Vorgänger-Operation)

pair := λa.λb.λf.fab

fst := λp.p(λa.λb.a)

snd := λp.p(λa.λb.b)

next := λp. pair(snd p) (succ(snd p))

pred := λn. fst(n next(pair c0c0))

Beispiel 24 (Addition)

plus := λmnfz.mf(nfz)

Dabei ist m der erste Summand und n der zweite Summand.

Beispiel 25 (Multiplikation)

times : = λmnf.m s (n f z)
η
= λmnfz.n(ms)z

Dabei ist m der erste Faktor und n der zweite Faktor.

4.4. CHURCH-BOOLEANS 32

Beispiel 26 (Potenz)

exp : = λbe.eb
η
= λbefz.ebfz

Dabei ist b die Basis und e der Exponent.

4.4 Church-Booleans

Definition 32 (Church-Booleans)
True wird zu ctrue := λt.λf.t.
False wird zu cfalse := λt.λf.f .

Hiermit lässt sich beispielsweise die Funktion is_zero definieren,
die True zurückgibt, wenn eine Zahl 0 repräsentiert und sonst
False zurückgibt:

is_zero = λn. n (λx. cFalse) cTrue

4.5 Weiteres

Satz 4.2 (Satz von Curch-Rosser)
Wenn zwei unterschiedliche Terme a und b äquivalent
sind, d.h. mit Reduktionsschritten beliebiger Richtung
ineinander transformiert werden können, dann gibt es einen
weiteren Term c, zu dem sowohl a als auch b reduziert
werden können.

33 4. λ-KALKÜL

4.6 Fixpunktkombinator

Definition 33 (Fixpunkt)
Sei f : X → Y eine Funktion mit ∅ 6= A = X ∩ Y und a ∈ A.

a heißt Fixpunkt der Funktion f , wenn f(a) = a gilt.
Beispiel 27 (Fixpunkt)

1) f1 : R→ R; f(x) = x2 ⇒ x1 = 0 ist Fixpunkt von f , da
f(0) = 0. x2 = 1 ist der einzige weitere Fixpunkt dieser
Funktion.

2) f2 : N→ N hat ganz N als Fixpunkte, also insbesondere
unendlich viele Fixpunkte.

3) f3 : R→ R; f(x) = x+ 1 hat keinen einzigen Fixpunkt.

4) f4 : R[X]→ R[X]; f(p) = p2 hat p1(x) = 0 und p2(x) =
1 als Fixpunkte.

Definition 34 (Kombinator)
Ein Kombinator ist eine Abbildung ohne freie Variablen.

Beispiel 28 (Kombinatoren3)
1) λa. a

2) λa. λb. a

3) λf. λa. λb.f b a

Definition 35 (Fixpunkt-Kombinator)
Sei f ein Kombinator, der f g = g (f g) erfüllt. Dann heißt f
Fixpunktkombinator.

Insbesondere ist also f g ein Fixpunkt von g.
Definition 36 (Y-Kombinator)

Der Fixpunktkombinator

Y := λf. (λx. f (x x)) (λx. f (x x))

heißt Y -Kombinator.
3Quelle: http://www.haskell.org/haskellwiki/Combinator

http://www.haskell.org/haskellwiki/Combinator

4.6. FIXPUNKTKOMBINATOR 34

Beh.: Der Y -Kombinator ist ein Fixpunktkombinator.

Beweis: 4

Teil 1: Offensichtlich ist Y ein Kombinator.

Teil 2: z. Z.: Y f ⇒∗ f (Y f)

Y f = (λf. (λx. f (x x)) (λx. f (x x))) f

⇒β (λx.f (x x)) (λx. f (x x))

⇒β f ((λx. f (x x)) (λx. f (x x)))

⇒β f (λf. (λx. f (x x)) (λx. f (x x)) f)

= f (Y f)

�
Definition 37 (Turingkombinator)

Der Fixpunktkombinator

Θ := (λx.λy.y (x x y))(λx. λy. y (x x y))

heißt Turingkombinator.

Beh.: Der Turing-Kombinator Θ ist ein Fixpunktkombinator.

Beweis: 5

Teil 1: Offensichtlich ist Θ ein Kombinator.

Teil 2: z. Z.: Θf ⇒∗ f (Θ f)

Sei Θ0 := (λx. λy. y (x x y)). Dann gilt:

Θ f = ((λx. λy. y (x x y)) Θ0) f

⇒β (λy.y (Θ0 Θ0 y)) f

⇒β f (Θ0Θ0f)

= f (Θ f)

�
4Quelle: Vorlesung WS 2013/2014, Folie 175
5Quelle: Übungsblatt 6, WS 2013/2014

35 4. λ-KALKÜL

4.7 Literatur

• http://c2.com/cgi/wiki?FreeVariable

• http://www.lambda-bound.com/book/lambdacalc/
node9.html

http://c2.com/cgi/wiki?FreeVariable
http://www.lambda-bound.com/book/lambdacalc/node9.html
http://www.lambda-bound.com/book/lambdacalc/node9.html

5 Typinferenz

Definition 38 (Datentyp)
Ein Datentyp oder kurz Typ ist eine Menge von Werten, mit
denen eine Bedeutung verbunden ist.

Beispiel 29 (Datentypen)
• bool = { True,False }

• char = vgl. Seite 106

• intHaskell = [−229, 229 − 1] ∩ N

• intC90 = [−215 − 1, 215 − 1] ∩ N1

• float = siehe IEEE 754

• Funktionstypen, z. B. int→ int oder char→ int

Hinweis: Typen sind unabhängig von ihrer Repräsentation. So
kann ein bool durch ein einzelnes Bit repräsentiert werden oder
eine Bitfolge zugrunde liegen.

Auf Typen sind Operationen definiert. So kann man auf numeri-
schen Typen eine Addition (+), eine Subtraktion (-), eine Multi-
plikation (*) und eine Division (/) definieren.
Ich schreibe hier bewusst „eine“ Multiplikation und nicht „die“ Mul-
tiplikation, da es verschiedene Möglichkeiten gibt auf Gleitpunkt-
zahlen Multiplikationen zu definieren. So kann man beispielsweise
die Assoziativität unterschiedlich wählen.
Beispiel 30 (Multiplikation ist nicht assoziativ)

In Python 3 ist die Multiplikation linksassoziativ. Also:

1siehe ISO/IEC 9899:TC2, Kapitel 7.10: Sizes of integer types <limits.h>

38

>>> 0.1*0.1*0.3
0.0030000000000000005
>>> (0.1*0.1)*0.3
0.0030000000000000005
>>> 0.1*(0.1*0.3)
0.003

Definition 39 (Typvariable)
Eine Typvariable repräsentiert einen Typen.

Hinweis: Üblicherweise werden kleine griechische Buchstaben (α, β, τ1, τ2, . . .)
als Typvariablen gewählt.

Genau wie Typen bestimmte Operationen haben, die auf ihnen
definiert sind, kann man sagen, dass Operationen bestimmte Typen,
auf die diese Anwendbar sind. So ist

α+ β

für numerische α und β wohldefiniert, auch wenn α und β boolesch
sind oder beides Strings sind könnte das Sinn machen. Es macht
jedoch z. B. keinen Sinn, wenn α ein String ist und β boolesch.

Die Menge aller Operationen, die auf die Variablen angewendet
werden, nennt man Typkontext. Dieser wird üblicherweise mit Γ
bezeichnet.

Das Ableiten einer Typisierung für einen Ausdruck nennt man
Typinferenz. Man schreibt: ` (λx.2) : α→ int.

Bei solchen Ableitungen sind häufig viele Typen möglich. So kann
der Ausdruck

λx.2

Mit folgenderweise typisiert werden:

• ` (λx.2) : bool→ int

• ` (λx.2) : int→ int

39 5. TYPINFERENZ

• ` (λx.2) : Char→ int

• ` (λx.2) : α→ int

In der letzten Typisierung stellt α einen beliebigen Typen dar.

5.1 Typsystem

Definition 40 (Typsystem Γ ` t : T 2)
Ein Typkontext Γ ordnet jeder freien Variable x einen Typ
Γ(x) durch folgende Regeln zu:

CONST :
c ∈ Const
Γ ` c : τc

VAR :
Γ(x) = τ

Γ ` c : τ

ABS :
Γ, x : τ1 ` t : τ2

Γ ` λx.t : τ1 → τ2

APP :
Γ ` t1, τ2τ Γ ` t2 : τ2

Γ ` t1t2 : τ

Dabei ist der lange Strich kein Bruchstrich, sondern ein Symbol
der Logik das als Schlussstrich bezeichnet wird. Dabei ist der
Zähler als Voraussetzung und der Nenner als Schlussfolgerung zu
verstehen.

Definition 41 (Typsubstituition)
Eine Typsubstituition ist eine endliche Abbildung von Typva-
riablen auf Typen.

2WS 2013 / 2014, Folie 192

5.2. LET-POLYMORPHISMUS 40

Für eine Menge von Typsubsitutionen wird überlicherweise σ als
Symbol verwendet. Man schreibt also beispielsweise:

σ = [α1	bool, α2	α1 → α1]

Definition 42 (Lösung eines Typkontextes)
Sei t eine beliebige freie Variable, τ = τ(t) ein beliebiger Typ
σ eine Menge von Typsubstitutionen und Γ ein Typkontext.

(σ, τ) heißt eine Lösung für (Γ, t), falls gilt:

σΓ ` t : τ

Beispiel 31 (Typisierungsregel)
Das Folgende nennt man eine Typisierungsregel:3

Γ ` b : bool Γ ` x : τ Γ ` y : τ

Γ ` if b then x else y : τ

5.2 Let-Polymorphismus

4Das Programm P = let f = λx. 2 in f (f true) ist eine poly-
morphe Hilfsfunktion, da sie beliebige Werte auf 2 Abbildet. Auch
solche Ausdrücke sollen typisierbar sein.

Die Kodierung
letx = t1 in t2

ist bedeutungsgleich mit

(λx. t2)t1

Das Problem ist, dass

P = λf. f(f true) (λx. 2)

3Klausur WS 2010 / 2011
4WS 2013 / 2014, Folie 205ff

41 5. TYPINFERENZ

so nicht typisierbar ist, da in

ABS
f : τf ` f (f true) : . . .

` λf. f (f true) : . . .

müsste
τf = bool→ int

und zugleich
τf = int→ int

in den Typkontext eingetragen werden. Dies ist jedoch nicht mög-
lich. Stattdessen wird

letx = t1 in t2

als neues Konstrukt im λ-Kalkül erlaubt.

Definition 43 (Typschema)
Ein Typ der Gestalt ∀α1. ∀α2. . . . ∀αn.τ heißt Typschema.
Es bindet freie Variablen α1, . . . , αn in τ .

Beispiel 32 (Typschema)
Das Typschema ∀α. α → α steht für unendlich viele Typen
und insbesondere für folgende:

1) int → int, bool → bool, . . .

2) (int → int) → (int → int), . . .

3) . . .

Definition 44 (Typschemainstanziierung)
Sei τ2 ein Nicht-Schema-Typ. Dann heißt der Typ

τ [α 7→ τ2]

eine Instanziierung vom Typschema ∀α. τ und man schreibt:

(∀α. τ) � τ [α 7→ τ2]

Beispiel 33 (Typschemainstanziierung)
Folgendes sind Beispiele für Typschemainstanziierungen:

5.3. BEISPIELE 42

1) ∀α. α→ α � int→ int

2) ∀α. α→ α � (int→ int)→ (int→ int)

3) int � int

Folgendes sind keine Typschemainstanziierungen:

1) α→ α � int→ int

2) α � bool

3) ∀α. α→ α � bool

Zu Typschemata gibt es angepasste Regeln:

VAR
Γ(x) = τ ′ τ ′ � τ

γ ` x : τ

und

ABS
Γ, x : τ1 ` t : τ2 τ1 kein Typschema

Γ ` λx.t : τ1 → τ2

Folie 208ff

5.3 Beispiele

Im Folgenden wird die Typinferenz für einige λ-Funktionen durch-
geführt.

5.3.1 λx. λy. x y5

Gesucht ist ein Typ τ , sodass sich ` λx. λy. x y : τ mit einem
Ableitungsbaum nachweisen lässt. Es gibt mehrere solche τ , aber

5Lösung von Übungsblatt 6, WS 2013 / 2014

43 5. TYPINFERENZ

wir suchen das allgemeinste. Die Regeln unseres Typsystems (siehe
Seite 39) sind syntaxgerichtet, d. h. zu jedem λ-(Teil)-Term gibt
es genau eine passende Regel.

Für λx. λy. x y wissen wir also schon, dass jeder Ableitungsbaum
von folgender Gestalt ist. Dabei sind αi Platzhalter:

ABS
ABS

ABS
VAR (x:α2,y:α4) (x)=α6

x:α2,y:α4`x:α6
VAR (x:α2,y:α4) (y)=α7

x:α2,y:α4`y:α7

x : α2, y : α4 ` x y : α5
x:α2`λy. x y : α3

` λx. λ y. x y : α1

Das was wir haben wollen steht am Ende, also unter dem unterstem
Schlussstrich. Dann bedeutet die letzte Zeile

` λx. λ y. x y : α1

Ohne (weitere) Voraussetzungen lässt sich sagen, dass der Term

λx. λ y. x y

vom Typ α1 ist.

Links der Schlussstriche steht jeweils die Regel, die wir anwenden.
Also entweder ABS, VAR, CONST oder APP.

Nun gehen wir eine Zeile höher:

x : α2 ` λy. x y : α3

Diese Zeile ist so zu lesen: Mit der Voraussetzung, dass x vom Typ
α2 ist, lässt sich syntaktisch Folgern, dass der Term λy. x y vom
Typ α3 ist.

Hinweis: Alles was in Zeile i dem ` steht, steht auch in jedem
„Nenner“ in Zeile j < i vor jedem einzelnen `.

5.3. BEISPIELE 44

Folgende Typgleichungen C lassen sich aus dem Ableitungsbaum
ablesen:

C = { α1 = α2 → α3 }
∪ { α3 = α4 → α5 }
∪ { α6 = α7 → α5 }
∪ { α6 = α2 }
∪ { α7 = α4 }

Diese Bedingungen (engl. Constraints) haben eine allgemeinste
Lösung mit einem allgemeinsten Unifikator σC :

σC = [α1	(α4 → α5)→ α4 → α5,

α2	α4 → α5,

α3	α4 → α5,

α6	α4 → α5,

α7	α4]

Hinweis: Es gilt (α4 → α5)→ α4 → α5 = (α4 → α5)→ (α4 → α5)

Also gilt: Der allgemeinste Typ von λx. λy. x y ist σC(α1) =
(α4 → α5)→ α4 → α5.

5.3.2 Selbstapplikation6

Im Folgenden wird eine Typinferenz für die Selbstapplikation, also

λx. x x

6Lösung von Übungsblatt 6, WS 2013 / 2014

45 5. TYPINFERENZ

durchgeführt.

