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Vorwort

Dieses Skript wird/wurde im Wintersemester 2013/2014 von Martin Thoma geschrieben. Es
beinhaltet die Mitschriften aus der Vorlesung von Prof. Dr. Herrlich sowie die Mitschriften einiger
Ubungen und Tutorien.

An dieser Stelle mochte ich Herrn Prof. Dr. Herrlich fiir einige Korrekturvorschlége und einen
gut strukturierten Tafelanschrieb danken, der als Vorlage fiir dieses Skript diente. Tatséchlich
basiert die Struktur dieses Skripts auf der Vorlesung von Herrn Prof. Dr. Herrlich und ganze
Abschnitte konnten direkt mit IATEX umgesetzt werden. Vielen Dank fiir die Erlaubnis, Thre
Inhalte in diesem Skript einbauen zu diirfen!

Vielen Dank auch an Frau Lenz und Frau Randecker, die es mir erlaubt haben, ihre Ubungsauf-
gaben und Losungen zu benutzen.

Das Skript ist kostenlos iiber martin-thoma.com/geotopo verfiighar. Wer es gerne in A5 (Schwarz-
Weif, Klebebindung) fiir ca. 10 Euro héitte, kann mir eine Email schicken (info@martin-thoma.de).

Was ist Topologie?

Die Kugeloberfliche S? lisst sich durch strecken, stauchen und umformen zur Wiirfeloberfliiche
oder der Oberfliche einer Pyramide verformen, aber nicht zum R? oder zu einem Torus 72. Fiir
den R? miisste man die Oberfliiche unendlich ausdehnen und fiir einen Torus miisste man ein

Loch machen.
(a) S?

(b) Wiirfel (c) Pyramide

Y

(d) R?

Abbildung 0.1: Beispiele fiir verschiedene Formen


http://martin-thoma.com/geotopo/

Erforderliche Vorkenntnisse

Es wird ein sicherer Umgang mit den Quantoren (V, 3), Mengenschreibweisen (U, N, \, 0, R, P(M))
und ganz allgemein formaler Schreibweise vorausgesetzt. Auch die Beweisfithrung mittels Wider-
spruchsbeweisen sollte bekannt sein und der Umgang mit komplexen Zahlen C, deren Betrag,
Folgen und Haufungspunkten nicht weiter schwer fallen. Diese Vorkenntnisse werden vor allem
in ,Analysis I vermittelt.

Auferdem wird vorausgesetzt, dass (affine) Vektorrdume, Faktorraume, lineare Unabhéngigkeit
und und der projektive Raum P(R) aus ,Lineare Algebra I bekannt sind. In ,Lineare Algebra
IT“ wird der Begriff der Orthonormalbasis eingefiihrt.

Obwohl es nicht vorausgesetzt wird, konnte es von Vorteil sein ,Einfiilhrung in die Algebra und
Zahlentheorie* gehort zu haben.
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1 Topologische Grundbegriffe

1.1 Topologische Raume

Definition 1
Ein topologischer Raum ist ein Paar (X, ¥) bestehend aus einer Menge X und T C P(X)
mit folgenden Eigenschaften

i) 0, Xe%
(ii) Sind Uy,Us € ¥, 80 ist Uy NUs € T

(iii) Ist I eine Menge und U; € ¥ fiir jedes i € I, so ist U U e%
el
Die Elemente von ¥ heiften offene Teilmengen von X.

A C X heifit abgeschlossen, wenn X \ A offen ist.

Es gibt auch Mengen, die weder abgeschlossen, noch offen sind wie z. B. [0,1). Auch gibt es
Mengen, die sowohl abgeschlossen als auch offen sind.

Bemerkung 1 (Mengen, die offen & abgeschlossen sind, existieren)
Betrachte ) und X mit der ,trivialen Topologie® Ty, = {0, X }.

Es gilt: X € Tund § € T, d. h. X und () sind offen. Auerdem X¢ = X\ X = () € T und
X\0=Xe%, d h X und 0 sind als Komplement offener Mengen abgeschlossen. [ ]

Beispiel 1 (Topologien)
1) X = R™ mit der euklidischen Metrik.

U C R" offen < fiir jedes z € U gibt es r > 0,
sodass B, (z) ={y e R" | d(z,y) <r} CU

Diese B Topologie wird auch ,Standardtopologie des R™ genannt. Sie beinhaltet
unter anderem alle offenen Kugeln, aber z. B. auch Schnitte zweier Kugeln mit
unterschiedlichem Mittelpunkt (vgl. Definition 1.ii).

2) Jeder metrische Raum (X, d) ist auch ein topologischer Raum.
3) Fiir eine Menge X heifit T = P(X) ,diskrete Topologie“.

4) X =R, T7:={U CR|R\U endlich } U{ 0} heift ,Zariski-Topologie*
Beobachtungen:

e Uec%y; < 3f e R[X],sodass R\U=V(f)={zeR| f(x)=0}

e Es gibt keine disjunkten offenen Mengen in Ty.
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5) X :=R", T, = {U C R"|Es gibt Polynome fi,..., f, € R[X1,...,X,] sodass
R*"\U =V (f1,..., fr)}

6) X:={0,1},%={0,{0,1},{0} } heilt ,Sierpinskiraum®.
0,{0,1},{1} sind dort alle abgeschlossenen Mengen.

Definition 2
Sei (X, T) ein topologischer Raum und z € X.

Eine Teilmenge U C X heifst Umgebung von x, wenn es ein Uy € ¥ gibt mit x € Uy und
Uy CU.

Definition 3
Sei (X, %) ein topologischer Raum und M C X eine Teilmenge.

a) M° = {x € M| M ist Ungebung von x } = U U heifit Inneres oder offener

UCM
Ue%

Kern von M.

b) M := m A heift abgeschlossene Hiille oder Abschluss von M.

MCA
A abgeschlossen

c) OM := M \ M° heikt Rand von M.

d) M heikt dicht in X, wenn M = X ist.

Beispiel 2
1) Sei X = R mit euklidischer Topologie und M = Q. Dann gilt: M = R und M° = ()

2) Sei X =R und M = (a,b). Dann gilt: M = [a, b]
3) Sei X =R, T =%, und M = (a,b). Dann gilt: M =R

Definition 4
Sei (X, %) ein topologischer Raum.

a) B C T heiftt Basis der Topologie T, wenn jedes U € T Vereinigung von Elementen
aus ‘B ist.

b) S C T heift Subbasis der Topologie ¥, wenn jedes U € T Vereinigung von endlichen
Durchschnitten von Elementen aus S ist.
Beispiel 3
1) Gegeben sei X = R™ mit euklidischer Topologie ¥. Dann ist

B ={B(r)]|r€Qs0,z€Q"}
ist eine abzahlbare Basis von ¥.

2) Sei (X, %) ein topologischer Raum mit X = {0,1,2} und T={0,{0},{0,1},X }.
Dann ist S = {0,{0,1},{0,2}} eine Subbasis von ¥, da gilt:

e Nes
e {0}={0,1}n{0,2}
e {0,1} €S

e X={0,11U{0,2}
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Allerings ist S keine Basis von (X, T), da { 0 } nicht als Vereinigung von Elementen
aus S erzeugt werden kann.

Bemerkung 2
Sei X eine Menge und § C P(X). Dann gibt es genau eine Topologie ¥ auf X, fiir die S
Subbasis ist.
Definition 5
Sei (X, ¥) ein topologischer Raum und Y C X.
Ty :={UNY | U € ¥} ist eine Topologie auf Y.

Ty heift Teilraumtopologie und (Y, Ty ) heift ein Teilraum von (X, %).

Die Teilraumtopologie wird auch Spurtopologie oder Unterraumtopologie genannt.

Definition 6
Seien X7, X5 topologische Rdume.
U C X; x Xo sei offen, wenn es zu jedem z = (z1,22) € U Umgebungen U; um x; mit
1= 1,2 gibt, sodass Uy x Uy C U gilt.

T ={U C X1 x Xa | U offen } ist eine Topologie auf X; x Xs. Sie heift Produkttopologie.
B ={U; x Uy | U offen in X;,7 = 1,2} ist eine Basis von ¥.

Xs

X
Us $x9 °

X1

Abbildung 1.1: Zu x = (21, 22) gibt es Umgebungen Uy, Uy mit Uy x Us C U

Beispiel 4 (Produkttopologien)
1) X; = X3 = R mit euklidischer Topologie.
= Die Produkttopologie auf R x R = R? stimmt mit der euklidischen Topologie auf
R? iiberein.
2) X1 = X5 = R mit Zariski-Topologie. T Produkttopologie auf R?: Uy x Us
(Siehe Abbildung 1.2)

Definition 7
Sei X ein topologischer Raum, ~ eine Aquivalenzrelation auf X, X = X/ sei die Menge
der Aquivalenzklassen, 7: 2 — T, z+ [7]~.

Ty::{UQY‘Tr_l(U)E‘ZX}

(X, %) heift Quotiententopologie.
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N\ =2

Uy =R\N

Abbildung 1.2: Zariski-Topologie auf R?