Zuerst erstellt man den Ableitungsbaum:

ABS
APP

VAR
(x:α2) (x)=α5
x:α2`x:α5

VAR
(x:α2) (x)=α4
x:α2`x:α4

x:α2`x x : α3

` λx. x x : α1

Dies ergibt die Constraint-Menge

C = { α1 = α2 → α3 } ABS-Regel (5.1)
∪ { α5 = α4 → α3 } APP-Regel (5.2)
∪ { α5 = α2 } Linke VAR-Regel (5.3)
∪ { α4 = α2 } Rechte VAR-Regel (5.4)

Aus Gleichung (5.3) und Gleichung (5.4) folgt:

α2 = α4 = α5

Also lässt sich Gleichung (5.2) umformulieren:

α2 = α2 → α3

Offensichtlich ist diese Bedingung nicht erfüllbar. Daher ist ist die
Selbstapplikation nicht typisierbar. Dies würde im Unifikationsal-
gorithmus (vgl. Algorithmus 1) durch den occur check festgestellt
werden.

6 Parallelität

Systeme mit mehreren Prozessoren sind heutzutage weit verbreitet.
Inzwischen sind sowohl in Desktop-PCs als auch Laptops, Tablets
und Smartphones „Multicore-CPUs“ verbaut. Daher sollten auch
Programmierer in der Lage sein, Programme für mehrere Kerne
zu entwickeln.

Parallelverarbeitung kann auf mehreren Ebenen statt finden:

• Bit-Ebene: Werden auf 32-Bit Computern long long,
also 64-Bit Zahlen, addiert, so werden parallel zwei 32-Bit
Additionen durchgeführt und das carry-flag benutzt.

• Anweisungs-Ebene: Die Ausführung von Anweisungen in
der CPU besteht aus mehreren Phasen (Instruction Fetch,
Decode, Execution, Write-Back). Besteht zwischen aufeinan-
derfolgenden Anweisungen keine Abhängigkeit, so kann der
Instruction Fetch-Teil einer zweiten Anweisung parallel zum
Decode-Teil einer ersten Anweisung geschehen. Das nennt
man Pipelining. Man spricht hier auch von Instruction Level
Parallelism (ILP)

• Datenebene: Es kommt immer wieder vor, dass man in
Schleifen eine Operation für jedes Objekt eines Contaitainers
(z. B. einer Liste) durchführen muss. Zwischen den Anweisun-
gen verschiedener Schleifendurchläufe besteht dann eventuell
keine Abhängigkeit. Dann können alle Schleifenaufrufe par-
allel durchgeführt werden.

• Verarbeitungsebene: Verschiedene Programme sind unab-
hängig von einander.

6.1. ARCHITEKTUREN 48

Gerade bei dem letzten Punkt ist zu beachten, dass echt parallele
Ausführung nicht mit verzahnter Ausführung zu verwechseln ist.
Auch bei Systemen mit nur einer CPU und einem Kern kann
man gleichzeitig den Browser nutzen und einen Film über eine
Multimedia-Anwendung laufen lassen. Dabei wechselt der Schedu-
ler sehr schnell zwischen den verschiedenen Anwendungen, sodass
es sich so anfühlt, als würden die Programme echt parallel ausge-
führt werden.

Weitere Informationen zu Pipelining gibt es in der Vorlesung „Rech-
nerorganisation“ bzw. „Digitaltechnik und Entwurfsverfahren“ (zu
der auch ein exzellentes Skript angeboten wird). Informationen
über Schedulung werden in der Vorlesung „Betriebssysteme“ ver-
mittelt.

6.1 Architekturen

Es gibt zwei Ansätze, wie man Parallelrechner entwickeln kann:

• Gemeinsamer Speicher: In diesem Fall kann jeder Pro-
zessor jede Speicherzelle ansprechen. Dies ist bei Multicore-
CPUs der Fall.

• Verteilter Speicher: Es ist auch möglich, dass jeder Pro-
zessor seinen eigenen Speicher hat, der nur ihm zugänglich
ist. In diesem Fall schicken die Prozessoren Nachrichten (engl.

message passing). Diese Technik wird in Clustern eingesetzt.

Eine weitere Art, wie man Parallelverarbeitung klassifizieren kann,
ist anhand der verwendeten Architektur. Der der üblichen, sequen-
tiellen Art der Programmierung, bei der jeder Befehl nach einan-
der ausgeführt wird, liegt die sog. Von-Neumann-Architektur
zugrunde. Bei der Programmierung von parallel laufenden Anwen-
dungen kann man das PRAM-Modell (kurz für Parallel Random
Access Machine) zugrunde legen. In diesem Modell geht man von ei-

49 6. PARALLELITÄT

ner beliebigen Anahl an Prozessoren aus, die über lokalen Speicher
verfügen und synchronen Zugriff auf einen gemeinsamen Speicher
haben.

Anhand der Flynn’schen Klassifikation können Rechnerarchi-
tekturen in vier Kategorien unterteilt werden:

Single Instruction Multiple Instruction
Single Data SISD MISD
Multiple Data SIMD MIMD

Dabei wird die Von-Neumann-Architektur als SISD-Architektur
und die PRAM-Architektur als SIMD-Architektur klassifiziert. Es
ist so zu verstehen, dass ein einzelner Befehl auf verschiedene
Daten angewendet wird.

Bei heutigen Multicore-Rechnern liegt MIMD vor.

MISD ist nicht so richtig sinnvoll.

Definition 45 (Nick’s Class)
Nick’s Class (in Zeichen: NC) ist die Klasse aller Probleme,
die im PRAM-Modell in logarithmischer Laufzeit lösbar sind.

Beispiel 34 (Nick’s Class)
Folgende Probleme sind in NC:

1) Die Addition, Multiplikation und Division von Ganzzah-
len,

2) Matrixmultiplikation, die Berechnung von Determinan-
ten und Inversen,

3) ausschließlich Probleme aus P, also: NC ⊆ P

Es ist nicht klar, ob P ⊆ NC gilt. Bisher wurde also noch kein
Problem P ∈ P gefunden mit P /∈ NC.

6.2. PROZESSKOMMUNIKATION 50

6.2 Prozesskommunikation

Die Prozesskommunikation wird durch einige Probleme erschwert:

Definition 46 (Wettlaufsituation)
Ist das Ergebnis einer Operation vom zeitlichen Ablauf der
Einzeloperationen abhängig, so liegt eine Wettlaufsituation
vor.

Beispiel 35 (Wettlaufsituation)
Angenommen, man hat ein Bankkonto mit einem Stand von
2000 Euro. Auf dieses Konto wird am Monatsende ein Ge-
halt von 800 Euro eingezahlt und die Miete von 600 Euro
abgehoben. Nun stelle man sich folgende beiden Szenarien vor:

t Prozess 1: Lohn Prozess 2: Miete Kontostand
1 Lade Kontostand Lade Kontostand 2000
2 Addiere Lohn 2000
3 Speichere Kontostand 2800
4 Subtrahiere Miete 2800
5 Speichere Kontostand 1400

Dieses Problem existiert nicht nur bei echt parallelen Anwen-
dungen, sondern auch bei zeitlich verzahnten Anwendungen.

Definition 47 (Semaphore)
Eine Semaphore S = (c, r, f, L) ist eine Datenstruktur, die
aus einer Ganzzahl, den beiden atomaren Operationen r =
„reservieren probieren“ und f = „freigeben“ sowie einer Liste
L besteht.

r gibt entweder Wahr oder Falsch zurück um zu zeigen, ob
das reservieren erfolgreich war. Im Erfolgsfall wird c um 1
verringert. Es wird genau dann Wahr zurück gegeben, wenn c
positiv ist. Wenn Wahr zurückgegeben wird, dann wird das
aufrufende Objekt der Liste hinzugefügt.

f kann nur von Objekten aufgerufen werden, die in L sind.
Wird f von o ∈ L aufgerufen, wird o aus L entfernt und c um

51 6. PARALLELITÄT

eins erhöht.

Semaphoren können eingesetzt werden um Wettlaufsituationen zu
verhindern.
Definition 48 (Monitor)

Ein Monitor M = (m, c) ist ein Tupel, wobei m ein Mutex
und c eine Bedingung ist.

Monitore können mit einer Semaphore, bei der c = 1 ist, imple-
mentiert werden. Monitore sorgen dafür, dass auf die Methoden
der Objekte, die sie repräsentieren, zu jedem Zeitpunkt nur ein
mal ausgeführt werden können. Sie sorgen also für gegenseitigen
Ausschluss.
Beispiel 36 (Monitor)

Folgendes Beispiel von https://en.wikipedia.org/w/
index.php?title=Monitor_(synchronization)&oldid=
596007585 verdeutlicht den Nutzen eines Monitors:

monitor class Account {
private int balance := 0
invariant balance >= 0

public method boolean withdraw(int amount)
precondition amount >= 0

{
if balance < amount:

return false
else:

balance := balance - amount
return true

}

public method deposit(int amount)
precondition amount >= 0

{
balance := balance + amount

https://en.wikipedia.org/w/index.php?title=Monitor_(synchronization)&oldid=596007585
https://en.wikipedia.org/w/index.php?title=Monitor_(synchronization)&oldid=596007585
https://en.wikipedia.org/w/index.php?title=Monitor_(synchronization)&oldid=596007585

6.3. PARALLELITÄT IN JAVA 52

}
}

6.3 Parallelität in Java

Java unterstützt mit der Klasse Thread und dem Interface Runnable
Parallelität.

Interessante Stichwörder sind noch:

• ThreadPool

• Interface Executor

• Interface Future<V>

• Interface Callable<V>

6.4 Message Passing Modell

Das Message Passing Modell ist eine Art, wie man parallel lau-
fende Programme schreiben kann. Dabei tauschen die Prozesse
Nachrichten aus um die Arbeit zu verteilen.

Ein wichtiges Konzept ist hierbei der Kommunikator . Ein Kom-
munikator definiert eine Gruppe von Prozessen, die mit einander
kommunizieren können. In dieser Gruppe von Prozessen hat je-
der Prozesse einen eindeutigen Rang , den sie zur Kommunikation
nutzen.

Die Grundlage der Kommunikation bilden send und receive Opera-
tionen. Prozesse schicken Nachrichten an andere Prozesse, indem
sie den eindeutigen Rang und einen tag angeben, der die Nachricht
identifiziert.

Wenn ein Prozess mit einem einzigen weiteren Prozess kommuni-
ziert, wird dies Punkt-zu-Punkt-Kommunikation genannt.

53 6. PARALLELITÄT

Wenn ein Prozess allen anderen eine Nachricht schickt, nennt man
das Broadcast .

7 Java

Im Folgenden wird in aller Kürze erklärt, wie man in Java Pro-
gramme schreibt, die auf mehreren Prozessoren laufen.

7.1 Thread, ThreadPool, Runnable und
ExecutorService

Interface Runnable
↼ java.lang.Thread

• Methods:

– void run(): When an object implementing interface
Runnable is used to create a thread, starting the thread
causes the object’s run method to be called in that
separately executing thread.

Class Thread
↼ java.lang.Thread

• implements Runnable

Class ThreadPoolExecutor
↼ java.util.concurrent.ThreadPoolExecutor

Beispiel 37 (ExecutorService, Future1)
public static void main(String[] args) throws

InterruptedException, ExecutionException {
ExecutorService pool =

Executors.newFixedThreadPool(4);

7.1. THREAD, THREADPOOL, RUNNABLE UND EXECUTORSERVICE 56

List<Future<String>> futures =
new ArrayList<Future<String>>();

for(int i = 0; i < 10; i++) {
futures.add(pool.submit(new StringTask(i)));

}

for(Future<String> future : futures){
String result = future.get();
System.out.println(result);

}

pool.shutdown();
}

Interface Callable<V>
↼ java.util.concurrent

• Parameter:

– V - the result type of method call()

• Ermöglicht die Rückgabe von Ergebnissen

Beispiel 38 (Callable2)
public final class StringTask implements Callable<String> {

int id;
public StringTask(int id) {

this.id = id;
}
public String call() {

return "Run " + id;
}

}

1WS 2013/2014, Kapitel 41, Folie 28
2WS 2013/2014, Kapitel 41, Folie 27

57 7. JAVA

7.2 Futures

„Ein Future (engl. ‚Zukunft‘) oder ein Promise (engl. ‚Versprechen‘)
bezeichnet in der Programmierung einen Platzhalter (Proxy) für ein
Ergebnis, das noch nicht bekannt ist, meist weil seine Berechnung
noch nicht abgeschlossen ist.“

Interface Future<V>
↼ java.util.concurrent

• Parameter:

– V: The result type returned by this Future’s get method

• Erlauben die Rückgabe von Ergebnissen

Beispiel:

Beispiel 39 (Runnable, ExecutorService, ThreadPool3)
public final class StringTask implements Runnable {

int id;
public StringTask(int id) {

this.id = id;
}
public void run() {

// do calculation
}

}

ExecutorService pool =
Executors.newFixedThreadPool(4);

for(int i = 0; i < 10; i++){
pool.execute(new StringTask(i));

}
pool.shutdown();
executor.awaitTermination();

3WS 2013/2014, Kapitel 41, Folie 26

7.3. BEISPIELE 58

7.3 Beispiele

Die folgenden Quelltexte wurden von Axel Busch erstellt.