Beispiel 5
X=Ra~b:sa—-beZ

0~1,d b [0] =[]

Beispiel 6
Sei X = R? und (71,v1) ~ (22,92) © o1 — 22 € Z und y; — y2 € Z. Dann ist X/ ein
Torus.

Beispiel 7 (Projektiver Raum)

X=R"\{0}, z~yeIINcR  mity=>\z
< x und y liegen auf der gleichen

Ursprungsgerade

Also fir n = 1:
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1.2 Metrische Raume

Definition 8
Sei X eine Menge. Eine Abbildung d : X x X — Rar heifit Metrik, wenn gilt:

(i) Definitheit: dlz,y) =0 x=y Vr,ye X
(ii) Symmetrie: d(z,y) =d(y,z) Vr,ye X
(iii) Dreiecksungleichung: d(z,z) < d(x,y) +d(y,z) Vz,y,z € X
Das Paar (X, d) heifst ein metrischer Raum.

Bemerkung 3
Sei (X, d) ein metrischer Raum und

B.(r):={ycX|dxy) <r} firre X,rcR"

B ist Basis einer Topologie auf X.
Definition 9
Seien (X,dx) und (Y, dy) metrische Rdume und ¢ : X — Y eine Abbildung mit

Vai,xe € X 1 dx(z1,22) = dy (p(z1), 0(22))

Dann heiftt ¢ eine Isometrie von X nach Y.

Beispiel 8 (Skalarprodukt erzeugt Metrik)
Sei V' ein euklidischer oder hermitescher Vektorraum mit Skalarprodukt (-,-). Dann wird V'

durch d(z,y) := \/{x — y,x — y) zum metrischen Raum.

Beispiel 9 (diskrete Metrik)
Sei X eine Menge. Dann heift

d(z,y) 0 fallsx =y
T,y) =
Y7V falls 2 £y

die diskrete Metrik. Die Metrik d induziert die diskrete Topologie.
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(a) B,-(0) (b) Euklidische Topologie

Abbildung 1.3: Veranschaulichungen zur Metrik d

Beispiel 10
X =R? und d ((z1,1), (22, 92)) := max(||z1 — z2||, |y1 — o) ist Metrik.

Beobachtung: d erzeugt die euklidische Topologie.

Beispiel 11 (SNCF-Metrik!)
X =R?

Definition 10
Ein topologischer Raum X heifit hausdorffsch, wenn es fiir je zwei Punkte z # y in X
Umgebungen U, um z und U, um y gibt, sodass U, N U, = 0.

Bemerkung 4 (Trennungseigenschaft)
Metrische Rdume sind hausdorffsch, da

d(z,y) >0=3e>0:B.(x)NB.(y) =0

Beispiel 12 (Topologische Rdume und Hausdorff-Riaume)
1) (R,%z) ist ein topologischer Raum, der nicht hausdorffsch ist.

2) (R, %) ist ein topologischer Raum, der hausdorffsch ist.

'Diese Metrik wird auch ,,franzosische Eisenbahnmetrik* genannt.


https://de.wikipedia.org/wiki/Franz%C3%B6sische_Eisenbahnmetrik
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Bemerkung 5 (Eigenschaften von Hausdorff-Ridumen)
Seien X, X7, X9 Hausdorff-Rdume.

a) Jeder Teilraum von X ist hausdorffsch.

b) X; x Xy ist hausdorffsch.

»

JISIII SIS SIS 7777777

FAS S X S S S S S S S S
S S S S
S S S S

5

1,111) 27y2)

//////////{?/////////
ST

A A A S A A

Xi

S
N ///////////é

xy

Ui x Xo Us x X5

Abbildung 1.4: Wenn X1, X5 hausdorffsch sind, dann auch X; x Xo

Definition 11
Sei X ein topologischer Raum und (z),en eine Folge in X. x € X heift Grenzwert oder
Limes von (z,), wenn es fiir jede Umgebung U von z ein ng gibt, sodass x,, € U fiir alle
n > ng.

Bemerkung 6
Ist X hausdorffsch, so hat jede Folge in X hochstens einen Grenzwert.

Beweis: Sei (x,) eine konvergierende Folge und x und y Grenzwerte der Folge.

Da X hausdorffsch ist, gibt es Umgebungen U, von x und U, von y mit U, N U, = 0 falls
x #y. Da (x,) gegen x und y konvergiert, existiert ein ng mit x,, € U, N U,y fiir alle n > ng
==y [ ]

1.3 Stetigkeit

Definition 12
Seien (X, %Tx), (Y, %Ty) topologische Rdume und f : X — Y eine Abbildung.

a) f heift stetig := VU € Ty : f~1(U) € Tx.

b) f heit Homdomorphismus, wenn f stetig ist und es eine stetige Abbildung g :
Y — X gibt, sodass go f =idx und fog =idy.

Bemerkung 77
Seien X, Y metrische Rdume und f: X — Y eine Abbildung.

Dann gilt: f ist stetig < zu jedem x € X und jedem e > 0 gibt es §(z,¢) > 0, sodass fiir
alle y € X mit d(z,y) <0 gilt dy(f(x), f(y)) <e.

?Es wird die Aquivalenz von Stetigkeit im Sinne der Analysis und Topologie auf metrischen Riumen gezeigt.
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Beweis: = Sei x € X,e > 0 gegeben und U := B.(f(x)).
Dann ist U offen in Y.
Lub 124 f7YU) ist offen in X. Dann ist = € f~1(U).

= 3§ > 0, sodass Bs(z) C f~1(U)
= f(Bs(z)) CU
= {ye X |dx(z,y) <} = Beh.

,<“ Sei U CY offen, X € f~1(U).
Dann gibt es € > 0, sodass B.(f(x))

cU
Yor, g gibt § > 0, sodass f(’B(;( ) CB(f(x)))
= B;(z) € fH(B(f(x)) € (V) u

Bemerkung 8
Seien XY topologische Rdume und f : X — Y eine Abbildung. Dann gilt:

f ist stetig
& fiir jede abgeschlossene Teilmenge A C Y gilt : f~1(A) C X ist abgeschlossen.

Beispiel 13 (Stetige Abbildungen und Homdomorphismen)
1) Fiir jeden topologischen Raum X gilt: idx : X — X ist Homdomorphismus.

2) Ist Y trivialer topologischer Raum, d. h. ¥ = %4y, so ist jede Abbildung f: X — Y
stetig.

3) Ist X diskreter topologischer Raum, so ist f: X — Y stetig fiir jeden topologischen
Raum Y und jede Abbildung f.

4) Sei X =[0,1),Y =St ={z2€C||z]| =1} und f(¢) = e*™ Die Umkehrabbildung g

Abbildung 1.5: Beispiel einer stetigen Funktion f, deren Umkehrabbildung g nicht stetig ist.

ist nicht stetig, da g1 (U) nicht offen ist (vgl. Abbildung 1.5).

Bemerkung 9 (Verkettungen stetiger Abbildungen sind stetig)
Seien X, Y, Z topologische Raume, f: X — Y und ¢g: Y — Z stetige Abbildungen.

X ! Y
S
Z

Beweis: Sei U C Z offen = (go f)"Y(U) = f~1 (g7 (U)). g71(U) ist offen in Y weil g stetig
ist, f~1(g71(U)) ist offen in X, weil f stetig ist. [ |

Dann ist go f : X — Z stetig.

Bemerkung 10
a) Fiir jeden topologischen Raum ist

Homéo(X) :={ f: X — X | f ist Hombomorphismus }

eine Gruppe.
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b) Jede Isometrie f: X — Y zwischen metrischen Radumen ist ein Homéomorphismus.

c) Iso(X) := {f: X — X | f ist Isometrie } ist eine Untergruppe von Homoo(X) fiir
jeden metrischen Raum X.

Bemerkung 11 (Projektionen sind stetig)

Seien X, Y topologische Rdume. 7x : X XY — X und 7y : X x Y — Y die Projektionen

wx i (z,y) = zund 7y : (z,y) =y

Wird X x Y mit der Produkttopologie versehen, so sind mx und 7y stetig.
Beweis: Sei U C X offen = 7,1 (U) = U x Y ist offen in X x Y. [
Bemerkung 12

Sei X ein topologischer Raum, ~ eine Aquivalenzrelation auf X, X = X/ der Bahnenraum

versehen mit der Quotiententopologie, m: X — X, x +— [z]~.

Dann ist 7 stetig.

Beweis: Nach Definition ist U C X offen < 7~1(U) C X offen. [

Beobachtung: Die Quotiententopologie ist die feinste Topologie, sodass 7 stetig wird.

Beispiel 14 (Stereographische Projektion)
R™ und S™\ { N } sind hom6omorph fiir beliebiges N € S™. Es gilt:

" ={zeR™ ||z =1}

n+1
— +1 2
= { z € R" E x; }
i=1

O.B.d. A . sei N = 0 . Die Gerade durch N und P schneidet die Ebene H in genau

1
einem Punkt P. P wird auf P abgebildet.

FIST\{N} SR
genau ein Punkt

——
P— LpNnH

z
wobei R* = H = : e R | 2,1 =0 » und Lp die Gerade in R**! durch N
Tn+1
und P ist.
€1
Sei P = : , S0 ist xp41 < 1, also ist Lp nicht parallel zu H. Also schneiden sich Lp
Tp+1

und H in genau einem Punkt P.

Es gilt: f ist bijektiv und die Umkehrabbildung ist ebenfalls stetig.
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Abbildung 1.6: Visualisierung der stereographischen Projektion

1.4 Zusammenhang

Definition 13
FEin Raum X heiftt zusammenhingend, wenn es keine offenen, nichtleeren Teilmengen
U1,Us von X gibt mit Uy NUs = 0und U UU, = X.

Bemerkung 13
X ist zusammenhéngend < Es gibt keine abgeschlossenen, nichtleeren Teilmengen Ap, As
mit Aj N Ay =0 und 41 UAs = X.

Bemerkung 14
Eine Teilmenge Y C X heifst zusammenhéngend, wenn Y als topologischer Raum mit der
Teilraumtopologie zusammenhéngend ist.

Beispiel 15 (Zusammenhang von Ridumen)
1) R™ ist mit der euklidischen Topologie zusammenhéngend, denn:

Annahme: R" = U; U Uy mit U; offen, U; # () und Uy N Us = ) existieren.

Sei x € U,y € Us und [z,y] die Strecke zwischen z und y. Dann ist U; N [z, y] die
Vereinigung von offenen Intervallen. Dann gibt es z € [z, y] mit z € (U N[z, y]), aber
z ¢ Up = z € Us. In jeder Umgebung von z liegt ein Punkt von U; = Widerspruch
zu Uy offen.

2) R\ {0} ist nicht zusammenhéngend, denn R\ { 0 } = Ro UR>
3) R?2\ {0} ist zusammenhingend.
4) Q ¢ R ist nicht zusammenhéngend, da (QNR_ 5)U(QNR, 5)=Q
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5) { z } ist zusammenhéngend fiir jedes x € X, wobei X ein topologischer Raum ist.

6) R mit Zariski-Topologie ist zusammenhéangend.
Bemerkung 15

Sei X ein topologischer Raum und A C X zusammenhingend. Dann ist auch A zusammen-
héngend.

Beweis: durch Widerspruch
Annahme: A = A; U Ay, A; abgeschlossen, A; # 0, AN Ay =0

= A= (AﬁAl) U (AQAQ)

abgeschlossen  abgeschlossen

disjunkt

Wire ANA; =0

= A - A= Al U A2

=AC A = A C A,

= A =0

= Widerspruch zu A; # ()

= AN A; # () und analog AN Ay # ()

= Widerspruch zu A ist zusammenhéngend. [ ]
Bemerkung 16

Sei X ein topologischer Raum und A, B C X zusammenhéingend.

Ist AN B # (), dann ist A U B zusammenhéngend.
Beweis: Sei AU B = U, UUs, U; # 0 offen

SBL2 A= (ANUY) U (ANTY) offen

A zhgd. AﬂUlZQ)

AVBA 1 c B

B = (BNU;)U(BNUs) ist unerlaubte Zerlegung.
T T
—U; =

Definition 14
Sei X ein topologischer Raum.

Fiir x € X sei Z(x) C X definiert durch

Z(x) heifst Zusammenhangskomponente.

Bemerkung 17
Sei X ein topologischer Raum. Dann gilt:
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a) Z(X) ist die grofte zusammenhéngende Teilmenge von X, die = enthélt.
b) Z(X) ist abgeschlossen.

¢) X ist disjunkte Vereinigung von Zusammenhangskomponenten.

Beweis:
a) Sei Z(x) = A1 U Ay mit A; # () abgeschlossen.
O.B.d. A.sei z € A; und y € As. y liegt in einer zusammeh&ngenden Teilmenge A,
die auch x enthélt. = A = (AN A1) U (AN Ay) ist unerlaubte Zerlegung.
—_——— ——

o oY

b) Nach Bemerkung 15 ist Z(z) zusammenhéngend = Z(z) C Z(z) = Z(x) = Z(x)

c) Ist Z(y) N Z(x) £ 0 B 26 Z(y) U Z(x) ist zusammenhéngend.

Bemerkung 18
Sei f: X — Y stetig. Ist A C X zusammenhéngend, so ist f(A4) C Y zusammenhéngend.

Beweis: Sei f(A) = Uy UU,, U; # 0, offen, disjunkt.
= [ (f(A) = 1 (U) U fH(Ua)
= A= (AnfHU)UAN f(Ua) u
20 20

1.5 Kompaktheit

Definition 15
Sei X eine Menge und 4 C P(X).

$( heifit eine Uberdeckung von X, wenn gilt:

Vee X:AMelld:ze M

Definition 16
Ein topologischer Raum X heit kompakt, wenn jede offene Uberdeckung von X

U={Uj},c; mit U; offen in X
eine endliche Teiliiberdeckung

JUi = X mit [J] e N
eJCI

besitzt.
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Bemerkung 19

Das Einheitsintervall I := [0, 1] ist kompakt beziiglich der euklidischen Topologie.

Beweis: Sei (U;);cs eine offene Uberdeckung von 1.

Es geniigt zu zeigen, dass es ein § > 0 gibt, sodass jedes Teilintervall der Linge § von I in
einem der U; enthalten ist. Wenn es ein solches § gibt, kann man I in endlich viele Intervalle
der Linge 6 unterteilen und alle U; in die endliche Uberdeckung aufnehmen, die Teilintervalle
enthalten.

Angenommen, es gibt kein solches 6. Dann gibt es fiir jedes n € N ein Intervall I,, C [0, 1]
der Lange 1/n sodass I, C U; fur alle i € J.

=

Sei @y, der Mittelpunkt von I,,. Die Folge (z,,) hat einen Haufungspunkt x € [0, 1]. Dann
gibt es i € J mit x € U;. Da Uj; offen ist, gibt es ein ¢ > 0, sodass (r —e,x +¢) C Uj.
Dann gibt es ng, sodass gilt: 1/n, < €/2 und fiir unendlich viele® n > ng : |z — x,| < /2, also
I, C (z — &,z +¢) C U; fiir mindestens ein n € N.*

= Widerspruch

Dann iiberdecke [0, 1] mit endlich vielen Intervallen Iy, ..., I der Lange §. Jedes I; ist in
U;; enthalten.

= Uj,,...,Uj, ist endliche Teiliiberdeckung von U. |

Beispiel 16 (Kompakte Raume)

1) R ist nicht kompakt.

2) (0,1) ist nicht kompakt.
Up = (1/”7 1- 1/") = UneN Un = (07 1)

3) R mit der Zariski-Topologie ist kompakt und jede Teilmenge von R ist es auch.

Bemerkung 20

Sei X kompakter Raum, A C X abgeschlossen. Dann ist A kompakt.

Beweis: Sei (V;);er offene Uberdeckung von A.

Dann gibt es fiir jedes i € I eine offene Teilmenge U; C X mit V; = U; N A.

i€l
=U={U;|icT}U{X\ A} ist offene Uberdeckung von X
% es gibt i1,...,1, € I, sodass UUijU(X\A):
j=1

CJUZ-J.U(X\A) NA=A

J=1

UU NA)U(X\A)NA) =A
% _,—/

=V;i. =

J

= Vi,,..., Vi, liberdecken A.

in

3Dies gilt nicht fiir alle n > ng, da ein Haufungspunkt nur eine konvergente Teilfolge impliziert.
4Sogar fiir unendlich viele.
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Bemerkung 21
Seien X,Y kompakte topologische Raume. Dann ist X x Y mit der Produkttopologie
kompakt.

Beweis: Sei (W;);es eine offene Uberdeckung von X x Y. Fiir jedes (z,y) € X x Y gibt es
offene Teilmengen U, , von X und V, , von Y sowie ein i € I, sodass U,y x Vi, C W;.

X
W;

Abbildung 1.7: Die blaue Umgebung ist Schnitt vieler Umgebungen

Die offenen Mengen Uy, , x V4 fiir festes g und alle y € Y iiberdecken { ¢ } x y. Da Y

kompakt ist, ist auch { zg } X Y kompakt. Also gibt es y1,. .., Yy () mit U:-i(lzo) Usoy; X
on,yi D) {1’0 } xY.

Sei Uy, := ﬂ;i(lx) Uso,y;- Da X kompakt ist, gibt es z1,...,2, € X mit Jj_, Uy, = X
= UL UMY (Uayy x Vi) 2X xY

-~
Ein griin-oranges Kéastchen

:>Uj UZWZ(J/‘],yZ) =XxY |

Bemerkung 22
Sei X ein Hausdorffraum und K C X kompakt. Dann ist K abgeschlossen.

Beweis: z. Z.: Komplement ist offen

Ist X = K, so ist K abgeschlossen in X. Andernfalls sei y € X \ K. Fiir jedes x € K seien
U, bzw. V,, Umgebungen von = bzw. von y, sodass U, NV, = 0.