Das folgende Programm läuft in ca. 4min und 36 s Sekunden auf
einem Kern einer Intel Pentium P6200 CPU:

SingleCorePrimeTest.java
1 /* @author Axel Busch */
2 public class SingleCorePrimeTest {
3

4 public static boolean isPrime(int n) {
5 if (n < 2) {
6 return false;
7 }
8

9 for (int i = 2; i <= Math.sqrt(n); ++i) {
10 if (n % i == 0) {
11 return false;
12 }
13 }
14 return true;
15 }
16

17 public static void main(String[] args) {
18 int target = 10_000_000;
19 long start = System.currentTimeMillis();
20 for (int i = 2; i <= target; ++i) {
21 isPrime(i);
22 }
23 long end = System.currentTimeMillis();
24 System.out.println(end-start);
25 }
26

27 }

Der folgende Code Testet das ganze mit mehreren Kernen auf einer

59 7. JAVA

Intel Pentium P6200 CPU:

MultipleCorePrimeTest.java
1 import java.util.ArrayList;
2 import java.util.List;
3 import java.util.concurrent.Callable;
4 import java.util.concurrent.ExecutionException;
5 import java.util.concurrent.ExecutorService;
6 import java.util.concurrent.Executors;
7 import java.util.concurrent.FutureTask;
8 import java.util.concurrent.TimeUnit;
9 import java.util.concurrent.TimeoutException;

10

11 public class MultipleCorePrimeTest {
12 public static void count(int target, int threads)
13 throws InterruptedException, TimeoutException {
14 ExecutorService executor =
15 Executors.newFixedThreadPool(threads);
16 List<FutureTask<Integer>> taskList =
17 new ArrayList<FutureTask<Integer>>();
18 long startTime = System.currentTimeMillis();
19

20 for (int i = 1; i <= threads; ++i) {
21 int ilen = target / threads;
22

23 /* Test following intervall for primes */
24 final int start = (i - 1) * ilen;
25 final int end = (i != threads)
26 ? i * ilen - 1
27 : target;
28 FutureTask<Integer> task =
29 new FutureTask<Integer>(
30 new Callable<Integer>() {
31 @Override
32 public Integer call() {
33 int count = 0;

7.3. BEISPIELE 60

34 for (int i = start; i <= end;
35 ++i) {
36 if (SingleCorePrimeTest.
37 isPrime(i))
38 ++count;
39 }
40 return count;
41 }
42 });
43 taskList.add(task);
44 executor.submit(task);
45 }
46

47 executor.shutdown();
48 if (!executor.awaitTermination(10,
49 TimeUnit.MINUTES)) {
50 throw new TimeoutException();
51 }
52 final long endTime = System.currentTimeMillis();
53 int count = 0;
54 for (int i = 0; i < taskList.size(); ++i) {
55 try {
56 count += taskList.get(i).get();
57 } catch (InterruptedException e) {
58 e.printStackTrace();
59 } catch (ExecutionException e) {
60 e.printStackTrace();
61 }
62 }
63 System.out.println(threads + " thread: "
64 + (endTime - startTime) + " ms");
65 }
66

67 public static void main(String[] args) {
68 final int target = 100_000_000;
69 try {

61 7. JAVA

70 count(target, 1);
71 count(target, 2);
72 count(target, 4);
73 count(target, 8);
74 } catch (Exception e) {
75 e.printStackTrace();
76 }
77 }
78 }

• 1 thread: 4min 38s

• 2 threads: 3min 14s

• 4 threads: 2min 44s

• 8 threads: 2min 41s

7.4 Literatur

• Java ist auch eine Insel: Kapitel 14 - Threads und nebenläu-
fige Programmierung

• vogella.com: Java concurrency (multi-threading) - Tutorial

• Links zur offiziellen Java 8 Dokumentation:

– ThreadPoolExecutor

– Runnable

– Thread

– Callable

– Future

http://openbook.galileocomputing.de/javainsel9/javainsel_14_004.htm
http://www.vogella.com/tutorials/JavaConcurrency/article.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html

8 Haskell

Haskell ist eine funktionale Programmiersprache, die 1990 in Versi-
on 1.0 veröffentlicht wurde. Namensgeber ist Haskell Brooks Curry,
der die mathematischen Grundlagen der funktionalen Program-
mierung entwickelte.

Wichtige Konzepte sind:

1. Funktionen höherer Ordnung

2. anonyme Funktionen (sog. Lambda-Funktionen)

3. Pattern Matching

4. Unterversorgung

5. Typinferenz

Haskell kann mit „Glasgow Haskell Compiler“ mittels ghci inter-
pretiert und mittels

8.1 Erste Schritte

Haskell kann unter www.haskell.org/platform/ für alle Platt-
formen heruntergeladen werden. Unter Debian-Systemen ist das
Paket ghc bzw. haskell-platform relevant.

8.1.1 Hello World

Speichere folgenden Quelltext als hello-world.hs:

http://www.haskell.org/platform/

8.2. SYNTAX 64

hello-world.hs
1 main = putStrLn "Hello, World!"

Kompiliere ihn mit ghc -o hello hello-world.hs. Es wird
eine ausführbare Datei erzeugt.

Alternativ kann es direkt mit runghc hello-world.hs ausge-
führt werden.

8.2 Syntax

8.2.1 Klammern und Funktionsdeklaration

Haskell verzichtet an vielen Stellen auf Klammern. So werden
im Folgenden die Funktionen f(x) := sinx

x und g(x) := x · f(x2)
definiert:

f :: Floating a => a -> a
f x = sin x / x

g :: Floating a => a -> a
g x = x * (f (x*x))

Die Funktionsdeklarationen mit den Typen sind nicht notwendig,
da die Typen aus den benutzten Funktionen abgeleitet werden.

Zu lesen ist die Deklaration wie folgt:

[Funktionsname] :: [Typendefinitionen] =>
Signatur

T. Def. Die Funktion f benutzt als Parameter bzw. Rückgabewert
einen Typen. Diesen Typen nennen wir a und er ist vom
Typ Floating. Auch b, wasweisich oder etwas ähnliches
wäre ok.

Signatur Die Signatur liest man am einfachsten von hinten:

65 8. HASKELL

– f bildet auf einen Wert vom Typ a ab und

– f hat genau einen Parameter a

Gibt es Funktionsdeklarationen, die bis auf Wechsel des Namens
und der Reihenfolge äquivalent sind?

8.2.2 if / else

Das folgende Beispiel definiert den Binomialkoeffizienten (vgl. Bei-
spiel 13.3):

binom :: (Eq a, Num a, Num a1) => a -> a -> a1
binom n k =

if (k==0) || (k==n)
then 1
else binom (n-1) (k-1) + binom (n-1) k

Das könnte man auch mit sog. Guards machen:

binom :: (Eq a, Num a, Num a1) => a -> a -> a1
binom n k

| (k==0) || (k==n) = 1
| otherwise = binom (n-1) (k-1)

+ binom (n-1) k

8.2.3 Rekursion

Die Fakultätsfunktion wurde wie folgt implementiert:

fak(n) :=

{
1 falls n = 0

n · fak(n) sonst

fak :: (Eq a, Num a) => a -> a
fak n = if (n==0) then 1 else n * fak (n-1)

8.2. SYNTAX 66

Diese Implementierung benötigt O(n) rekursive Aufrufe und hat

einen Speicherverbrauch von O(n). Durch einen Akkumulator
kann dies verhindert werden:

fakAcc :: (Eq a, Num a) => a -> a -> a
fakAcc n acc = if (n==0)

then acc
else fakAcc (n-1) (n*acc)

fak :: (Eq a, Num a) => a -> a
fak n = fakAcc n 1

8.2.4 Listen

• [] erzeugt die leere Liste,

• [1,2,3] erzeugt eine Liste mit den Elementen 1, 2, 3

• : wird cons genannt und ist der Listenkonstruktor.

• list !! i gibt das i-te Element von list zurück.

• head list gibt den Kopf von list zurück, tail list
den Rest:

Prelude> head []

*** Exception: Prelude.head: empty list
Prelude> tail []

*** Exception: Prelude.tail: empty list
Prelude> tail [1]
[]
Prelude> head [1]
1
Prelude> null []
True
Prelude> null [[]]
False

67 8. HASKELL

• last [1,9,1,3] gibt 3 zurück.

• length list gibt die Anzahl der Elemente in list zu-
rück.

• maximum [1,9,1,3] gibt 9 zurück (analog: minimum).

• null list prüft, ob list leer ist.

• take 3 [1,2,3,4,5] gibt [1,2,3] zurück.

• drop 3 [1,2,3,4,5] gibt [4,5] zurück.

• reverse [1,9,1,3] gibt [3,1,9,1] zurück.

• elem item list gibt zurück, ob sich item in list be-
findet.

Beispiel in der interaktiven Konsole

Prelude> let mylist = [1,2,3,4,5,6]
Prelude> head mylist
1
Prelude> tail mylist
[2,3,4,5,6]
Prelude> take 3 mylist
[1,2,3]
Prelude> drop 2 mylist
[3,4,5,6]
Prelude> mylist
[1,2,3,4,5,6]
Prelude> mylist ++ sndList
[1,2,3,4,5,6,9,8,7]

List-Comprehensions

List-Comprehensions sind kurzschreibweisen für Listen, die sich
an der Mengenschreibweise in der Mathematik orientieren. So

8.2. SYNTAX 68

entspricht die Menge

myList = { 1, 2, 3, 4, 5, 6 }
test = { x ∈ myList | x > 2 }

in etwa folgendem Haskell-Code:

Prelude> let mylist = [1,2,3,4,5,6]
Prelude> let test = [x | x <- mylist, x>2]
Prelude> test
[3,4,5,6]

Beispiel 40 (List-Comprehension)
Das folgende Beispiel zeigt, wie man mit List-Comprehensions
die unendliche Liste aller pythagoreischen Tripels erstellen
kann:

triples :: [(Integer, Integer, Integer)]
triples = [(x,y,z) | z <-[1..],

x <- [1..z],
y <- [1..z],
z^2 == x^2 + y^2

]

8.2.5 Strings

• Strings sind Listen von Zeichen:
tail ÄBCDEF" gibt "BCDEF" zurück.

8.2.6 Let und where

>>> let f = 3; g = f where f = 7
>>> f
3
>>> g
7

69 8. HASKELL

8.2.7 Funktionskomposition

In Haskell funktioniert Funktionskomposition mit einem Punkt:

f x = x * x
g x = x - 1
h = (f . g)
i = (g . f)

Dabei ergibt h (-3) in der mathematischen Notation

(g ◦ f)(−3) = f(g(−3)) = f(−4) = 16

und i (-3) ergibt

(f ◦ g)(−3) = g(f(−3)) = g(9) = 8

Es ist also anzumerken, dass die Reihenfolge nicht der mathemati-
schen Konvention entspricht.

8.2.8 $ (Dollar-Zeichen) und ++

Das Dollar-Zeichen $ dient in Haskell dazu Klammern zu vermeiden.
So sind die folgenden Zeilen äquivalent:

putStrLn (show $ 1 - 2)
putStrLn $ show (1 - 2)
putStrLn $ show $ 1 - 2

Das doppelte Plus (++) wird verwendet um Listen mit einander
zu verbinden.

8.3. TYPEN 70

UND ODER Wahr Falsch
&& || True False

GLEICH UNGLEICH NICHT
== /= not

Tabelle 8.1: Logische Operatoren in Haskell

8.2.9 Logische Operatoren

8.3 Typen

8.3.1 Standard-Typen

Haskell kennt einige Basis-Typen:

• Int: Ganze Zahlen. Der Zahlenbereich kann je nach Imple-
mentierung variieren, aber der Haskell-Standart garantiert,
dass das Intervall [−229, 229 − 1] abgedeckt wird.

• Integer: beliebig große ganze Zahlen

• Float: Fließkommazahlen

• Double: Fließkommazahlen mit doppelter Präzision

• Bool: Wahrheitswerte

• Char: Unicode-Zeichen

Des weiteren gibt es einige strukturierte Typen:

• Listen: z. B. [1,2,3]

• Tupel: z. B. (1,’a’,2)

• Brüche (Fractional, RealFrac)

71 8. HASKELL

• Summen-Typen: Typen mit mehreren möglichen Repräsen-
tationen

8.3.2 Typinferenz

In Haskell werden Typen aus den Operationen geschlossfolgert.
Dieses Schlussfolgern der Typen, die nicht explizit angegeben
werden müssen, nennt man Typinferent.

Haskell kennt die Typen aus Abb. 8.1.

Ein paar Beispiele zur Typinferenz:

Prelude> let x = \x -> x*x
Prelude> :t x
x :: Integer -> Integer
Prelude> x(2)
4
Prelude> x(2.2)
<interactive>:6:3:

No instance for (Fractional Integer)
arising from the literal ‘2.2’

Possible fix: add an instance declaration for
(Fractional Integer)

In the first argument of ‘x’, namely ‘(2.2)’
In the expression: x (2.2)
In an equation for ‘it’: it = x (2.2)

Prelude> let mult = \x y->x*y
Prelude> mult(2,5)
<interactive>:9:5:

Couldn’t match expected type ‘Integer’ with
actual type ‘(t0, t1)’

In the first argument of ‘mult’, namely ‘(2, 5)’
In the expression: mult (2, 5)

8.3. TYPEN 72

In an equation for ‘it’: it = mult (2, 5)
Prelude> mult 2 5
10
Prelude> :t mult
mult :: Integer -> Integer -> Integer

Prelude> let concat = \x y -> x ++ y
Prelude> concat [1,2,3] [3,2,1]
[1,2,3,3,2,1]
Prelude> :t concat
concat :: [a] -> [a] -> [a]

Eq
All except
IO, (->)

Show
All except
IO, (->)

Read
All except
IO, (->)

Ord
All except IO,
(->), IOError

Num
Int, Integer,
Float, Double

Bounded
Int, Char,

Bool, (), Or-
dering, tuples

Enum
(), Bool, Char, Or-
dering, Int, Integer,

Float, Double

Real
Int, Integer,
Float, Double

Fractional
Float, Double

Integral
Int, Integer

RealFrac
Float, Double

Floating
Float, Double

Monad
IO, (), Maybe

RealFloat
Float, Double

MonadPlus
IO, (), Maybe

Functor
IO, (), Maybe

Abbildung 8.1: Hierarchie der Haskell Standardklassen

73 8. HASKELL

8.3.3 type

Mit type können Typsynonyme erstellt werden:

type Prename = String
type Age = Double
type Person = (Prename, Age)
type Friends = [Person]
type Polynom = [Double]

8.3.4 data

Mit dem Schlüsselwort data können algebraische Datentypen
erzeugt werden:

data Bool = False | True
data Color = Red | Green | Blue | Indigo | Violet
data Tree a = Leaf a | Branch (Tree a) (Tree a)
data Point = Point Float Float deriving (Show)
data Tree t = Node t [Tree t]

8.4 Lazy Evaluation

Haskell wertet Ausdrücke nur aus, wenn es nötig ist.

Beispiel 41 (Lazy Evaluation)
Obwohl der folgende Ausdruck einen Teilausdruck hat, der
einen Fehler zurückgeben würde, kann er aufgrund der Lazy
Evaluation zu 2 evaluiert werden:

lazy-evaluation.hs
1 g a b c
2 | c > 0 = b
3 | otherwise = a
4

8.5. BEISPIELE 74

5 main = do
6 print (g (1/0) 2 3)

8.5 Beispiele

8.5.1 Quicksort

qsort.hs
1 qsort [] = []
2 qsort (p:ps) = (qsort (filter (\x -> x<=p) ps))
3 ++ p:(qsort (filter (\x -> x> p) ps))

• Die leere Liste ergibt sortiert die leere Liste.

• Wähle das erste Element p als Pivotelement und teile die
restliche Liste ps in kleinere und gleiche sowie in größere
Elemente mit filter auf. Konkateniere diese beiden Listen
mit ++.