Da K kompakt ist, gibt es endlich viele z1,...,z, € K, sodass |J;" | U, 2 K.
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Sei V := ﬁ Va,

i=1
=Vn (U U%) =0
=1
=VNK=10
= V ist Uberdeckung von y, die ganz in X \ K enthalten ist.
= X \ K ist offen

Damit ist K abgeschlossen. ]

Bemerkung 23
Seien X,Y topologische Raume, f : X — Y stetig. Ist K C X kompakt, so ist f(K) CY
kompakt.

Beweis: Sei (V;)es offene Uberdeckung von f(K)
S stetig (f~1(Vi))ier ist offene Uberdeckung von K
Kompalt, o gibt i1, ...,4,, sodass f~1(Vi),..., f~1(Vi,) Uberdeckung von K ist.
= f(f1 Vi), F(f1(V,)) iiberdecken f(K).

Es gilt: f(f~Y(V)) =V N f(X) [ |

Satz 1.1 (Heine-Borel)
Eine Teilmenge von R™ oder C" ist genau dann kompakt, wenn sie beschrankt und

abgeschlossen ist.

Beweis: ,,=“ Sei K C R" (oder C™) kompakt.

Da R™ und C™ hausdorffsch sind, ist K nach Bemerkung 22 abgeschlossen. Nach Vorausset-
zung kann K mit endlich vielen offenen Kugeln von Radien 1 iiberdeckt werden = K ist

beschrankt.

»,<="Sei A CR" (oder C") beschrénkt und abgeschlossen.

Dann gibt es einen Wiirfel W = [N, N] x --- X [N, N] mit A C W bzw. ,Polyzylinder*

n mal

Z={(z1,...,2n) €C" |z <Nfiri=1,...,n}

Nach Bemerkung 21 und Bemerkung 19 ist W kompakt, also ist A nach Bemerkung 20 auch
kompakt. Genauso ist Z kompakt, weil

{zeC| 2 <1}

homdéomorph zu
{(@y) eR? ||z, y)l <1}

ist.
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1.6 Wege und Knoten

Definition 17
Sei X ein topologischer Raum.

a) Ein Weg in X ist eine stetige Abbildung v : [0,1] — X.
b) v heift geschlossen, wenn v(1) = v(0) gilt.
c) 7 heikt einfach, wenn 7|o ;) injektiv ist.
Beispiel 17
Ist X diskret, so ist jeder Weg konstant, d. h. von der Form
Ve e [0,1] :y(z) =¢, c€X

Denn ([0, 1]) ist zusammenhéngend fiir jeden Weg ~.

Definition 18
Ein topologischer Raum X heift wegzusammenhingend, wenn es zu je zwei Punkten
z,y € X einen Weg 7 : [0,1] — X gibt mit v(0) = z und (1) = y.

Bemerkung 24
Sei X ein topologischer Raum.

a) X ist wegzusammenhéngend = X ist zusammenhéngend

b) X ist wegzusammenhéngend ¢ X ist zusammenhéngend

Beweis:

a) Sei X ein wegzusammenhéngender topologischer Raum, A;, A nichtleere, disjunkte,
abgeschlossene Teilmengen von X mit A; UAy = X. Sei x € Ay,y € A,y :[0,1] - X
ein Weg von x nach y.

Dann ist C' :=~([0,1]) € X zusammenhéngend, weil -y stetig ist.

C=(CNA)UCNA)
Sx oY

ist Zerlegung in nichtleere, disjunkte, abgeschlossene Teilmengen = Widerspruch
b) SeiX:{(m,y) c R? ’m2+y2:1\/y:1+2-6_%“” }
Abbildung 1.8a veranschaulicht diesen Raum.

Sei Uy UUy = X,Uy # Uy = (0, U; offen. X = CUS. Dann ist C C Uy oder C C Uy,
weil C' und S zusammenhéngend sind.

Also ist C = U; und S = Us (oder umgekehrt).
Sei y € C =Uy,e > 0 und B.(y) C Uy eine Umgebung von y, die in Uy enthalten ist.

Aber: B.(y) NS # 0 = Widerspruch = X U S ist zusammenhéngend, aber nicht
wegzusammenhangend. ]

Beispiel 18 (Hilbert-Kurve)
Es gibt stetige, surjektive Abbildungen [0, 1] — [0,1] x [0, 1]. Ein Beispiel ist die in Abbil-
dung 1.9 dargestellte Hilbert-Kurve.
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h | — {(z,sin(L)) € X x Y}
(_17 1) cY
L LIV
I
(a) Spirale S mit Kreis C (b) Sinus

Abbildung 1.8: Beispiele fiir Rdume, die zusammenhéngend, aber nicht wegzusammenhéngend
sind.

Abbildung 1.9: Hilbert-Kurve

Definition 19
Sei X ein topologischer Raum. Eine (geschlossene) Jordankurve in X ist ein Homdomor-
phismus v : [0,1] = C C X (y: 8! — C C X)

Satz 1.2 (Jordanscher Kurvensatz)
Ist C = 7([0,1]) eine geschlossene Jordankurve in R?, so hat R?\ C genau zwei
Zusammenhangskomponenten, von denen eine beschrankt ist und eine unbeschrénkt.

S innen

—— Jordankurve

Abbildung 1.10: Die unbeschrinkte Zusammenhangskomponente wird hiufig inneres, die be-
schrankte dufseres genannt.

Beweis: ist technisch mithsam und wird hier nicht gefiihrt. Er kann in ,Algebraische Topologie:
Eine Einfiihrung“ von R. Stécker und H. Zieschang auf S. 301f (ISBN 978-3519122265)
nachgelesen werden.

Idee: Ersetze Weg C' durch Polygonzug.
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Definition 20
Eine geschlossene Jordankurve in R? heift Knoten.

Beispiel 19 (Knoten)

C&HGY

) Trivialer Knoten ) Kleeblattknoten ) Achterknoten ) 62-Knoten

Abbildung 1.11: Beispiele fiir verschiedene Knoten
Definition 21
Zwei Knoten 71,72 : ST — R? heifen diquivalent, wenn es eine stetige Abbildung
H:S'x0,1] - R3

gibt mit

und fiir jedes feste ¢ € [0, 1] ist
H,:S' 5 R3 2+ H(z1t)

ein Knoten. Die Abbildung H heifst Isotopie zwischen v und ~s.

Definition 22
Ein Knotendiagramm eines Knotens + ist eine Projektion 7 : R3 — E auf eine Ebene E,
sodass |(m|C)~1(z)| < 2 fiir jedes x € D.

Ist (7|C)~Y(z) = {y1,92 }, so liegt y; iiber yo, wenn (y; — x) = A(y2 — ) fiir ein A > 1 ist.

Satz 1.3 (Satz von Reidemeister)
Zwei endliche Knotendiagramme gehoren genau dann zu dquivalenten Knoten, wenn sie
durch endlich viele ,Reidemeister-Ziige ineinander iiberfithrt werden kénnen.

Beweis: Durch sorgfiltige Fallunterscheidung.’

Definition 23
Ein Knotendiagramm heifst 3-farbbar, wenn jeder Bogen von D so mit einer Farbe gefarbt
werden kann, dass an jeder Kreuzung eine oder 3 Farben auftreten und alle 3 Farben
auftreten.

5Siehe ,;JKnot Theory and Its Applications® von Kunio Murasugi. ISBN 978-0817638177.
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(c) Qs

Abbildung 1.12: Reidemeister-Ziige

Abbildung 1.13: Ein 3-gefiarber Kleeblattknoten
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Ubungsaufgaben
Aufgabe 1 (Sierpinskiraum)

Essei X :={0,1} und Tx :={0,{0},X }. Dies ist der sogenannte Sierpiniskiraum.
(a) Beweisen Sie, dass (X, ¥ x) ein topologischer Raum ist.
(b) Ist (X, Tx) hausdorffsch?

(c) Ist Tx von einer Metrik erzeugt?

Aufgabe 2

Es sei Z mit der von den Mengen U, := a+ bZ(a € Z,b € Z\ { 0 }) erzeugten Topologie
versehen.

Zeigen Sie:
(a) Jedes U,y und jede einelementige Teilmenge von Z ist abgeschlossen.
(b) { —1,1} ist nicht offen.

(c) Es gibt unendlich viele Primzahlen.

Aufgabe 3 (Cantorsches Diskontinuum)

Fiir jedes i € N sei P; := { 0,1 } mit der diskreten Topologie. Weiter Sei P := [[;cy Bi-
(a) Wie sehen die offenen Mengen von P aus?

(b) Was konnen Sie iiber den Zusammenhang von P sagen?

Aufgabe 4 (Kompaktheit)

(a) Ist GL,(R) ={ A € R™*"™ | det(A) # 0 } kompakt?
(b) Ist SL,(R) = { A € R™™" | det(A) = 1 } kompakt?

(c) Ist P(R) kompakt?

Aufgabe 5 (Begriffe)

Definieren sie die Begriffe ,Homomorphismus“ und ,,Homéomorphismus®.

Geben Sie, falls moglich, ein Beispiel fiir folgende Félle an. Falls es nicht moglich ist,
begriinden Sie warum.