Durch das Ausnutzen von Unterversorgung lässt sich das ganze
sogar noch kürzer schreiben:

qsort.hs
1 qsort [] = []
2 qsort (p:ps) = (qsort (filter (<=p) ps))
3 ++ p:(qsort (filter (> p) ps))

8.5.2 Fibonacci

fibonacci.hs
1 fib n
2 | (n == 0) = 0

75 8. HASKELL

3 | (n == 1) = 1
4 | otherwise = fib (n - 1) + fib (n - 2)

fibonacci-akk.hs
1 fibAkk n n1 n2
2 | (n == 0) = n1
3 | (n == 1) = n2
4 | otherwise = fibAkk (n - 1) n2 (n1 + n2)
5 fib n = fibAkk n 0 1

fibonacci-zip.hs
1 fib = 0 : 1 : zipWith (+) fibs (tail fibs)

fibonacci-pattern-matching.hs
1 fib 0 = 0
2 fib 1 = 1
3 fib n = fib (n - 1) + fib (n - 2)

Die unendliche Liste alle Fibonacci-Zahlen, also der Fibonacci-
Stream wird wie folgt erzeugt:

fibonacci-stream.hs
1 fibs :: [Integer]
2 fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

8.5.3 Polynome

polynome.hs
1 type Polynom = [Double]
2

3 add :: Polynom -> Polynom -> Polynom
4 add a [] = a
5 add [] a = a

8.5. BEISPIELE 76

6 add (x:xs) (y:ys) = (x+y) : add xs ys
7

8 eval :: Polynom -> Double -> Double
9 eval [] x = 0

10 eval (p:ps) x = p + x * (eval ps x)
11 -- alternativ:
12 eval p x = foldr (\element rest ->element+x*rest) 0 p
13

14 deriv :: Polynom -> Polynom
15 deriv [] = []
16 deriv p = zipWith (*) [1..] (tail p)

8.5.4 Hirsch-Index

Parameter: Eine Liste L von Zahlen aus N
Rückgabe: max { n ∈ N | n ≤ ‖{ i ∈ L | i ≥ n } ‖ }

hirsch-index.hs
1 import Data.List --sort und reverse
2

3 hIndex :: (Num a, Ord a) => [a] -> a
4 hIndex l = helper (reverse (sort l)) 0
5 where helper [] acc = acc
6 helper (z:ls) acc
7 | z > acc = helper ls (acc + 1)
8 | otherwise = acc
9

10 -- Alternativ
11 hindex1 = length . takeWhile id .
12 zipWith (<=) [1..] . reverse . sort
13 hindex2 = length . takeWhile (\(i, n) -> n >= i) .
14 zip [1..] . reverse . sort

77 8. HASKELL

8.5.5 Lauflängencodierung

lauflaengencodierung.hs
1 splitWhen :: (a -> Bool) -> [a] -> ([a], [a])
2 splitWhen _ [] = ([], [])
3 splitWhen p (x:xs)
4 | p x = ([], x:xs)
5 | otherwise = let (ys, zs) = splitWhen p xs
6 in (x:ys, zs)
7 -- >>> splitWhen even [1,2,3]
8 -- ([1],[2,3])
9

10 group :: Eq a => [a] -> [[a]]
11 group [] = []
12 group (x:xs) = let (group1, rest) = splitWhen (/=x) xs
13 in (x:group1) : group rest
14

15 encode :: Eq a => [a] -> [(a, Int)]
16 encode xs = map (\x -> (head x, length x)) (group xs)
17

18 decode [] = []
19 decode ((x,n):xs) = replicate n x ++ decode xs
20 -- alternativ
21 decode = concat . (map (\(x,n)->replicate n x))

8.5.6 Intersections

intersect.hs
1 module Intersect where
2 intersect :: (Ord t) => [t] -> [t] -> [t]
3 intersect a [] = []
4 intersect [] a = []

8.5. BEISPIELE 78

5 intersect (x:xs) (y:ys)
6 | x == y = x : intersect xs ys
7 | x < y = intersect xs (y:ys)
8 | y > y = intersect (x:xs) ys
9

10 intersectAll :: (Ord t) => [[t]] -> [t]
11 intersectAll (l:ls) = (foldr intersect l) ls
12 intersectAll [] = undefined
13

14 multiples n = [n*k | k <- [1..]]
15 commonMultiples a b c =
16 intersectAll [multiples n | n <- [a,b,c]]

8.5.7 Funktionen höherer Ordnung

folds.hs
1 summer :: [Int] -> Int
2 summer = foldr (-) 0
3

4 summel :: [Int] -> Int
5 summel = foldl (-) 0
6

7 main :: IO ()
8 main = do
9 print (summer [1,2,3])

10 -- 0-(1-(2-3)) = 0-(1-(-1)) = 2
11 print (summel [1,2,3])
12 -- ((0-1)-2)-3 = -6

79 8. HASKELL

8.5.8 Chruch-Zahlen

church.hs
1 type Church t = (t -> t) -> t -> t
2

3 int2church :: Integer -> Church t
4 int2church 0 s z = z
5 int2church n s z = int2church (n - 1) s (s z)
6

7 church2int :: Church Integer -> Integer
8 church2int n = n (+1) 0

8.5.9 Trees

Einen Binärbaum kann man in Haskell so definieren:

data Tree a = Empty | Node a (Tree a) (Tree a)
deriving (Show)

Einen allgemeinen Baum so:

data Tree t = Node t[Tree t]

Hier ist t der polymorphe Typ des Baumes. t gibt also an welche
Elemente der Baum enthält.

Man kann auf einem solchen Baum auch eine Variante von map
und reduce definieren, also eine Funktion mapT, die eine weitere
Funktion f auf jeden Knoten anwendet:

mapT :: (t -> s) -> Tree t -> Tree s
mapT f (Node x ts) = Node (f x) (map (mapT f) ts)

reduceT :: (t -> t -> t) -> Tree t -> t
reduceT f (Node x ts) = foldl f x (map (reduceT f) ts)

8.5. BEISPIELE 80

8.5.10 Standard Prelude

Hier sind die Definitionen eininger wichtiger Funktionen:

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

zipWith :: (a->b->c) -> [a]->[b]->[c]
zipWith z (a:as) (b:bs)

= z a b : zipWith z as bs
zipWith _ _ _ = []

zip :: [a] -> [b] -> [(a,b)]
zip = zipWith (,)

unzip :: [(a,b)] -> ([a],[b])
unzip = foldr (\(a,b) ~(as,bs) -> (a:as,b:bs)) ([],[])

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

take :: Int -> [a] -> [a]
take n _ | n <= 0 = []
take _ [] = []

81 8. HASKELL

take n (x:xs) = x : take (n-1) xs

splitAt :: Int -> [a] -> ([a],[a])
splitAt n xs = (take n xs, drop n xs)

8.6 Weitere Informationen

• hackage.haskell.org/package/base-4.6.0.1: Re-
ferenz

• haskell.org/hoogle: Suchmaschine für das Haskell-Manual

• wiki.ubuntuusers.de/Haskell: Hinweise zur Installa-
tion von Haskell unter Ubuntu

http://hackage.haskell.org/package/base-4.6.0.1
http://www.haskell.org/hoogle/
http://wiki.ubuntuusers.de/Haskell

9 Prolog

Prolog ist eine Programmiersprache, die das logische Programmier-
paradigma befolgt.

Eine interaktive Prolog-Sitzung startet man mit swipl.

In Prolog definiert man Terme.

9.1 Erste Schritte

9.1.1 Hello World

Speichere folgenden Quelltext als hello-world.pl:

hello-world.hs
1 :- initialization(main).
2 main :- write(’Hello World!’), nl, halt.

Kompiliere ihn mit gplc hello-world.pl. Es wird eine aus-
führbare Datei erzeugt.

9.2 Syntax

In Prolog gibt es Prädikate, die Werte haben. Prädikate werden
immer klein geschrieben. So kann das Prädikat farbe mit den
Werten rot, gruen, blau, gelb - welche auch immer klein
geschrieben werden - wie folgt definiert werden:

9.2. SYNTAX 84

farbe(blau).
farbe(gelb).
farbe(gruen).
farbe(rot).

• Terme werden durch , mit einem logischem und verknüpft.

• Ungleichheit wird durch ¯ ausgedrückt.

So ist folgendes Prädikat nachbar(X, Y) genau dann wahr,
wenn X und Y Farben sind und X 6= Y gilt:

nachbar(X, Y) :- farbe(X), farbe(Y), X \= Y.

9.2.1 Arithmetik

Die Auswertung artihmetischer Ausdrücke muss in Prolog explizit
durch is durchgeführt werden:

?- X is 5-2*5.
X = -5.

Dabei müssen alle Variablen, die im Term rechts von is vorkom-
men, istanziiert sein:

?- X is 3^2.
X = 9.

?- Y is X*X.
ERROR: is/2: Arguments are not sufficiently
instantiated

?- X is X+1.
ERROR: is/2: Arguments are not sufficiently
instantiated

Arithmetische Ausdrücke können mit =:= , =\= , < , <= ,
> , >= verglichen werden.

85 9. PROLOG

Beispiel 42 (Arithmetik in Prolog1)
1) even(0).

even(X) :- X>0, X1 is X-1, odd(X1).

odd(1).
odd(X) :- X>1, X1 is X-1, even(X1).

2) fib(0,0).
fib(1,1).
fib(X,Y) :- X>1,

X1 is X-1, X2 is X-2,
fib(X1,Y1), fib(X2,Y2),
Y is Y1+Y2.

9.2.2 Listen

Das Atom [] ist die leere Liste.

Mit der Syntax [K|R] wird eine Liste in den Listekopf K und den
Rest der Liste R gesplitet:

?- [X|Y] = [1,2,3,4,5].
X = 1,
Y = [2, 3, 4, 5].

Einen Test member(X, Liste), der True zurückgibt wenn X
in Liste vorkommt, realisiert man wie folgt:

member(X,[X|R]).
member(X,[Y|R]) :- member(X,R).

1WS 2013 / 2014, Folie 237f

9.3. BEISPIELE 86

Eine Regel append(A, B, C), die die Listen A und B zusam-
menfügt und als Liste C speichert, kann wie folgt erstellt werden:

append([],L,L).
append([X|R],L,[X|T]) :- append(R,L,T).

Die erste Regel besagt, dass das Hinzufügen der leeren Liste zu
einer Liste L immer noch die Liste L ist.

Die zweite Regel besagt: Wenn die Liste R und L die Liste T
ergeben, dann ergibt die Liste, deren Kopf X ist und deren Rumpf
R ist zusammen mit der Liste L die Liste mit dem Kopf X und
dem Rumpf T.

Übergibt man append(X,Y,[1,2,3,4,5]), so werden durch
Reerfüllung alle Möglichkeiten durchgegangen, wie man die Liste
[1,2,3,4,5] splitten kann.

9.3 Beispiele

9.3.1 Humans

Erstelle folgende Datei:

human.pro
1 human(bob).
2 human(socrates).
3 human(antonio).

Kompiliere diese mit

$ swipl -c human.pro
% library(swi_hooks) compiled into pce_swi_hooks
% 0.00 sec, 2,224 bytes
% human.pro compiled 0.00 sec, 644 bytes
% /usr/lib/swi-prolog/library/listing compiled into
% prolog_listing 0.00 sec, 21,648 bytes

87 9. PROLOG

Dabei wird eine a.out Datei erzeugt, die man wie folgt nutzen
kann:

$./a.out
Welcome to SWI-Prolog (Multi-threaded, 32 bits, Version 5.10.4)
Copyright (c) 1990-2011 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free
software, and you are welcome to redistribute it under certain
conditions. Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?- human(socrates).
true.

9.3.2 Splits

splits.pl
1 splits(L, ([], L)).
2 splits([X|L], ([X|S], E)) :- splits(L, (S, E)).

Dieses skript soll man swipl -f test.pl aufrufen. Dann erhält
man:

? splits([1,2,3], Res).
Res = ([], [1,2,3]) ;
Res = ([1], [2,3]) ;
Res = ([1,2], [3]) ;
Res = ([1,2,3], []) ;
No

9.3.3 Delete

9.3. BEISPIELE 88

remove([(X,A)|L],X,[(X,ANew)|L]) :- A>0, ANew is A-1.
remove([X|L],Y,[X|L1]) :- remove(L,Y,L1).

9.3.4 Zebrarätsel

Folgendes Rätsel wurde von https://de.wikipedia.org/w/
index.php?title=Zebrar%C3%A4tsel&oldid=126585006
entnommen:

1. Es gibt fünf Häuser.

2. Der Engländer wohnt im roten Haus.

3. Der Spanier hat einen Hund.

4. Kaffee wird im grünen Haus getrunken.

5. Der Ukrainer trinkt Tee.

6. Das grüne Haus ist direkt rechts vom weißen Haus.

7. Der Raucher von Altem-Gold-Zigaretten hält Schnecken als
Haustiere.

8. Die Zigaretten der Marke Kools werden im gelben Haus
geraucht.

9. Milch wird im mittleren Haus getrunken.

10. Der Norweger wohnt im ersten Haus.

11. Der Mann, der Chesterfields raucht, wohnt neben dem Mann
mit dem Fuchs.

12. Die Marke Kools wird geraucht im Haus neben dem Haus
mit dem Pferd.

13. Der Lucky-Strike-Raucher trinkt am liebsten Orangensaft.

14. Der Japaner raucht Zigaretten der Marke Parliaments.

15. Der Norweger wohnt neben dem blauen Haus.

https://de.wikipedia.org/w/index.php?title=Zebrar%C3%A4tsel&oldid=126585006
https://de.wikipedia.org/w/index.php?title=Zebrar%C3%A4tsel&oldid=126585006

89 9. PROLOG

Wer trinkt Wasser? Wem gehört das Zebra?

zebraraetsel.pro
1 Street=[Haus1,Haus2,Haus3],
2 mitglied(haus(rot,_,_),Street),
3 mitglied(haus(blau,_,_),Street),
4 mitglied(haus,(grün,_,_),Street),
5 mitglied(haus(rot,australier,_),Street),
6 mitglied(haus(_,italiener,tiger),Street),
7 sublist(haus(_,_,eidechse),haus(_,chinese,_),Street),
8 sublist(haus(blau,_,_),haus(_,_,eidechse),Street),
9 mitglied(haus(_,N,nilpferd),Street).

TODO

9.4 Weitere Informationen

• wiki.ubuntuusers.de/Prolog: Hinweise zur Installa-
tion von Prolog unter Ubuntu

http://wiki.ubuntuusers.de/Prolog

10 Scala

Scala ist eine objektorientierte und funktionale Programmierspra-
che, die auf der JVM aufbaut und in Java Bytecode kompiliert
wird. Scala bedeutet scalable language.

Mit sog. „actors“ bietet Scala eine Unterstützung für die Entwick-
lung prallel ausführender Programme.

Weitere Materialien sind unter http://www.scala-lang.org/
und http://www.simplyscala.com/ zu finden.

10.1 Erste Schritte

Scala kann auf Debian-basierten Systemen durch das Paket scala
installiert werden. Für andere Systeme stehen auf http://www.
scala-lang.org/download/ verschiedene Binärdateien be-
reit.

10.1.1 Hello World

Interaktiv

$ scala
Welcome to Scala version 2.9.2 [...]

scala> println("Hello world")
Hello world

http://www.scala-lang.org/
http://www.simplyscala.com/
http://www.scala-lang.org/download/
http://www.scala-lang.org/download/

10.2. VERGLEICH MIT JAVA 92

Es kann mit ./scala-test.scala Scala funktioniert
ausgeführt werden.