1) Ein Homomorphismus, der zugleich ein Homéomorphismus ist,

2) ein Homomorphismus, der kein Homéomorphismus ist,
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3) ein Homéomorphismus, der kein Homomorphismus ist



2 Mannigfaltigkeiten und
Simplizialkomplexe

2.1 Topologische Mannigfaltigkeiten

Definition 24
Sei (X, T) ein topologischer Raum und n € N.

a) Eine n-dimensionale Karte auf X ist ein Paar (U, ¢), wobei U € Tund ¢ : U — V
Homo6omorphismus von U auf eine offene Teilmenge V' C R™.

b) Ein n-dimensionaler Atlas A auf X ist eine Familie (U;, ¢;)icr von Karten auf X,
sodass (J;c; Ui = X.

¢) X heifit (topologische) n-dimensionale Mannigfaltigkeit, wenn X hausdorffsch ist,
eine abzéhlbare Basis der Topologie hat und ein n-dimensionalen Atlas besitzt.

Bemerkung 25
a) Es gibt surjektive, stetige Abbildungen [0, 1] — [0, 1] x [0, 1]

b) Fiir n # m sind R™ und R nicht homéomorph. Zum Beweis benutzt man den ,Satz
von der Gebietstreue* (Brouwer):

Ist U C R™ offen und f: U — R" stetig und injektiv, so ist f(U) offen.

Ist n < m und R™ homéomorph zu R", so wére
f:R" - R™ 5 R", (21,...,2,) — (x1,22,...,2p,0,...,0)

eine stetige injektive Abbildung. Also miisste f(R"™) offen sein = Widerspruch

Beispiel 20 (Mannigfaltigkeiten)
1) Jede offene Teilmenge U C R™ ist eine n-dimensionale Mannigfaltigkeit mit einem
Atlas aus einer Karte.

2) C™ ist eine 2n-dimensionale Mannigfaltigkeit mit einem Atlas aus einer Karte:

(21, s 2n) = (R(21),S(21), - - -, R(2n), S(20))

3) P*(R) = (R"™1\ {0})/~ = 5"/ und P*(C) sind Mannigfaltigkeiten der Dimension
n bzw. 2n, da gilt:

Sei Uy :=={(zo:---:ap) € P"(R) |2 #0} Vi €0,...,n. Dann ist P*"(R) = J;"_, U;
und die Abbildung

Ui—>Rn



2.1. TOPOLOGISCHE MANNIGFALTIGKEITEN

x T x
(zg:--:xp) — (—0 ...,—l,...,—n)

LL‘i’ Ty xI;
(1o ryimr Loyt yn) < (Y1, -5 Yn)
ist bijektiv.

Die U; mit ¢ = 0,...,n bilden einen n-dimensionalen Atlas:
r=(1:0:0) € Uy — R x+— (0,0)
y=(0:1:1) €Uy — R? y > (0,1)

Umgebung: B:(0,1) = { (1:u:v) | |[(w,0)|| <1} =W
Umgebung: B1(0,1) = { (w:z:1) |w?+22 <1} =V,

VinVy =07
(a:b:c)eVinV,
=a#0und (2)?2+ ()2 <1=<<1
=c#0und (2 +(2)?<1=2<1
= Widerspruch
4) S ={x € R"™ | ||lz|| =1} ist n-dimensionale Mannigfaltigkeit.
Karten:
D, = {(il,‘l, C ,:l?n_H) S Sn|l‘l > 0} — %1(0, c ,0)
———

eRn
Ci = {(xla s 71"n+1) € Sn|wl < O}

(acl,... ,xn+1) — (.’1}1,. ce s T ..,xn+1)1
(T1,. . @n) = (@1, .. Tim1, /L = Y p T2, T4, ..., T, oder —y/1 = >0 @2 fiir Cj
S" = U?:Jrll(cl U Dl)

5) [0, 1] ist keine Mannigfaltigkeit, denn:
Es gibt keine Umgebung von 0 in [0, 1], die homéomorph zu einem offenem Intervall
ist.

6) Vi ={(z,y) €R?|z-y =0} ist keine Mannigfaltigkeit.
Das Problem ist (0,0). Wenn man diesen Punkt entfernt, zerfillt der Raum in 4

Zusammenhangskomponenten. Jeder R™ zerféllt jedoch in hochstens zwei Zusammen-
hangskomponenten, wenn man einen Punkt entfernt.

7) Vo ={(z,y) € R? ‘ 2® = y? } ist eine Mannigfaltigkeit.
8) X = (R\{0})U(01,02)

Uoffen in R\ {0}, falls0; ¢ U,0,€U

U C X offen &
Je>0:(—,e) CU falls0; €U,0,€U

Insbesondere sind (R\ {0})U{0; } und (R\{0})U{02} offen und homéomorph
zu R.

Lo wird rausgenommen
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Aber: X ist nicht hausdorffsch! Denn es gibt keine disjunkten Umgebungen von 0
und 0s.

9) GL,(R) ist eine Mannigfaltigkeit der Dimension n?, weil offene Teilmengen von R"
eine Mannigfaltigkeit bilden.

Definition 25
Seien X, Y n-dimensionale Mannigfaltigkeiten, U C X und V C Y offen, ® : U — V ein Ho-
moomorphismus Z = (X UY)/~ mit der von u ~ ®(u) Yu € U erzeugten Aquivalenzrelation
und der von ~ induzierten Quotiententopologie.

Z heifit Verklebung von X und Y langs U und V. Z besitzt einen Atlas aus n-dimensionalen
Karten. Falls Z hausdorffsch ist, ist Z eine n-dimensionale Mannigfaltigkeit.

Bemerkung 26
Sind X,Y Mannigfaltigkeiten der Dimension n bzw. m, so ist X x Y eine Mannigfaltigkeit
der Dimension n 4+ m.

Beweis: Produkte von Karten sind Karten. [ |

Beispiel 21
Mannigfaltigkeiten mit Dimension 1:

1) Offene Intervalle, R, (0,1) sind alle homéomorph
2) St
Mannigfaltigkeiten mit Dimension 2:
1) R?
2) 5% (0 Henkel)
3) T? (1 Henkel)
)

4) oder mehr Henkel, wie z.B. der Zweifachtorus in Abbildung 2.1

L
—

Abbildung 2.1: Zweifachtorus
Bemerkung 27
Sein € N, F : R" — R stetig differenzierbar und X = V(F) := {z € R" | F(x) =0 } das
,vanishing set*.
Dann gilt:
a) X ist abgeschlossen in R”
b) Ist grad(F)(X) #0 Vz € X, so ist X eine Mannigfaltigkeit der Dimension n — 1.

Beweis:
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a) Seiy € R"\ V(F). Weil F stetig ist, gibt es 6 > 0, sodass F(B;5(y)) C B.(F(y)) mit
e = 3||F(y)||. Folgt Bs(y) NV (F) =0 = R"\ V(F) ist offen.
b) Sei x € X mit grad(F)(z) # 0, also o. B. d. A. 88—)};1(3:) #0, z = (z1,...,Tpn),
2’ = (vg,...,2,) € R"L Der Satz von der impliziten Funktion liefert nun: Es
gibt Umgebungen U von z’ und differenzierbare Funktionen g : U — R, sodass
G:U — R", u+ (g(u),u) eine stetige Abbildung auf eine offene Umgebung V' von x
in X ist.
|
Beispiel 22

1) F:R3 %R, (1,y,2) = 22+ +22—1, V(F) = 52, grad(F) = (22, 2y, 2z) 22228

S™ ist n-dimensionale Mannigfaltigkeit in R™*!

2) F:R?2 5 R, (z,y)+— y?— 23 Esgilt: grad(F) = (—322, 2y). Also: grad(0,0) = (0,0).

Yy .
10 ’
7
7
7 7
A !
100 - W ’
), 5 ‘
i) g
A ’
B 000,011, )N
), ’
00,
21 4 x
74

(a) F(z,y) =y* —a° (b) y> —az® =0

Abbildung 2.2: Rechts ist die Neilsche Parabel fiir verschiedene Parameter a.

Daher ist Bemerkung 27.b nicht anwendbar, aber V (F') ist trotzdem eine 1-dimensionale
topologische Mannigfaltigkeit.

Definition 26
Sei X ein Hausdorffraum mit abzdhlbarer Basis der Topologie. X heifst n-dimensionale

Mannigfaltigkeit mit Rand, wenn es einen Atlas (U;, ;) gibt, wobei U; C X; offen und
; ein Homéomorphismus auf eine offene Teilmenge von

to={(21,...,2n) ER" [, >0}

ist.

R  ist ein ,Halbraum®.

Definition 27
Sei X eine n-dimensionale Mannigfaltigkeit mit Rand und Atlas (Uj, ¢;). Dann heifst

aX::U{$EUi|90i(:v)n:O}

i€l

Rand von X.
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) Halbraum

DA

) Pair of pants ¢) Sphére mit einem Loch

Abbildung 2.3: Beispiele fiir Mannigfaltigkeiten mit Rand

0X ist eine Mannigfaltigkeit der Dimension n — 1.

Definition 28
Sei X eine n-dimensionale Mannigfaltigkeit mit Atlas (U, ¢;)ier

Fiir 4,5 € I mit Uz',Uj 7& () heift

Yij = @0 %_1
ei(Ui NU;) = ¢;(U; N Uj)

Kartenwechsel oder Ubergangsfunktion.

Abbildung 2.4: Kartenwechsel

2.2 Differenzierbare Mannigfaltigkeiten

Definition 29
Sei X eine n-dimensionale Mannigfaltigkeit mit Atlas (U;, ¢;)icr-

a) X heift differenzierbare Mannigfaltigkeit der Klasse C*, wenn jede Karten-
wechselabbildung ¢;;, ¢,7 € I k-mal stetig differenzierbar ist.
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b) X heift differenzierbare Mannigfaltigkeit, wenn X eine differenzierbare Mannig-
faltigkeit der Klasse C'*° ist.

Differenzierbare Mannigfaltigkeiten der Klasse C'*° werden auch glatt genannt.

Definition 30
Sei X eine differenzierbare Mannigfaltigkeit der Klasse C* (k € NU { oo }) mit Atlas
A= (Ui, pi)ier-

a) Eine Karte (U, ) auf X heift vertraglich mit A, wenn alle Kartenwechsel ¢ o (10;1
und ; 0 o' (i € I mit U; N U # 0) differenzierbar von Klasse C* sind.

b) Die Menge aller mit A vertriglichen Karten auf X bildet einen maximalen Atlas der
Klasse C*. Er heikt C*-Struktur auf X.
Eine C*°-Struktur heiftt auch differenzierbare Struktur auf X.

Bemerkung 28
Fiir n > 4 gibt es auf S™ mehrere verschiedene differenzierbare Strukturen, die sogenannten

,exotische Sphéaren®.

Definition 31
Seien X, Y differenzierbare Mannigfaltigkeiten der Dimension n bzw. m, x € X.

a) Eine stetige Abbildung f : X — Y heift differenzierbar in x (von Klasse C*), wenn
es Karten (U,¢) von X mit z € U und (V,4) von Y mit f(U) C V gibt, sodass
Yo fop ! stetig differenzierbar von Klasse C* in o(z) ist.

b) f heifit differenzierbar (von Klasse C*), wenn f in jedem x € X differenzierbar ist.

c¢) f heifst Diffeomorphismus, wenn f differenzierbar von Klasse C* ist und es eine
differenzierbare Abbildung g : ¥ — X von Klasse C*° gibt mit g o f = idx und

fog=idy.

Bemerkung 29
Die Bedingung in Definition 31.a héngt nicht von den gewéhlten Karten ab.

Beweis: Seien (U, ¢’) und (V’,¢') Karten von X bzw. Y um x bzw. f(z) mit f(U") C V"

=)' o fo(p)?
=/ o(pLogp)o fo(ptop)o(p)?

ist genau dann differenzierbar, wenn 1 o f o ¢! differenzierbar ist.

Beispiel 23
f:R—= R, x> 23 ist kein Diffeomorphismus, aber Homdomorphismus, da mit g(x) := ¢/z
gilt: fog=1idr, gof=idg

Bemerkung 30
Sei X eine glatte Mannigfaltigkeit. Dann ist

Diffeo(X) :={ f : X — X | f ist Diffeomorphismus }

eine Untergruppe von Homoo(X).
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Definition 32

S C R3? heifit reguliire Fliche :< Vs € S 3 Umgebung V(s) € R® 3U C R? offen:
3 differenzierbare Abbildung F : U — V N S: Rg(Jp(u)) =2 Yu e U

F heifst (lokale) reguldre Parametrisierung von S.

F(u,v) = (z(u,v),y(u,v), z(u,v))
%) Z)
Ietu) = | ) o)
5.(P)  5:(p)

Beispiel 24
1) Rotationsflichen: Sei r : R — Ry eine differenzierbare Funktion.

F:R2 5 R3 (u,v) > (r(u)cos(u), r(v)sin(u),v)

0.8

S0

W
R
==

0.6

N

W
R

!
W

W
W
S

N
N

w

W
N

S

22 1
(a) Kugelkoordinaten

(b) Rotationskorper

)
I e s e T T
0.5 ¢
——sinx
=051 . Ccos T
11

(c) Sinus und Kosinus haben keine gemeinsame Nullstelle

—r(v)sinu  7'(v)cosu
Jr(u,v) = | r(v)cosu r'(v)sinu
0 1



30 2.2. DIFFERENZIERBARE MANNIGFALTIGKEITEN

hat Rang 2 fiir alle (u,v) € R
2) Kugelkoordinaten: F' : R? — R3,

(u,v) = (Rcosvcosu, Rcosvsinu, Rsinv)
Es gilt: F(u,v) € S%, denn
R? cos®(v) cos®(u) + R? cos?(v) sin?(u) + R? sin?(v)
=R?(cos®(v) cos®(u) 4 cos®(v) sin®(u) + sin?(v))
=R? (cos2(v)(c %(u) + sin®(u)) + sin®(v))
=R? (cos®(v) + sin®(v))
—R2

Die Jacobi-Matrix

—Rcosvsinu —Rsinvcosu
Jrp(u,v) = | Rcosvcosu —Rsinvsinu
0 Rcosv

hat Rang 2 fiir cosv # 0. In N und S ist cosv = 0.

Bemerkung 31
Jede reguliire Fliche S C R? ist eine 2-dimensionale, differenzierbare Mannigfaltigkeit.

Beweis: z.7Z.: Fq._1 o F; ist Diffeomorphismus

Abbildung 2.5: Regulére Flache S zum Beweis von Bemerkung 31

Idee: Finde differenzierbare Funktion Fj_1 in Umgebung W von s, sodass F j_l‘SmW =F j_l.
Ausfithrung: Sei vy € U; mit Fj(ug) = s = Fj(vo),vo € Uj.
Da Rg(JF;(vo)) = 2 ist, ist 0. B. d. A.

det (

und Fj(u,v) = (z(u,v), y(u,v), 2(u,v)).

Definiere E Ui xR — R3 durch

) (vo) # 0

g’l@ IS |%
Y

Fj(u,v,t) = (x(u,v),y(u,v), 2(u,v) +t)

Offensichtlich: Fj|,x (o} = F.
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oz
% a0 0
Js = | O gg 0 | = det J5(v0,0) # 0
J
% oo 1

Analys 1L g gibt Umgebungen W von Fj von E(Uo, 0) = Fjj(vp) = s, sodass E auf W eine

differenzierbar Inverse Ffl hat.

. ., =1 —1 —1 —1 . . .
Weiter ist F;  |wns = F; lwns = F o E|Fi‘1(WmS) =F "o Fi‘Fi_l(WﬂS) ist differenzier-
bar.

Definition 33

Sei G eine Mannigfaltigkeit und (G, o) eine Gruppe.

a) G heift topologische Gruppe, wenn die Abbildungen o : G XxG - Gund ¢ : G — G
definiert durch
goh:=g-hund (g) =g "

stetig sind.

b) Ist G eine differenzierbare Mannigfaltigkeit, so heift G Lie-Gruppe, wenn (G, o) und
(G, 1) differenzierbar sind.

Beispiel 25 (Lie-Gruppen)

1) Alle endlichen Gruppen sind 0-dimensionale Lie-Gruppen.

2) G ( )

3) (R

4) (R> )

5) (R",+), denn A - B(i,j) = > ;_; a;bg; ist nach allen Variablen differenzierbar

A;1 ... Qgp
Aij — - c R(nfl)x(nfl)

apl .- Gpn

ist differenzierbar.
det A;; kann 0 werden, da:
1 1
-1 0
6) SL,(R) ={ A € GL,(R) | det(A4) =1}
grad(det —1)(A) = 07?
(det 1) =1-det Ay

31111

Es gibt i € {1,...,n } mit (det 1)A#£0
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Bemerkung 32
Ist G eine Lie-Gruppe, g € G, so ist die Abbildung

lg:G—=G
h—g-h
ein Diffeomorphismus.
2.3 Simplizialkomplex
Definition 34
Seien vy, . .., vr € R™ Punkte.
a) vp,...,v sind in allgemeiner Lage < es gibt keinen (k — 1)-dimensionalen affinen
Untervektorraum, der vy, ..., v, enthilt <v; — vg, ..., v — vg sind linear unabhéngig.

b) conv(vo,...,vx) = { Zf:o Aiv;

Definition 35
a) Sei A" = conv(eg,...,e,) C R"! die konvexe Hiille der Standard-Basisvektoren

€0y.--5En.

Aizo,zf;OAi:1}

Dann heiftt A™ Standard-Simplex und n die Dimension des Simplex.

b) Fiir Punkte vy, ..., v im R™ in allgemeiner Lage heifit A(vo, ..., v;) = conv(vy,. .., vk)
ein k-Simplex in R"™.

c) Ist A(vp,...,v;) ein k-Simplex und I = { 4g,...,4 } C{0,...,k }, so heifst s;, _;, =
conv(vj, . ..,v;,) Teilsimplex oder Seite von A.
Sio,...ir 18t r-Simplex.

o
(a) 0-Simplex A°

3 3 el
X €1 X
2 2 €2
| | €2
1 1
i €0 i )
T X T T T
1 2 3 1 2 3 €0 €1
(b) 1-Simplex A' (c) 2-Simplex A? (d) 3-Simplex A?