Kompiliert

hello-world.scala
1 object HelloWorld {
2 def main(args: Array[String]) {
3 println("Hello World!")
4 }
5 }

Dieses Beispiel kann mit scalac hello-world.scala kompi-
liert und mit scala HelloWorld ausgeführt werden.

10.2 Vergleich mit Java

Scala und Java haben einige Gemeinsamkeiten, wie den Java
Bytecode, aber auch einige Unterschiede.

Gemeinsamkeiten
• Java Bytecode
• Keine Mehrfachvererbung
• Statische Typisierung
• Scopes

Unterschiede
• Java hat Interfaces, Scala hat

traits.
• Java hat primitive Typen, Scala

ausschließlich Objekte.
• Scala benötigt kein ; am Ende
von Anweisungen.
• Scala ist kompakter.
• Java hat static, Scala hat
object (Singleton)

Weitere Informationen hat Graham Lea unter http://tinyurl.
com/scala-hello-world zur Verfügung gestellt.

http://tinyurl.com/scala-hello-world
http://tinyurl.com/scala-hello-world

93 10. SCALA

10.3 Syntax

In Scala gibt es sog. values, die durch das Schlüsselwort val
angezeigt werden. Diese sind Konstanten. Die Syntax ist der UML-
Syntax ähnlich.

val name: type = value

Variablen werden durch das Schlüsselwort var angezeigt:

var name: type = value

Methoden werden mit dem Schlüsselwort def erzeugt:

def name(parameter: String): Unit = { code ... }

Klassen werden wie folgt erstellt:

class Person (
val firstName: String,
var lastName: String,
age: Int) {
println("This is the constructur.")

def sayHi() = println("Hello world!")
}

und so instanziiert:

val anna = new Person("anna", "bern", 18)
anna.sayHi()

Listen können erstellt und durchgegangen werden:

val list = List("USA", "Russia", "Germany")
for(country <- list)

println(country)

10.4. COMPANION OBJECT 94

UND ODER Wahr Falsch
&& || true false

GLEICH UNGLEICH NICHT
== != !

Tabelle 10.1: Logische Operatoren in Scala

10.3.1 Logische Operatoren

10.4 Companion Object

Ein Companion Object ist ein Objekt mit dem Namen einer Klasse
oder eines Traits. Im Gegensatz zu anderen Objekten / Traits hat
das Companion Object zugriff auf die Klasse.

10.5 actor

Definition 49 (Aktor)
Ein Aktor ist ein Prozess, der Nebenläufig zu anderen Ak-
toren läuft. Er kommuniziert mit anderen Aktoren, indem er
Nachrichten austauscht.

Das folgende Wetter-Beispiel zeigt, wie man Aktoren benutzen
kann.

10.5.1 Message Passing

Prozesse können nach dem Schema adresse ! Nachricht Nach-
richten austauschen. Dieses Schema ist asynchron.

95 10. SCALA

Prozesse können mit receivecase x => print(x) Nachrich-
ten empfangen, wobei in diesem Beispiel x alles matcht. Wenn eine
gesendete Nachricht vom Empfänger nicht gematcht wird, bleibt
sie dennoch gespeichert.

10.6 Weiteres

def awaitAll(timeout: Long, fts: Future[Any]*):

List[Option[Any]]
↼ scala.actors.Futures._

Waits until either all futures are resolved or a given time span has
passed. Results are collected in a list of options. The result of a
future that resolved during the time span is its value wrapped in
Some. The result of a future that did not resolve during the time
span is None.

Note that some of the futures might already have been awaited,
in which case their value is returned wrapped in Some. Passing a
timeout of 0 causes awaitAll to return immediately.

10.7 Beispiele

10.7.1 Wetter

Das folgende Script sendet parallel Anfragen über verschiedene
ZIP-Codes an die Yahoo-Server, parst das XML und extrahiert
die Stadt sowie die Temperatur:

weather.scala
1 import scala.io._
2 import scala.xml.{Source => Source2, _}
3 import scala.actors._
4 import Actor._

10.8. WEITERE INFORMATIONEN 96

5

6 def getWeatherInfo(woeid: String) = {
7 val url = "http://weather.yahooapis.com/forecastrss?w=" + woeid
8 val response = Source.fromURL(url).mkString
9 val xmlResponse = XML.loadString(response)

10 println(xmlResponse \\ "location" \\ "@city",
11 xmlResponse \\ "condition" \\ "@temp")
12 }
13

14 val caller = self
15

16 for(id <- 2391271 to 2391279) {
17 actor{ getWeatherInfo(id.toString) }
18 }
19

20 for(id <- 2391271 to 2391279) {
21 receiveWithin(5000) {
22 case msg => println(msg)
23 }
24 }

10.8 Weitere Informationen

• http://www.scala-lang.org/api

• http://docs.scala-lang.org/style/naming-conventions.
html

http://www.scala-lang.org/api
http://docs.scala-lang.org/style/naming-conventions.html
http://docs.scala-lang.org/style/naming-conventions.html

11 X10

X10 ist eine objektorientierte Programmiersprache, die 2004 bei
IBM entwickelt wurde.

Wie in Scala sind auch in X10 Funktionen First-Class Citizens.

X10 nutzt das PGAS-Modell:
Definition 50 (PGAS1)

PGAS (partitioned global address space) ist ein Program-
miermodell für Mehrprozessorsysteme und massiv parallele
Rechner. Dabei wird der globale Adressbereich des Arbeitsspei-
chers logisch unterteilt. Jeder Prozessor bekommt jeweils einen
dieser Adressbereiche als lokalen Speicher zugeteilt. Trotz-
dem können alle Prozessoren auf jede Speicherzelle zugreifen,
wobei auf den lokalen Speicher mit wesentlich höherer Ge-
schwindigkeit zugegriffen werden kann als auf den von anderen
Prozessoren.

Im PGAS-Modell gibt es places. Diese sind Platzhalter für Ak-
tivitäten und Objekte.

• Place.FIRST_PLACE ist der place 0.

• here ist der Prozess-eigene place und here.next() ist
der darauf folgende Place.

• main wird in place 0 ausgeführt.

• Place.places() liefert einen Iterator für alle verfügba-
ren places. Ein spezifischer Place kann durch Place(n)
ausgewählt werden.

1https://de.wikipedia.org/wiki/PGAS

https://de.wikipedia.org/wiki/PGAS

11.1. ERSTE SCHRITTE 98

11.1 Erste Schritte

Als erstes sollte man x10 von http://x10-lang.org/x10-development/
building-x10-from-source.html?id=248 herunterladen.

Dann kann man die bin/x10c zum erstellen von ausführbaren
Dateien nutzen. Der Befehl x10c HelloWorld.x10 erstellt eine
ausführbare Datei namens a.out.

HelloWorld.x10
// file HelloWorld.x10
public class HelloWorld {

public static def main(args:Rail[String]) {
x10.io.Console.OUT.println("Hello, World");

}
}

11.2 Syntax

Genau wie Scala nutzt X10 val und var, wobei val für „value“
steht und ein unveränderbarer Wert ist. var hingegen steht für
„variable“ und ist veränderbar.

Eine Besonderheit sind sog. Constrianed types:

Int{self > 0}
def dotProduct(x:Vec, y:Vec) {x.len == y.len}

11.2.1 Logische Operatoren

11.2.2 Closures

Closres werden unterstützt:

http://x10-lang.org/x10-development/building-x10-from-source.html?id=248
http://x10-lang.org/x10-development/building-x10-from-source.html?id=248

99 11. X10

UND ODER Wahr Falsch
&& || true false

GLEICH UNGLEICH NICHT
== != !

Tabelle 11.1: Logische Operatoren in X10

val r = new Random();
val rand = () => r.nextDouble();

11.2.3 async

Durch async S kann das Statement S asynchron ausgeführt
werden. Das bedeutet, dass ein neuer Kindprozess (eine Kind-
Aktivität) erstellt wird, die S ausführt. Dabei wird nicht auf das

Beenden von S gewartet. Will man das, so muss finish vor das
Statement gestellt werden.

11.2.4 atomic

Durch atomic S wird das Statement S atomar ausgeführt. Auch
Methoden können atomar gemacht werden.

// push data on concurrent
// list-stack
val node = new Node(data);

atomic {
node.next = head;
head = node;

11.2. SYNTAX 100

}

// target defined in
// enclosing scope
atomic def CAS(old:Object, n:Object) {

if (target.equals(old)) {
target = n;
return true;

}
return false;

}

11.2.5 Bedingtes Warten2

Durch when (E) S kann eine Aktivität warten, bis die Bedingung
E wahr ist um dann das Statement S auszuführen.

An E werden einige Forderungen gestellt:

• E muss ein boolescher Ausdruck sein.

• E darf nicht blockieren.

• E darf keine nebenläufigen Aktivitäten erstellen, muss also
sequenziell laufen.

• E darf nicht auf remote data zugreifen, muss also lokal arbei-
ten.

• E muss frei von Seiteneffekten sein.

class OneBuffer {
var datum:Object = null;
var filled:Boolean = false;
def send(v:Object) {

when (!filled) {
datum = v;

2WS 2013/2014, Kapitel 43, Folie 22

101 11. X10

filled = true;
}

}
def receive():Object {

when (filled) {
val v = datum;
datum = null;
filled = false;
return v;

}
}

}

11.2.6 Lokalisierung

3Durch at (p) S wird sichergestellt, dass das Statement S auf
dem place p ausgeführt wird. Dabei ist zu beachten, dass die
Eltern-Aktivität so lange blockiert, bis S beendet.

Es wird eine Deep-Copy des lokalen Objektgraphen auf den place
p erstellt.

at (Place(1)) { ... }

val a:Int = 42;

at (here.next()) {
Console.OUT.println(here);
Console.OUT.println(a);

}

3WS 2013/2014, Kapitel 43, Folie 23

11.3. DATENTYPEN 102

11.3 Datentypen

Byte, UByte, Short, UShort, Char, Int, UInt, Long, ULong, Float,
Double, Boolean, Complex, String, Point, Region, Dist, Array

11.3.1 Arrays

Arrays werden in X10 wie folgt definiert:

val doubleIt = (i:Int) => i * 2
new Array[Int](5, doubleIt)

Das ergibt den Array [0, 2, 4, 6, 8].

11.3.2 struct

In X10 gibt es, wie auch in C, den Typ struct. Dieser erlaubt
im Gegensatz zu Objekten keine Vererbung, kann jedoch auch
interfaces implementieren.

Alle Felder eines X10-Structs sind val.

Structs werden verwendet, da sie effizienter als Objekte sind.

Beispiel 43 (struct)
struct Complex {

val real:Double;
val img :Double;

def this(r:Double, i:Double) {
real = r; img = i;

}

def operator + (that:Complex) {
return

Complex(real + that.real,
img + that.img);

103 11. X10

}
}

val x = new Array[Complex](1..10);

11.4 Beispiele

ACHTUNG: Das folgende Beispiel kompiliert noch nicht!

Fibonacci.x10
1 // file Fibonacci.x10
2 public class Fibonacci {
3 public static def fib(n:Long): Long {
4 if (n < 2) {
5 return n;
6 }
7

8 val f1:Long;
9 val f2:Long;

10 finish {
11 async f1 = fib(n-1);
12 async f2 = fib(n-2);
13 }
14 return f1 + f2;
15 }
16

17 public static def main(args:Rail[String]) {
18 x10.io.Console.OUT.println("This is fibonacci in X10.");
19 for (var i:Long=0; i < 10; ++i) {
20 x10.io.Console.OUT.println(i + ": " + fib(i));
21 }
22 }
23 }

11.5. WEITERE INFORMATIONEN 104

11.5 Weitere Informationen

• http://x10-lang.org/

http://x10-lang.org/

12 C

C ist eine imperative Programmiersprache. Sie wurde in vielen
Standards definiert. Die wichtigsten davon sind:

• C89 wird auch ANSI C genannt.

• C90 wurde unter ISO 9899:1990 veröffentlicht. Es gibt keine
bedeutenden Unterschiede zwischen C89 und C90, nur ist das
eine ein ANSI-Standard und das andere ein ISO-Standard.

• C99 wurde unter ISO 9899:1999 veröffentlicht.

• C11 wurde unter ISO 9899:2011 veröffentlicht.

12.1 Datentypen

Die grundlegenden C-Datentypen sind

Typ Größe
char 1 Byte
int 4 Bytes
float 4 Bytes
double 8 Bytes
void 0 Bytes

zusätzlich kann man char und int noch in signed und unsigned
unterscheiden. Diese werden Modifier genannt.

In C gibt es keinen direkten Support für Booleans.

12.2. ASCII-TABELLE 106

12.2 ASCII-Tabelle

12.3 Syntax

12.3.1 Logische Operatoren

12.4 Präzedenzregeln

A „[name] is a. . . “
B.1 prenthesis ()
B.2 postfix operators:

B.2.1 () „. . . function returning. . . “
B.2.2 [] „. . . array of. . . “

B.3 prefix operator: * „. . . pointer to. . . “
B.4 prefix operator * and const / volatile modifier:

„. . . [modifier] pointer to. . . “
B.5 const / volatile modifier next to type specifier:

„. . . [modifier] [specifier]“
B.6 type specifier: „. . . [specifier]“

static unsigned int* const *(*next)();

12.5 Beispiele

12.5.1 Hello World

Speichere den folgenden Text als hello-world.c:

hello-world.c
1 #include <stdio.h>
2

3 int main(void)

107 12. C

4 {
5 printf("Hello, World\n");
6 return 0;
7 }

Compiliere ihn mit gcc hello-world.c. Es wird eine ausführ-
bare Datei namens a.out erzeugt.

12.5.2 Pointer

1 #include <stdio.h>
2

3 int arr[] = {0,1,2,3,4,5};
4

5 int main() {
6 printf("%i %i", arr[0], (&arr[3])[0]);
7 return 0;
8 }

Die Ausgabe hier ist 0 3.

12.5. BEISPIELE 108

Dez. Z. Dez. Z. Dez. Z. Dez. Z.
0 32 64 @ 96 ’
1 33 ! 65 A 97 a
2 34 " 66 B 98 b
3 35 # 67 C 99 c
4 36 $ 68 D 100 d
5 37 % 69 E 101 e
6 38 & 70 F 102 f
7 39 ’ 71 G 103 g
8 40 (72 H 104 h
9 41) 73 I 105 i
10 42 * 74 J 106 j
11 43 + 75 K 107 k
12 44 , 76 L 108 l
13 45 - 77 M 109 m
14 46 . 78 N 110 n
15 47 / 79 O 111 o
16 48 0 80 P 112 p
17 49 1 81 Q 113 q
18 50 2 82 R 114 r
19 51 3 83 S 115 s
20 52 4 84 T 116 t
21 53 5 85 U 117 u
22 54 6 86 V 118 v
23 55 7 87 W 119 w
24 56 8 88 X 120 x
25 57 9 89 Y 121 y
26 58 : 90 Z 122 z
27 59 ; 91 [123 {
28 60 < 92 \ 124 |
29 61 = 93] 125 }
30 62 > 94 ^ 126 ∼
31 63 ? 95 _ 127 DEL

109 12. C

UND ODER Wahr Falsch
&& || 1 0

GLEICH UNGLEICH NICHT
== != !