Abbildung 2.6: Beispiele fiir k-Simplexe

Definition 36
a) Eine endliche Menge K von Simplizes im R™ heifst (endlicher) Simplizialkomplex,
wenn gilt:

(i) Fir A € K und S C A Teilsimplex ist S € K
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(ii) Fir Ay, Ay € K ist A; N Ag leer oder ein Teilsimplex von A; und von Ay
b) [K|:=Upaecx A (mit Teilraumtopologie) heifst geometrische Realisierung von K.

¢) Ist d = max { k | K enthélt k — Simplex }, so heift d Dimension von K.

OL L

(a) 1D Simplizialkomplex (b) 2D Simplizialkomplex ) 2D Simplizialkomplex
(ohne untere Fliche!)

(d) 1D Simplizialkomplex (e) 2D Simplizialkomplex

(f) P ist kein Teilsimplex, da Eigen- (g) Simplizialkomplex
schaft Punkt b.ii verletzt ist

Abbildung 2.7: Beispiele fiir Simplizialkomplexe
Definition 37
Seien K, L Simplizialkomplexe. Eine stetige Abbildung
fHK|—|L]
heifst simplizial, wenn fiir jedes A € K gilt:
a) f(A)eL
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b) fla: A — f(A) ist eine affine Abbildung.

Beispiel 26 (Simpliziale Abbildungen)
1) p(er) = by, p(e2) := by

 ist eine eindeutig bestimmte lineare Abbildung

€1

0

) Folgende Abbildung ¢ : A™ — A"~ ist simplizial:

Quotient nach

Punktspiegelung

Definition 38

Sei K ein endlicher Simplizialkomplex. Fiir n > 0 sei a,(K) die Anzahl der n-Simplizes in

K.
Dann heift
dim K
X(E) =) (-1)"an(K)
n=0

Eulerzahl (oder Euler-Charakteristik) von K.

Beispiel 27

1) x(Ah=2-1=1
A?)=3-3+1=1
AN)=4-6+4-1=1

Oktaeder-Oberfliche) =6 — 124+ 8 = 2

X(

X(

2) x(
X(Rand des Tetraeders) = 2

X (Ikosaeder) =12 — 30 + 20 = 2
(
(

3) x(Wiirfel) =8 — 12+ 6 = 2
X (Wiirfel, unterteilt in Dreiecksflachen) =8 — (12 +6) + (6 - 2)

Bemerkung 33
X(A™) =1 fiir jedes n € Ny

=2
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Beweis: A" ist die konvexe Hiille von (e, ..., e,) in R**1. Jede (k + 1)-elementige Teilmenge
von { eg, ..., e, } definiert ein k-Simplex.
= ap(A") = (Zﬁ), k=0,...,n

= X(A") = S r (=R (1)

Binomischer

f(flf) _ (.%' + 1)n+1 Lehrsatz Z,-:i-(l) (n—]i—l)xk

0= S () (DF = (AT - 1
= x(A™") =1 [ |

Definition 39
a) Ein 1D-Simplizialkomplex heifst Graph.

b) Ein Graph, der homéomorph zu S ist, heifit Kreis.

¢) Ein zusammenhéngender Graph heift Baum, wenn er keinen Kreis enthélt.

(a) Dies wird haufig auch als(b) Planare Einbettung des Te-
Multigraph bezeichnet. traeders

(c) Ks (

Abbildung 2.8: Beispiele fiir Graphen

d) K33

Bemerkung 34
Fiir jeden Baum T gilt v(7T') = 1.

Beweis: Induktion iiber die Anzahl der Ecken.

Bemerkung 35

a) Jeder zusammenhingende Graph I' enthélt einen Teilbaum 7', der alle Ecken von I"
enthélt.?

b) Ist n = a1(I") = a1(T), so ist x(I') =1 —n.
Beweis:

a) Siehe ,Algorithmus von Kruskal®.

2T wird ,Spannbaum® genannt.
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Bemerkung 36
Sei A ein n-Simplex und z € A° C R™. Sei K der Simplizialkomplex, der aus A durch
sUnterteilung® in = entsteht. Dann ist x(K) = x(A) = 1.

(b) A, das aus K durch Unter-
teilung entsteht

Abbildung 2.9: Beispiel fiir Bemerkung 36.

Beweis: x(K) = x(A)— (-1)" +Z(—1)k =x(A) ]
n—Simplex k=0

-~

(1+(=1)m

Satz 2.1 (Eulersche Polyederformel)
Sei P ein konvexes Polyeder in R?, d. h. 9P ist ein 2-dimensionaler Simplizialkomplex,

sodass gilt:
Ve,y € OP : [z,y] C P

Dann ist x(0P) = 2.

Beweis:
1) Die Aussage ist richtig fiir den Tetraeder.

2) O.B.d. A.sei 0 € P und P C B1(0). Projeziere OP von 0 aus auf 9%8(0) = S2.
Erhalte Triangulierung von S2.

3) Sind Py und P, konvexe Polygone und 77, T die zugehérigen Triangulierungen von S2,
so gibt es eine eine Triangulierungen 7', die sowohl um 7} als auch um 75 Verfeinerung
ist.

_Tl
Ty
?
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Nach Bemerkung 36 ist x(0P1) = x(Th) = x(T') = x(T2) = x(0P) = 2, weil 0. B. d. A.
P, ein Tetraeder ist.

Bemerkung 37 (Der Rand vom Rand ist 0)
Sei K ein (endlicher) Simplizialkomplex mit Knotenmenge V und < eine Totalordnung auf
V.

Sei A,, die Menge der n-Simplizes in K, d. h.

Ap(K):={oe K |dim(oc)=n} firn=0,...,d=dim(K)

und C,,(K) der R-Vektorraum mit Basis A4, (K), d. h.

Cn(K) = Z o 0|co €R
c€AL(K)
Sei 0 = A(zg,...,x,) € Ap(K), sodass g < 21 < -+ < Zp.

Firi =0,...,n sei 00 := A(zg,...,%4,...,xy,) die i-te Seite von o und d, = d,o :=
Yico(=1)i0i0 € Cpi(K) und dy, : Cp(K) — Cp_1(K) die dadurch definierte lineare
Abbildung.

Dann gilt: d,—10d, =0

a €3 b
Abbildung 2.10: Simplizialkomplex mit Totalordnung

Beispiel 28
a<b<c

dyo =e1—ea+e3=(c—b)—(c—a)+(b—a)=0

Beweis: Sei 0 € A,,. Dann gilt:

n

dn1(dno) = dp-1(D>_(~1)'0io)

=0

= (~1)idp_1(0i0)
=0

n n—1
=> (1)) 0:(050)(—1)

=0 =0
= Y (=000 + D (1) ii(950)
0<i<j<n—1 0<j<i<n

=0
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weil jeder Summand aus der ersten Summe auch in der zweiten Summe vorkommt, aber mit
umgekehrten Vorzeichen. ]

Definition 40
Sei K ein Simplizialkomplex, Z,, := Kern(d,,) C C,, und B,, := Bild(d,+1) C C,.

a) H, = H,(K,R) := Z,,/B,, heilt n-te Homotopiegruppe von K.

b) bn(K

Bemerkung 38
Nach Bemerkung 37 ist B,, C Z,,, denn d,,1+1(C) € Kern(d,,) fir C € Cy4;.

) := dimg H,, heilt n-te Belti-Zahl von K.

Satz 2.2
Fiir jeden endlichen Simplizialkomplex K der Dimension d gilt:

k=0 k=0

= x(K)

Bemerkung 39
Es gilt nicht a = by Vk € Ny.

Beweis:

e Dimensionsformel fiir d,,:

e Dimensionsformel fiir 7,

d
= Z(— =

k=0

a, =dim Z,, +dim B,,_1 firn > 1
— H, = Z,/By, : dim Z,, = b, + dim B,

a0+z

dlm Zy +dim By, _1)

ao + Z k dim Z;, + Z 1)1 dim B,_,
k=0
d
ap + Z ¥ dim Z), — Z(—l)k dim Bj,_1
k=0
k d q- .
ao-l-z ) b + (—1)* dim Z4 — dim By
=by
d—1
bo+ ) (—1)*b + (—1)%y
k=1



39 2.3. SIMPLIZIALKOMPLEX

Ubungsaufgaben

Aufgabe 6 (Zusammenhang)

(a) Beweisen Sie, dass eine topologische Mannigfaltigkeit genau dann wegzusammenhén-
gend ist, wenn sie zusammenhéngend ist

(b) Betrachten Sie nun wie in Beispiel 20.8 den Raum X := (R\{ 0 })U{ 01,02 } versehen
mit der dort definierten Topologie. Ist X wegzusammenhéngend?