Tabelle 12.1: Logische Operatoren in C

A next next is a
B.3 * . . . pointer to. . .
B.1 () . . .
B.2.1 () . . . a function returning. . .
B.3 * . . . pointer to. . .
B.4 *const . . . a read-only pointer to. . .
B.6 static unsigned int . . . static unsigned int.

13 MPI

Message Passing Interface (kurz: MPI) ist ein Standard, der den
Nachrichtenaustausch bei parallelen Berechnungen auf verteilten
Computersystemen beschreibt.

Prozesse kommunizieren in MPI über sog. Kommunikatoren. Ein
Kommunikator (MPI_Comm) definiert eine Menge an Prozessen,
die miteinander kommunizieren können. In dieser Prozessgruppe
hat jeder Prozess einen eindeutigen rank über den die Prozesse
sich identifizieren können.

13.1 Erste Schritte

hello-world.c
#include <stdio.h>
#include <mpi.h>
int main (int argc, char** args) {

int size;
int myrank;
MPI_Init(&argc, &args);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
printf("Hello world, I have rank %d out of %d.\n",

myrank, size);
MPI_Finalize();
return 0;

}

13.2. MPI DATATYPES 112

Das wird mpicc hello-world.c kompiliert.
Mit mpirun -np 14 scripts/mpi/a.out werden 14 Kopien
des Programms gestartet.

Hierbei ist MPI_COMM_WORLD der Standard-Kommunikator, der
von MPI_Init erstellt wird.

13.2 MPI Datatypes

MPI datatype C datatype MPI datatype C datatype
MPI_INT signed int MPI_FLOAT float
MPI_UNSIGNED unsigned int MPI_DOUBLE double
MPI_CHAR signed char MPI_UNSIGNED

_CHAR
unsigned char

13.3 Funktionen

int MPI_Comm_size(MPI_Comm comm, int *size)

Liefert die Größe des angegebenen Kommunikators; dh. die Anzahl
der Prozesse in der Gruppe.

Parameter

• comm: Kommunikator (handle)

• size: Anzahl der Prozesse in der Gruppe von comm

Beispiel

#include "mpi.h"

int size;

113 13. MPI

MPI_Comm comm;
...
MPI_Comm_size(comm, &size);
...

int MPI_Comm_rank(MPI_Comm comm, int *rank)

Bestimmt den Rang des rufenden Prozesses innerhalb des Kom-
munikators.

Der Rang wird von MPI zum Identifizieren eines Prozesses verwen-
det. Die Rangnummer ist innerhalb eines Kommunikators eindeutig.
Dabei wird stets von Null beginnend durchnumeriert. Sender und
Empfänger bei Sendeoperationen oder die Wurzel bei kollektiven
Operationen werden immer mittels Rang angegeben.

Parameter

• comm: Kommunikator (handle)

• rank: Rang des rufenden Prozesses innerhalb von comm

Beispiel

#include "mpi.h"

int rank;
MPI_Comm comm;

...
MPI_Comm_rank(comm, &rank);
if (rank==0) {

... Code fur Prozess 0 ...
}
else {

... Code fur die anderen Prozesse ...
}

13.3. FUNKTIONEN 114

int MPI_Send(void *buf, int count,
MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

Senden einer Nachricht an einen anderen Prozeß innerhalb eines
Kommunikators. (Standard-Send)

Parameter

• buf : Anfangsadresse des Sendepuffers

• count: Anzahl der Elemente des Sendepuffers (nichtnegativ)

• datatype: Typ der Elemente des Sendepuffers (handle) (vgl.
Seite 112)

• dest: Rang des Empfängerprozesses in comm (integer)

• tag: message tag zur Unterscheidung verschiedener Nach-
richten; Ein Kommunikationsvorgang wird durch ein Tripel
(Sender, Empfänger, tag) eindeutig beschrieben.

• comm: Kommunikator (handle)

Beispiel

#include "mpi.h"
...
int signal, i, numprogs, me;
MPI_Status stat;
MPI_Comm_rank(MPI_COMM_WORLD, &me);
MPI_Comm_size(MPI_COMM_WORLD,

&numprocs);
if (me==ROOT) {

...
for (i=1; i<numprocs; i++) {

MPI_Send(&signal, 1, MPI_INT, i, 0, MPI_COMM_WORLD);
}

115 13. MPI

...
else {

MPI_Recv(&sig, 1, MPI_INT, ROOT, MPI_ANY_TAG,
MPI_COMM_WORLD, &stat);

...
}

int MPI_Recv(void *buf, int count,
MPI_Datatype datatype, int source,
int tag, MPI_Comm comm,
MPI_Status *status)

Empfangen einer Nachricht (blockierend)

Parameter

• buf : Anfangsadresse des Empfangspuffers

• count: Anzahl (d. h. ≥ 0) der Elemente im Empfangspuffer

• datatype: Typ der zu empfangenden Elemente (handle) (vgl.
Seite 112)

• source: Rang des Senderprozesses in comm oder MPI_ANY_SOURCE

• tag: message tag zur Unterscheidung verschiedener Nach-
richten Ein Kommunikationsvorgang wird durch ein Tripel
(Sender, Empfänger, tag) eindeutig beschrieben. Um Nach-
richten mit beliebigen tags zu empfangen, benutzt man die
Konstante MPI_ANY_TAG.

• comm: Kommunikator (handle)

• status: Status, welcher source und tag angibt (MPI_Status).

Soll dieser Status ignoriert werden, kann MPI_STATUS_IGNORE
angegeben werden.

Beispiel

13.3. FUNKTIONEN 116

#include "mpi.h"

int msglen, again=1;
void *buf;
MPI_Datatype datatype
MPI_Comm comm;
MPI_Status status;

...
while (again) {
MPI_Probe(ROOT, MPI_ANY_TAG, comm, &status);

MPI_Get_count(&status, datatype, &msglen);
buf=malloc(msglen*sizeof(int));
MPI_Recv(buf, msglen, datatype, status.MPI_SOURCE,

status.MPI_TAG, comm, &status);
...

}
...

int MPI_Reduce(const void *sendbuf, void *recvbuf,
int count, MPI_Datatype datatype,
MPI_Op op, int root, MPI_Comm comm)

Führt eine globale Operation op aus; der Prozeß „root“ erhält das
Resultat.

Parameter

• sendbuf : Startadresse des Sendepuffers

• count: Anzahl der Elemente im Sendepuffer

• datatype: Typ der Elemente von sendbuf (vgl. Seite 112)

• op: auszuführende Operation (handle)

• root: Rang des Root-Prozesses in comm, der das Ergebnis

117 13. MPI

haben soll

• comm: Kommunikator (handle)

int MPI_Alltoall(const void *sendbuf, int sendcount,
MPI_Datatype sendtype,
void *recvbuf, int recvcount,
MPI_Datatype recvtype,
MPI_Comm comm)

Teilt Daten von jedem Prozeß einer Gruppe an alle anderen auf.

Parameter

• sendbuf : Startadresse des Sendepuffers

• sendcount: Anzahl der Elemente im Sendepuffer

• sendtype: Typ der Elemente des Sendepuffers (handle) (vgl.
Seite 112)

• recvcount: Anzahl der Elemente, die von jedem einzelnen
Prozeß empfangen werden

• recvtype: Typ der Elemente im Empfangspuffer (handle)
(vgl. Seite 112)

• comm: Kommunikator (handle)

Beispiel

#include "mpi.h"

int sendcount, recvcount;
void *sendbuf, *recvbuf;
MPI_Datatype sendtype, recvtype;
MPI_Comm comm;
...
MPI_Alltoall(sendbuf, sendcount, sendtype,

13.3. FUNKTIONEN 118

recvbuf, recvcount, recvtype, comm);
...

MPI_Bcast(buffer, count, datatype, root, comm)

Sendet eine Nachricht vom Prozess root an alle anderen Prozesse
des angegebenen Kommunikators.

Parameter

• buffer: Startadresse des Datenpuffers

• count: Anzahl der Elemente im Puffer

• datatype: Typ der Pufferelemente (handle) (vgl. Seite 112)

• root: Wurzelprozeß; der, welcher sendet

• comm: Kommunikator (handle)

MPI_Scatter(sendbuf, sendcount, sendtype, recvbuf,
recvcount, recvtype, root, comm)

Verteilt Daten vom Prozess root unter alle anderen Prozesse in
der Gruppe, so daß, soweit möglich, alle Prozesse gleich große
Anteile erhalten.

Parameter

• sendbuf : Anfangsadresse des Sendepuffers (Wert ist ledig-
lich für ’root’ signifikant)

• sendcount: Anzahl der Elemente, die jeder Prozeß geschickt
bekommen soll (integer)

• sendtype: Typ der Elemente in sendbuf (handle) (vgl. Sei-
te 112)

119 13. MPI

• recvcount: Anzahl der Elemente im Empfangspuffer. Meist
ist es günstig, recvcount = sendcount zu wählen.

• recvtype: Typ der Elemente des Empfangspuffers (handle)
(vgl. Seite 112)

• root: Rang des Prozesses in comm, der die Daten versendet

• comm: Kommunikator (handle)

int MPI_Gather(void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm)

Sammelt Daten, die in einer Prozeßgruppe verteilt sind, ein.

Parameter

• sendbuf : Startadresse des Sendepuffers

• sendcount: Anzahl der Elemente im Sendepuffer

• sendtype: Datentyp der Elemente des Sendepuffers (handle)

• recvcount: Anzahl der Elemente, die jeder einzelne Prozeß
sendet (nur für ’root’ signifikant)

• recvtype: Typ der Elemente im Empfangspuffer (handle)
(nur für ’root’ signifikant) (vgl. Seite 112)

• root: Rang des empfangenden Prozesses in comm

• comm: Kommunikator (handle)

Beispiel

#include "mpi.h"

int myid;
int recvbuf[DATASIZE], sendbuf[DATA_SIZE];

13.4. BEISPIELE 120

...
/* Minimum bilden */
MPI_Reduce(sendbuf, recvbuf, DATA_SIZE, MPI_INT, MPI_MIN,

0, MPI_COMM_WORLD);
...

13.4 Beispiele

13.4.1 sum-reduce Implementierung

// Quelle: Klausur vom SS 2013 am KIT bei
// Prof. Dr.-Ing. Gregor Snelting
void my_int_sum_reduce(int *sendbuf,

int *recvbuf, int count,
int root, MPI_Comm comm)

{
int size, rank;
MPI_Comm_size(comm, &size);
MPI_Comm_rank(comm, &rank);
if (rank == root) {

/* Initialize recvbuf with our own values. */
for (int i = 0; i < count; ++i) {

recvbuf[i] = sendbuf[i];
}

/* Receive values from every other node
and accumulate. */

for (int i = 0; i < size; ++i) {
if (i == root)

continue;

int other[count];
MPI_Recv(other, count, MPI_INT,

121 13. MPI

i, 0, comm, MPI_STATUS_IGNORE);

for (int j = 0; j < count; ++j) {
recvbuf[j] += other[j];

}
}

} else {
/* Send our values to root. */
MPI_Send(sendbuf, count, MPI_INT,

root, 0, comm);
}

}

13.4.2 broadcast Implementierung1

void my_bcast(void* data, int count, MPI_Datatype type,
int root, MPI_Comm comm) {
int my_rank;
MPI_Comm_rank(comm, &my_rank);
int comm_size;
MPI_Comm_size(comm, &comm_size);
if (my_rank == root) {

// If we are the root process, send our data to every one
for (int i = 0; i < comm_size; i++) {

if (i != my_rank) {
MPI_Send(data, count, type, i, 0, comm);

}
}

} else {
// If we are a receiver process, receive the data from root
MPI_Recv(data, count, type, root, 0, comm, MPI_STATUS_IGNORE);

}
}

1Klausur WS 2012 / 2013

13.5. WEITERE INFORMATIONEN 122

13.5 Weitere Informationen

• http://mpitutorial.com/

• http://www.open-mpi.org/

• http://www.tu-chemnitz.de/informatik/RA/projects/
mpihelp/

http://mpitutorial.com/
http://www.open-mpi.org/
http://www.tu-chemnitz.de/informatik/RA/projects/mpihelp/
http://www.tu-chemnitz.de/informatik/RA/projects/mpihelp/

14 Compilerbau

Wenn man über Compiler redet, meint man üblicherweise „voll-
ständige Übersetzer“:

Definition 51
Ein Compiler ist ein Programm C, das den Quelltext eines
Programms A in eine ausführbare Form übersetzen kann.

Jedoch gibt es verschiedene Ebenen der Interpretation bzw. Über-
setzung:

1. Reiner Interpretierer: TCL, Unix-Shell

2. Vorübersetzung: Java-Bytecode, Pascal P-Code, Python1,
Smalltalk-Bytecode

3. Laufzeitübersetzung: JavaScript2

4. Vollständige Übersetzung: C, C++, Fortran

Zu sagen, dass Python eine interpretierte Sprache ist, ist in etwa
so korrekt wie zu sagen, dass die Bibel ein Hardcover-Buch ist.3

Reine Interpretierer lesen den Quelltext Anweisung für Anweisung
und führen diese direkt aus.

Bild

1Python hat auch .pyc-Dateien, die Python-Bytecode enthalten.
2JavaScript wird nicht immer zur Laufzeit übersetzt. Früher war es üblich,
dass JavaScript nur interpretiert wurde.

3Quelle: stackoverflow.com/a/2998544, danke Alex Martelli für diesen Ver-
gleich.

124

Bei der Interpretation nach Vorübersetzung wird der Quelltext ana-
lysiert und in eine für den Interpretierer günstigere Form übersetzt.
Das kann z. B. durch

• Zuordnung Bezeichnergebrauch - Vereinbarung??

• Transformation in Postfixbaum

• Typcheck, wo statisch möglich

geschehen. Diese Vorübersetzung ist nicht unbedingt maschinen-
nah.

Bild

Die Just-in-time-Compiler (kurz: JIT-Compiler) betreiben Lauf-
zeitübersetzung. Folgendes sind Vor- bzw. Nachteile von Just-in-
time Compilern:

• schneller als reine Interpretierer

• Speichergewinn: Quelle kompakter als ZielprogrammWas
ist
hier
ge-
meint?

Was
ist
hier
ge-
meint?

• Schnellerer Start des Programms

• Langsamer (pro Funktion) als vollständige Übersetzung

• kann dynamisch ermittelte Laufzeiteigenschaften berücksich-
tigen (dynamische Optimierung)

Moderne virtuelle Maschinen für Java und für .NET nutzen JIT-
Compiler.

Bei der vollständigen Übersetzung wird der Quelltext vor der ers-
ten Ausführung des Programms A in Maschinencode (z. B. x86,
SPARC) übersetzt.

Bild

125 14. COMPILERBAU

14.1 Funktionsweise

Üblicherweise führt ein Compiler folgende Schritte aus:

1. Lexikalische Analyse

2. Syntaktische Analyse

3. Semantische Analyse

4. Zwischencodeoptimierung

5. Codegenerierung

6. Assemblieren und Binden

14.2 Lexikalische Analyse

In der lexikalischen Analyse wird der Quelltext als Sequenz von
Zeichen betrachtet. Sie soll bedeutungstragende Zeichengruppen,
sog. Tokens , erkennen und unwichtige Zeichen, wie z. B. Kommen-
tare überspringen. Außerdem sollen Bezeichner identifiziert und in
einer Stringtabelle zusammengefasst werden.

Beispiel 44
Beispiel erstellen

14.2.1 Reguläre Ausdrücke

Beispiel 45 (Regulärere Ausdrücke)
Folgender regulärer Ausdruck erkennt Float-Konstanten in C
nach ISO/IEC 9899:1999 §6.4.4.2:

((0| . . . |9)∗.(0| . . . |9)+)|((0| . . . |9)+.)

14.2. LEXIKALISCHE ANALYSE 126

Satz 14.1
Jede reguläre Sprache wird von einem (deterministischen)
endlichen Automaten akzeptiert.

TODO: Bild einfügen

Zu jedem regulären Ausdruck im Sinne der theoretischen Infor-
matik kann ein nichtdeterministischer Automat generiert werden.
Dieser kann mittels Potenzmengenkonstruktion4 in einen deter-
ministischen Automaten überführen. Dieser kann dann mittels
Äquivalenzklassen minimiert werden.

Alle Schritte beschreiben

14.2.2 Lex

Lex ist ein Programm, das beim Übersetzerbau benutzt wird um
Tokenizer für die lexikalische Analyse zu erstellen. Flex ist eine
Open-Source Variante davon.

Eine Flex-Datei besteht aus 3 Teilen, die durch %% getrennt werden:

Definitionen: Definiere Namen
%%
Regeln: Definiere reguläre Ausdrücke und

zugehörige Aktionen (= Code)
%%
Code: zusätzlicher Code

127 14. COMPILERBAU

x Zeichen ’x’ erkennen
"xy" Zeichenkette ’xy’ erkennen
\ Zeichen ’x’ erkennen (TODO)
[xyz] Zeichen x, y oder z erkennen
[a− z] Alle Kleinbuchstaben erkennen
[− z] Alle Zeichen außer Kleinbuchstaben erkennen
x|y x oder y erkennen
(x) x erkennen
x* 0, 1 oder mehrere Vorkommen von x erkennen
x+ 1 oder mehrere Vorkommen von x erkennen
x? 0 oder 1 Vorkommen von x erkennen
{Name} Expansion der Definition Name
\t, \n, \rq Tabulator, Zeilenumbruch, Wagenrücklauf erkennen

Reguläre Ausdrücke in Flex

14.3 Syntaktische Analyse

In der syntaktischen Analyse wird überprüft, ob die Tokenfolge
zur kontextfreien Sprachegehört. Außerdem soll die hierarchische Warum

kon-
text-
frei?

Warum
kon-
text-
frei?

Struktur der Eingabe erkannt werden.

Was
ist ge-
meint?

Was
ist ge-
meint?

Ausgegeben wird ein abstrakter Syntaxbaum.

Beispiel 46 (Abstrakter Syntaxbaum)
TODO

14.4 Semantische Analyse

Die semantische Analyse arbeitet auf einem abstrakten Syntax-
baum und generiert einen attributierten Syntaxbaum.

Sie führt eine kontextsensitive Analyse durch. Dazu gehören:
4http://martin-thoma.com/potenzmengenkonstruktion/

http://martin-thoma.com/potenzmengenkonstruktion/

14.5. ZWISCHENCODEOPTIMIERUNG 128

• Namensanalyse: Beziehung zwischen Deklaration und Ver-
wendung??

• Typanalyse: Bestimme und prüfe Typen von Variablen,
Funktionen, . . .??

• Konsistenzprüfung: Wurden alle Einschränkungen der Pro-
grammiersprache eingehalten???

Beispiel 47 (Attributeriter Syntaxbaum)
TODO

14.5 Zwischencodeoptimierung

Hier wird der Code in eine sprach- und zielunabhängige Zwischen-
sprache transformiert. Dabei sind viele Optimierungen vorstellbar.
Ein paar davon sind:

• Konstantenfaltung: Ersetze z. B. 3 + 5 durch 8.

• Kopienfortschaffung: Setze Werte von Variablen direkt
ein

• Code verschieben: Führe Befehle vor der Schleife aus, statt
in der Schleife??

• Gemeinsame Teilausdrücke entfernen: Es sollen dop-
pelte Berechnungen vermieden werdenBeispiel?Beispiel?

• Inlining: Statt Methode aufzurufen, kann der Code der
Methode an der Aufrufstelle eingebaut werden.

14.6 Codegenerierung

Der letzte Schritt besteht darin, aus dem generiertem Zwischenco-
de den Maschinencode oder Assembler zu erstellen. Dabei muss
folgendes beachtet werden:

129 14. COMPILERBAU

• Konventionen: Wie werden z. B. im Laufzeitsystem Me-
thoden aufgerufen?

• Codeauswahl: Welche Befehle kennt das Zielsystem?

• Scheduling: In welcher Reihenfolge sollen die Befehle ange-
ordnet werden?

• Registerallokation: Welche Zwischenergebnisse sollen in
welchen Prozessorregistern gehalten werden?

• Nachoptimierung ??

14.7 Weiteres

14.7.1 First- und Follow

Definition 52 (k-Anfang)
Sei G = (Σ, V, P, S) eine Grammatik, k ∈ N>0 und x ∈ Σ∗

mit
x = x1 . . . xm mit xi ∈ Σ wobei i ∈ 1, . . . ,m

Dann heißt x̃ ∈ (Σ ∪ {# })+ ein k-Präfix von x, wenn gilt:

x̃ =

{
x# falls x = x1 . . . xm und m < k

x1 . . . xk sonst

wobei # das Ende der Eingabe bezeichnet. In diesem Fall
schreibt man

x̃ = k : x

Beispiel 48 (k-Anfang)
Sei G = ({A,B,C, S } , { a, b, c } , P, S) mit

P = {A→ aa|ab,
B → AC,

C → c,

14.7. WEITERES 130

S → ABC}

Dann gilt:

1) a = 1 : aaaa

2) a = 1 : a

3) a = 1 : aba

4) ab = 2 : aba

5) aba = 3 : aba

6) aba# = 4 : aba

Definition 53 (First- und Follow-Menge)
Sei G = (Σ, V, P, S) eine Grammatik und x ∈ V .

a) Firstk(x) := {u ∈ (V ∪ Σ)+|∃y ∈ Σ∗ :

x⇒∗ y
∧u = k : y}

b) Followk(x) := {u ∈ (V ∪ Σ)+|∃m, y ∈ (V ∪ Σ)∗ :

S ⇒∗ mxy
∧u ∈ Firstk(y)}

Beispiel 49 (First- und Follow-Mengen5)
Sei G = (Σ, V, P,E) mit

Σ = {+, ∗, (,) }
V =

{
T, T ′, E,E′, F

}
P = {E → TE′

E′ → ε|+ TE′

T → FT ′

T ′ → ε| ∗ FT ′

F → id|(E)}

Dann gilt:

131 14. COMPILERBAU

1) First(E) = First(T) = First(F) = { id, () }

2) First(E′) = {#,+ }

3) First(T ′) = {#, ∗ }

4) Follow(E) = Follow(E′) = {#,) }

5) Follow(T) = Follow(T ′) = {#,),+ }

6) Follow(F) = {#,),+, ∗ }

14.8 Literatur

Ich kann das folgende Buch empfehlen:

Compiler - Prinzipien, Techniken und Werkzeuge. Alfred V. Aho,
Monica S. Lam, Ravi Sethi und Jeffry D. Ullman. Pearson Verlag,
2. Auflage, 2008. ISBN 978-3-8273-7097-6.

Es ist mit über 1200 Seiten zwar etwas dick, aber dafür sehr einfach
geschrieben.

5Folie 348

15 Java Bytecode

Definition 54 (Bytecode)
Der Bytecode ist eine Sammlung von Befehlen für eine virtuelle
Maschine.

Bytecode ist unabhängig von realer Hardware.
Definition 55 (Heap)

Der dynamische Speicher, auch Heap genannt, ist ein Speicher-
bereich, aus dem zur Laufzeit eines Programms zusammen-
hängende Speicherabschnitte angefordert und in beliebiger
Reihenfolge wieder freigegeben werden können.

Activation Record ist ein Stackframe.

15.1 Instruktionen

Beschreibung int float
Addition iadd fadd
Element aus Array auf Stack packen iaload faload
Element aus Stack in Array speichern iastore fastore
Konstante auf Stack legen iconst_<i> fconst_<f>
Divide second-from top by top idiv fdiv
Multipliziere die obersten beiden
Zahlen des Stacks

imul fmul

Weitere:

15.1. INSTRUKTIONEN 134

• iload_0: Läd die lokale Variable 0 auf den Stack.

• iload_1: Läd die lokale Variable 1 auf den Stack.

• iload_2: Läd die lokale Variable 2 auf den Stack.

• iload_3: Läd die lokale Variable 3 auf den Stack.

15.1.1 if-Abfragen

Im Java-Bytecode gibt es einige verschiedene if-Abfragen. Diese
sind immer nach dem Schema <if> <label> aufgebaut. Wenn
also <if> wahr ist, wird zu <label> gesprungen.

Im Folgenden sei a tiefer im Stack als b. Die Operation push(a)
wurde also vor push(b) durchgeführt.

Eine Gruppe von if-Abfragen hat folgendes Schema:

if_icmp<comperator> <label>

Dabei steht das erste i für „integer“ und cmp für „compare“.
<comperator> kann folgende Werte annehmen:

• eq: equal – a == b

• ge: greater equal – a ≥ b

• gt: greater than – a > b

• le: less equal – a ≤ b

• lt: less than – a < b

• ne: not equal – a 6= b

Weitere if-Abfragen haben das Schema

if<comperator> – b<comperator>0

135 15. JAVA BYTECODE

15.1.2 Konstanten

• iconst_m1: Lade -1 auf den Stack

• iconst_<i>, wobei <i> die Werte 0, 1, 2, 3, 4, 5 annehmen
kann.

15.2 Weiteres

• aload_<i> wobei <i> entweder 0, 1, 2 oder 3 ist: Lade
eine Referenz von einer lokalen Variable <i> auf den Stack.

• invokevirtual: Rufe die Methode auf, die auf dem Stack
liegt, wobei die Objektreferenz direkt darunter auf dem Stack
liegen muss.

15.3 Polnische Notation

Definition 56 (Schreibweise von Rechenoperationen)
Sei f : A×B → C eine Funktion, a ∈ A und b ∈ B.

a) Die Schreibweise a f b heißt Infix-Notation.

b) Die Schreibweise f a b heißt Präfixnotation

c) Die Schreibweise a b f heißt Postfixnotation.

Polnische Notation ist ein Synonym für die Präfixnotation.

Umgekehrte polnische Notation ist ein Synonym für die Postfixno-
tation.

15.4. WEITERE INFORMATIONEN 136

Beispiel 50 (Schreibweise von Rechenoperationen)
1) 1 + 2 nutzt die Infix-Notation.

2) f a b nutzt die polnische Notation.

3) Wir der Ausdruck 1+2·3 in Infix-Notation ohne Operatoren-
Präzedenz ausgewertet, so gilt:

1 + 2 · 3 = 9

Wird er mit Operatoren-Präzendenz ausgewertet, so gilt:

1 + 2 · 3 = 7

4) Der Ausdruck
1 + 2 · 3 = 7

entspricht
+ 1 · 2 3

in der polnischen Notation und

1 2 3 · +

in der umgekehrten polnischen Notation.

Bemerkung 2 (Eigenschaften der Prä- und Postfixnotation)
a) Die Reihenfolge der Operanden kann beibehalten und

gleichzeitig auf Klammern verzichtet werden, ohne dass
sich das Ergebnis verändert.

b) Die Infix-Notation kann in einer Worst-Case Laufzeit
von O(n), wobei n die Anzahl der Tokens ist mittels des

Shunting-yard-Algorithmus in die umgekehrte Polnische
Notation überführt werden.

15.4 Weitere Informationen

• https://en.wikipedia.org/wiki/Java_bytecode_
instruction_listings

https://en.wikipedia.org/wiki/Java_bytecode_instruction_listings
https://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

137 15. JAVA BYTECODE

• http://cs.au.dk/~mis/dOvs/jvmspec/ref-Java.html

• scanftree.com: Infix ↔ Postfix Konverter

http://cs.au.dk/~mis/dOvs/jvmspec/ref-Java.html
http://scanftree.com/Data_Structure/prefix-postfix-infix-online-converter

Bildquellen

Abb. ?? S2: Tom Bombadil, tex.stackexchange.com/a/42865

http://tex.stackexchange.com/a/42865/5645

Abkürzungsverzeichnis

AST Abstrakter Syntaxbaum (Abstract Syntax Tree)

Beh. Behauptung

Bew. Beweis

bzgl. bezüglich

bzw. beziehungsweise

ca. circa

d. h. das heißt

DEA Deterministischer Endlicher Automat

etc. et cetera

ggf. gegebenenfalls

mgu most general unifier

sog. sogenannte

Vor. Voraussetzung

vgl. vergleiche

z. B. zum Beispiel

z. z. zu zeigen

Ergänzende Definitionen

Definition 57 (Quantoren)

a) ∀x ∈ X : p(x): Für alle Elemente x aus der Menge X
gilt die Aussage p.

b) ∃x ∈ X : p(x): Es gibt mindestens ein Element x aus
der Menge X, für das die Aussage p gilt.

c) ∃!x ∈ X : p(x): Es gibt genau ein Element x in der
Menge X, sodass die Aussage p gilt.

Definition 58 (Prädikatenlogik)
Eine Prädikatenlogik ist ein formales System, das Variablen
und Quantoren nutzt um Aussagen zu formulieren.

Definition 59 (Aussagenlogik)
TODO

Definition 60 (Grammatik)
Eine (formale) Grammatik ist ein Tupel (Σ, V, P, S) wobei
gilt:

(i) Σ ist eine endliche Menge und heißt Alphabet,

(ii) V ist eine endliche Menge mit V ∩ Σ = ∅ und heißt
Menge der Nichtterminale,

(iii) S ∈ V heißt das Startsymbol

(iv) P = { p : I → r | I ∈ (V ∪ Σ)+, r ∈ (V ∪ Σ)∗ } ist eine
endliche Menge aus Produktionsregeln

Ergänzende Definitionen 144

Man schreibt:

• a⇒ b: Die Anwendung einer Produktionsregel auf a ergibt
b.

• a ⇒∗ b: Die Anwendung mehrerer (oder keiner) Produkti-
onsregeln auf a ergibt b.

• a⇒+ b: Die Anwendung mindestens einer Produktionsregel
auf a ergibt b.

Beispiel 51 (Formale Grammatik)
Folgende Grammatik G = (Σ, V, P,A) erzeugt alle korrekten
Klammerausdrücke:

• Σ = { (,) }

• V = { α }

• s = α

• P = { α→ () | αα|(α) }

Definition 61 (Kontextfreie Grammatik)
Eine Grammatik (Σ, V, P, S) heißt kontextfrei, wenn für jede
Produktion p : I → r gilt: I ∈ V .

Definition 62 (Sprache)
Sei G = (Σ, V, P, S) eine Grammatik. Dann ist

L(G) := { ω ∈ Σ∗ | S ⇒∗ ω }

die Menge aller in der Grammatik ableitbaren Wörtern. L(G)
heißt Sprache der Grammatik G.

Definition 63
Sei G = (Σ, V, P, S) eine Grammatik und a ∈ (V ∪ Σ)+.

a) ⇒L heißt Linksableitung, wenn die Produktion auf
das linkeste Nichtterminal angewendet wird.

b) ⇒R heißt Rechtsableitung, wenn die Produktion auf
das rechteste Nichtterminal angewendet wird.

145 Ergänzende Definitionen

Beispiel 52 (Links- und Rechtsableitung)
Sie G wie zuvor die Grammatik der korrekten Klammeraus-
drücke:

α⇒L αα

⇒L ααα

⇒L ()αα

⇒L ()(α)α

⇒L ()(())α

⇒L ()(())()

⇐⇒ α⇒R αα

⇒R ααα

⇒R αα()

⇒R α(α)()

⇒R α(())()

⇒R ()(())()

Definition 64 (LL(k)-Grammatik)
Sei G = (Σ, V, P, S) eine kontextfreie Grammatik. G heißt
LL(k)-Grammatik für k ∈ N≥1, wenn jeder Ableitungsschritt
durch die linkesten k Symbole der Eingabe bestimmt ist. Was

ist die
Ein-
gabe
einer
Gram-
ma-
tik?

Was
ist die
Ein-
gabe
einer
Gram-
ma-
tik?

Ein LL-Parser ist ein Top-Down-Parser liest die Eingabe von
Links nach rechts und versucht eine Linksableitung der Eingabe zu
berechnen. Ein LL(k)-Parser kann k Token vorausschauen, wobei

k als Lookahead bezeichnet wird.

Satz .1
Für linksrekursive, kontextfreie Grammatiken G gilt:

∀k ∈ N : G /∈ SLL(k)

Symbolverzeichnis

Reguläre Ausdrücke

∅ Leere Menge
ε Das leere Wort
α, β Reguläre Ausdrücke
L(α) Die durch α beschriebene Sprache
L(α|β) L(α) ∪ L(β)
L0 Die leere Sprache, also { ε }
Ln+1 Potenz einer Sprache. Diese ist definiert als

Ln ◦ L für n ∈ N0

α+ = L(α)+
⋃
i∈N L(α)i

α∗ = L(α)∗
⋃
i∈N0

L(α)i

Logik

M |= ϕ Semantische Herleitbarkeit
Im ModellM gilt das Prädikat ϕ.

ψ ` ϕ Syntaktische Herleitbarkeit
Die Formel ϕ kann aus der Menge der Formeln ψ herge-
leitet werden.

Weiteres

Symbolverzeichnis 148

⊥ Bottom
a	b a wird zu b unifiziert
� Typschemainstanziierung

Stichwortverzeichnis

!! (Haskell), 66
++ (Haskell), 69
. (Haskell), 69
: (Haskell), 66
(Compilerbau), 129
$ (Haskell), 69
Äquivalenz

Alpha (α), 28
Beta (β), 28
Eta (η), 29

Ableitungsbaum, 43
Ableitungsregel, siehe Produk-

tionsregel
Activation Record, siehe Stack-

frame
actor, siehe Aktor
Akkumulator, 66
Aktor, 94
aload_<i>, 135
Alphabet, 143
Analyse

lexikalische, 125
semantische, 127
syntaktische, 127

Anfang, siehe k-Anfang
Assembler, 4

async, 99
at, 101
atomic, 99
Ausdrücke

reguläre, 125
Aussagenlogik, 143
awaitAll, 95

Backtracking, 18
Befehlssatz, 3
Binomialkoeffizient, 15
Broadcast, 53
Bytecode, 133

C, 105–107
Call-By-Name, 29
Call-By-Value, 30
Callable, 56
char, 105
Church-Booleans, 32
closure, 98
Companion Object, 94
Compiler, 123

Just-in-time, 124
Compilerbau, 123–131
concat, 77
cons, 66

Stichwortverzeichnis 150

Constraints, 44

data, 73
Datentyp, 37

algebraischer, 73
Datentypen, 105
def, 93
delete, 87
Duck-Typing, 9

eq, 134
even, 85

fadd, 133
Fakultät, 15
faload, 133
fastore, 133
fconst_<f>, 133
fdiv, 133
fib, 85
Fibonacci, 74
Fibonacci-Funktion, 15
filter, 18
filter (Haskell), 74
finish, 99
Firstk(x), 130
Fixpunkt, 33
Fixpunkt-Kombinator, 33
Flex, siehe Lex
Flynn’sche Klassifikation, 49
foldl, 78
foldr, 75, 78
Folds, 78
Followk(x), 130
Funktion

endrekursive, 17
linear rekursive, 17

rekursive, 15
Funktionskomposition, 69
Future, 57, 57

ge, 134
Grammatik, 143

Kontextfreie, 144
group, 77
gt, 134
Guard, 65

Haskell, 63–81
Heap, 133
Hirsch-Index, 76

iadd, 133
iaload, 133
iastore, 133
iconst_<i>, 133, 135
iconst_m1, 135
idiv, 133
if_icmp<comperator>, 134
iload_0, 133
ILP, 47
imul, 133, 133
Infix-Notation, 135
int, 105
Intersections, 77
invokevirtual, 135

Java, 55–61
Java Bytecode, 133–137
JIT, siehe Just-in-time Com-

piler

k-Anfang, 129
Kombinator, 25, 33

151 Stichwortverzeichnis

Kommunikator, 52
Kurzschlussauswertung, 29

Lauflängencodierung, 77
Lazy Evaluation, 73
le, 134
let, 68
let-Polymorphismus, 40
Lex, 126–127
Linksableitung, 144
List-Comprehension, 67, 77
LL(k)-Grammatik, 145
Logische Operatoren

C, 109
Haskell, 70
Scala, 94
X10, 99

Lookahead, 145
lt, 134

map, 18
tree, 79

Maschinensprache, 3
member, 85
message passing, 48
MIMD, 49
MISD, 49
Modifier, 105
Monitor, 51
MPI, 111–122
MPI datatypes, 112
MPI_Alltoall, 117
MPI_Bcast, 118
MPI_Comm, 111
MPI_Comm_rank, 113
MPI_Comm_size, 112

MPI_COMM_WORLD, 112
MPI_Gather, 119
MPI_Recv, 115
MPI_Reduce, 116
MPI_Scatter, 118
MPI_Send, 114
MPI_STATUS_IGNORE, 115

NC, siehe Nick’s Class
ne, 134
Nebeneffekt, siehe Seiteneffekt
Nichtterminal, 143
Nick’s Class, 49
Normalenreihenfolge, 29
Notation

polnische, siehe Präfixno-
tation

umgekehrte polnische, sie-
he Postfixnotation

Num, 76

Ord, 76

Parallelität, 47–53
Paterson-Wegman-Unifikationsalgorithmus,

12
PGAS, 97
Pipelining, 47
Polymorphie, 7
Polynome, 75
Postfixnotation, 135
Prädikatenlogik, 143
Präfixnotation, 135
Präzedenzregeln, 106
PRAM-Modell, 48
Produktionsregel, 143
Programm, 3

Stichwortverzeichnis 152

Programmiersprache, 3
höhere, 4

Programmierung
funktionale, 5
imperative, 5
logische, 6
prozedurale, 5

Prolog, 83–89
Promise, siehe Future
Punkt-zu-Punkt-Kommunikation,

52

Quantor, 143

Race-Condition, siehe Wett-
laufsituation

Rang, 52
rank, 111
Rechtsableitung, 144
Redex, 28
reduce, 18
Reduktion, 28–29

Alpha (α), 28
Beta (β), 28
Eta (η), 29

Rekursion, 15–17
remove, 87
Runnable, 55

Scala, 91–96
Schlussstrich, 39
Seiteneffekt, 10
Selbstapplikation, 44
Semaphore, 50
Short-circuit evaluation, 29
Shunting-yard-Algorithmus, 136
signed, 105

SIMI, 49
SISD, 49
SPARC, 4
Speicher

dynamischer, 133
split, 86
splitWhen, 77
Sprache, 144

domänenspezifische, 4
Startsymbol, 143
Stream, 75
Stringtabelle, 125
struct, 102
Syntaxbaum

abstrakter, 127
attributeriter, 127

tail, 75
tail recursive, 17
Thread, 55
ThreadPoolExecutor, 55
Token, 125
tree, 79
Turingkombinator, 34
Typ, siehe Datentyp
type, 73
types

constrained, 98
Typinferenz, 38, 71
Typisierung

dynamische, 7
explizite, 8
implizite, 8
statische, 7
strukturelle, 9

Typisierungsregel, 40

153 Stichwortverzeichnis

Typisierungsstärke, 7
Typkontext, 38
Typregel, 39

mit Typabstraktionen, 42
Typschema, 41
Typschemainstanziierung, 41
Typsubstituition, 39
Typsystem, 39
Typvariable, 38

Unifikation, 10
Unifikator

allgemeinster, 11
Union-Find-Algorithmus, 12
unsigned, 105
Unterversorgung, 74

val, 93, 98
var, 93, 98
Variable

freie, 25, 28
gebundene, 28

verzahnt, 48
Von-Neumann-Architektur, 48

Wettlaufsituation, 50
when, 100
where, 68
Wirkung, siehe Seiteneffekt

X10, 97–104
x86, 3

Y-Kombinator, 33

zip, 80
zipWith, 75, 75, 80

	1 Programmiersprachen
	1.1 Abstraktion
	1.2 Paradigmen
	1.3 Typisierung
	1.4 Kompilierte und interpretierte Sprachen
	1.5 Dies und das

	2 Programmiertechniken
	2.1 Rekursion
	2.2 Backtracking
	2.3 Funktionen höherer Ordnung

	3 Logik
	3.1 Prädikatenlogik erster Stufe
	3.1.1 Symbole
	3.1.2 Terme
	3.1.3 Ausdrücke
	3.1.4 1. Stufe
	3.1.5 Freie Variablen
	3.1.6 Metasprachliche Ausdrücke
	3.1.7 Substitutionen

	4 -Kalkül
	4.1 Reduktionen
	4.2 Auswertungsstrategien
	4.3 Church-Zahlen
	4.4 Church-Booleans
	4.5 Weiteres
	4.6 Fixpunktkombinator
	4.7 Literatur

	5 Typinferenz
	5.1 Typsystem
	5.2 Let-Polymorphismus
	5.3 Beispiele
	5.3.1 x. y. x y
	5.3.2 Selbstapplikation

	6 Parallelität
	6.1 Architekturen
	6.2 Prozesskommunikation
	6.3 Parallelität in Java
	6.4 Message Passing Modell

	7 Java
	7.1 Thread, ThreadPool, Runnable und ExecutorService
	7.2 Futures
	7.3 Beispiele
	7.4 Literatur

	8 Haskell
	8.1 Erste Schritte
	8.1.1 Hello World

	8.2 Syntax
	8.2.1 Klammern und Funktionsdeklaration
	8.2.2 if / else
	8.2.3 Rekursion
	8.2.4 Listen
	8.2.5 Strings
	8.2.6 Let und where
	8.2.7 Funktionskomposition
	8.2.8 $ (Dollar-Zeichen) und ++
	8.2.9 Logische Operatoren

	8.3 Typen
	8.3.1 Standard-Typen
	8.3.2 Typinferenz
	8.3.3 type
	8.3.4 data

	8.4 Lazy Evaluation
	8.5 Beispiele
	8.5.1 Quicksort
	8.5.2 Fibonacci
	8.5.3 Polynome
	8.5.4 Hirsch-Index
	8.5.5 Lauflängencodierung
	8.5.6 Intersections
	8.5.7 Funktionen höherer Ordnung
	8.5.8 Chruch-Zahlen
	8.5.9 Trees
	8.5.10 Standard Prelude

	8.6 Weitere Informationen

	9 Prolog
	9.1 Erste Schritte
	9.1.1 Hello World

	9.2 Syntax
	9.2.1 Arithmetik
	9.2.2 Listen

	9.3 Beispiele
	9.3.1 Humans
	9.3.2 Splits
	9.3.3 Delete
	9.3.4 Zebrarätsel

	9.4 Weitere Informationen

	10 Scala
	10.1 Erste Schritte
	10.1.1 Hello World

	10.2 Vergleich mit Java
	10.3 Syntax
	10.3.1 Logische Operatoren

	10.4 Companion Object
	10.5 actor
	10.5.1 Message Passing

	10.6 Weiteres
	10.7 Beispiele
	10.7.1 Wetter

	10.8 Weitere Informationen

	11 X10
	11.1 Erste Schritte
	11.2 Syntax
	11.2.1 Logische Operatoren
	11.2.2 Closures
	11.2.3 async
	11.2.4 atomic
	11.2.5 Bedingtes Warten
	11.2.6 Lokalisierung

	11.3 Datentypen
	11.3.1 Arrays
	11.3.2 struct

	11.4 Beispiele
	11.5 Weitere Informationen

	12 C
	12.1 Datentypen
	12.2 ASCII-Tabelle
	12.3 Syntax
	12.3.1 Logische Operatoren

	12.4 Präzedenzregeln
	12.5 Beispiele
	12.5.1 Hello World
	12.5.2 Pointer

	13 MPI
	13.1 Erste Schritte
	13.2 MPI Datatypes
	13.3 Funktionen
	13.4 Beispiele
	13.4.1 sum-reduce Implementierung
	13.4.2 broadcast Implementierung

	13.5 Weitere Informationen

	14 Compilerbau
	14.1 Funktionsweise
	14.2 Lexikalische Analyse
	14.2.1 Reguläre Ausdrücke
	14.2.2 Lex

	14.3 Syntaktische Analyse
	14.4 Semantische Analyse
	14.5 Zwischencodeoptimierung
	14.6 Codegenerierung
	14.7 Weiteres
	14.7.1 First- und Follow

	14.8 Literatur

	15 Java Bytecode
	15.1 Instruktionen
	15.1.1 if-Abfragen
	15.1.2 Konstanten

	15.2 Weiteres
	15.3 Polnische Notation
	15.4 Weitere Informationen

	Bildquellen
	Abkürzungsverzeichnis
	Ergänzende Definitionen
	Symbolverzeichnis
	Stichwortverzeichnis