3 Fundamentalgruppe und Uberlagerungen

3.1 Homotopie von Wegen

71 71
a b a b
72 72
(a) 71 und 72 sind homotop, (b) 1 und v sind wegen dem
da man sie ,zueinander ver- Hindernis nicht homotop.

schieben* kann.

Abbildung 3.1: Beispiele fiir Wege 1 und 7

Definition 41
Sei X ein topologischer Raum, a,b € X, 71,72 : I — X Wege von a nach b, d. h. 71(0) =

72(0) = a, (1) = 72(1) = b
~1 und 2 heifen homotop, wenn es eine stetige Abbildung H : I x I — X mit

H(t,0) =y (t) Ve T
H(t,1) = () Ve T

und H(0,s) = a und H(1,s) = b fiir alle s € I gibt. Dann schreibt man: v; ~ 7

H heifst Homotopie zwischen ~; und ~s.

Bemerkung 40
Sei X ein topologischer Raum, a,b € X, 71,7 : I = X Wege von a nach b und H eine
Homotopie ziwschen ~; und ~e.

Dann gilt: Der Weg
vs: L — X, ~s(t) = H(t,s)
ist Weg in X von a nach b fiir jedes s € 1.

Beweis: H ist stetig, also ist H(t, s) insbesondere fiir jedes feste s stetig. Da H(0,s) = a und
H(1,s) =0 fiir alle s € I und 5 eine Abbildung von I auf X ist, ist 75 ein Weg in X von a
nach b fiir jedes s € I. [ |

Bemerkung 41
Durch Homotopie wird eine Aquivalenzrelation auf der Menge aller Wege in X von a nach b
definiert.

Beweis:
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o reflexiv: H(t,s) = ~(t) fir alle (¢,s) € I x I
e symmetrisch: H'(t,s) = H(t,1 — s) fiir alle (¢,s) € I x I
e transitiv: Seien H' bzw. H” Homotopien von 71 nach 2 bzw. von 72 nach 3.

H'(t,2 fall
Dann sei H (¢, s) ::{ (t,2s) a s(l)
2

H"(t,2s —1) falls

= H ist stetig und Homotopie von 7; nach ~s.

Beispiel 29
1) Sei X = S'. 4, und v, aus Abbildung 3.3a nicht homotop.

2) Sei X = T2 ~1,7 und 3 aus Abbildung 3.3b sind paarweise nicht homotop.
3) Sei X =R? und a = b = (0,0).

Je zwei Wege im R? mit Anfangs- und Endpunkt (0, 0) sind homotop.

Abbildung 3.2: Zwei Wege im R? mit Anfangs- und Endpunkt (0,0)

Sei g : I — R? der konstante Weg 7o (t) = (0,0) V¢ € I. Sei v(0) = (1) = (0,0).
H(t,s) :== (1 —s)y(t) ist stetig, H(t,0) =~(t) Vt € I und H(t,1) = (0,0) Vt € I.

Bemerkung 42

Sei X ein topologischer Raum, v : I — X ein Weg und ¢ : I — I stetig mit ¢(0) =

(1) = 1. Dann sind v und 7 o ¢ homotop.

Beweis: Sei H(t,s) =v((1 —s)t + s - p(t)).

Dann ist H stetig, H(t,0) = v(t), H(t,1) = vy(e(t)), H(0,s) = ~(0) und H(1,s)

(1= s+s) = 5(1)
= H ist Homotopie.

0,
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b
g2
a
(a) Kreis mit zwei Wegen (b) Torus mit drei Wegen

Abbildung 3.3: Beispiele fiir (nicht)-Homotopie von Wegen

Definition 42
Seien 71,72 Wege in X mit y1(1) = 42(0). Dann ist

() = ~1(2t) falls 0 < ¢t < %
= (2t —1) fallsi<t<1

ein Weg in X. Er heifst zusammengesetzter Weg und man schreibt v = 1 * vs.
Bemerkung 43

Das Zusammensetzen von Wegen ist nur bis auf Homotopie assoziativ, d. h.:

Y1* (v2 % 73) # (71 % 72) * 73
Y1 x (v2 % 73) ~ (71 ¥ 72) * )3
mit 71(1) = 72(0) und y2(1) = 73(0).
| | | |
| Y1 I Y3 !
0 1/2 3/4 1

(a) 71 % (v2 *73)

0 1/4 1/ 1

(b) (71 *7y2) * 73

Abbildung 3.4: Das Zusammensetzen von Wegen ist nicht assoziativ

Beweis: Das Zusammensetzen von Wegen ist wegen Bemerkung 42 bis auf Homotopie assoziativ.
Verwende dazu

%t fallsO§t<%
o(t) = t—% falls%§t<%
2t—1 falls 2 <t<1

Bemerkung 44

Sei X ein topologischer Raum, a,b,c € X, v1,v; Wege von a nach b und vz, v, Wege von b
nach c.

Sind 1 ~ 7} und 2 ~ 75, 80 ist Y1 * Y2 ~ Y] * V5.
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Abbildung 3.5: Situation aus Bemerkung 44

Beweis: Sei H; eine Homotopie zwischen ; und ~/, ¢ = 1, 2.

Dann ist
1
t.5) im {H1(2t, s) falls 0 <t <3 Vsel

Hy(2t —1,s) falls § <t<1

eine Homotopie zwischen ~; * y2 und 7} * 5.

3.2 Fundamentalgruppe

Fiir einen Weg ~ sei [] seine Homotopieklasse.
Definition 43

Sei X ein topologischer Raum und x € X. Sei auferdem

T (X, x) == {[7] | v ist Weg in X mit v(0) =~(1) =z }

Durch [y1] #¢ [72] := [y1 * 72| wird 71 (X, x) zu einer Gruppe. Diese Gruppe heift Funda-
mentalgruppe von X im Basispunkt x.

Bemerkung 45
Im R? gibt es nur eine Homotopieklasse.

Beweis: (Fundamentalgruppe ist eine Gruppe)
a) Abgeschlossenheit folgt direkt aus der Definition von ¢
b) Assoziativitat folgt aus Bemerkung 43
c¢) Neutrales Element e = [yo],70(t) =2 Ytel.ex[y]=[y]=[y]*e,dayxy~~

d) Inverses Element [y]™! = [F] = [y(1 —t)], denn F #y ~ q9 ~ v %7
Beispiel 30
1) S'={zeC||z=1}={(cosp,sing) e R? | 0 < p <27 }
(84, 1) = {[W"] | k € Z } = Z. Dabei ist v(t) = €*™" = cos(27t) + i sin(27t) und
PWi=gkxy
—_———
k mal
"]

[v*] = k ist ein Isomorphismus.

2) 7 (R%,0) = 7 (R?,x) = { e} fiir jedes z € R?
3) m(R™, x) ={e} fir jedes z € R"
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4) G C R™ heift sternférmig bzgl. ©+ € G, wenn fir jedes y € G auch die Strecke
[z,y] C G ist.

Fiir jedes sternformige G C R™ ist m(G,z) = { e }

Abbildung 3.6: Sternférmiges Gebiet

5) m1(S%,20) = { e}, da im R? alle Wege homotop zu { e } sind. Mithilfe der stereogra-
phischen Projektion kann von S? auf den R? abgebildet werden.

Dieses Argument funktioniert nicht mehr bei flichenfiillenden Wegen, d. h. wenn
v : I — S? surjektiv ist.

Bemerkung 46
Sei X ein topologischer Raum, a,b € X, § : I — X ein Weg von a nach b.

Dann ist die Abbildung

a:m(X,a) - 7 (X,0) [y]— [0%y ]

ein Gruppenisomorphismus.

Abbildung 3.7: Situation aus Bemerkung 46

Beweis:

o] [al) = [0 % (1 % 72) * ]
= [0 %y %6 %0 %y % 0] = [0 % vy % 6] * [0 % yo * 0]
= a([n]) * a([2])

Definition 44
Ein wegzusammenhéngender topologischer Raum X heift einfach zusammenhingend,
wenn 7m1(X,z) = {e} firein x € X.

Wenn 71 (X, z) = { e} fiir ein x € X gilt, dann wegen Bemerkung 46 sogar fiir alle x € X.
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Bemerkung 47
Es seien X, Y topologische Riume, f : X — Y eine stetige Abbildung, =z € X,y := f(z) € Y.

a) Dann ist die Abbildung f. : m (X, 2) — m1(Y,y), [7] = [f 7] ein Gruppenhomomor-
phismus.

b) Ist Z ein weiterer topologischer Raum und g : Y — Z eine stetige Abbildung z := g(y).
Dann ist (go f)x =g« 0 fu : m(X,2) = m(Z, 2)

Beweis:

a) f. ist wohldefiniert: Seien 71,72 homotope Wege von x. z.Z.: f o~y ~ f o~y Nach
Voraussetzung gibt es stetige Abbildungen H : I x I — X mit

H(t,0) = (1),
H(t,1) = 72(t),
H(0,s) =H(1,s) ==.

Dann ist foH : I x I — Y stetig mit (foH)(t,0) = f(H(t,0)) = f(71(t)) = (foy)(¢)
etc. = foy ~ fona.

fellml* []) = [f o (i x92)] = [(f o)l % [(f 0 92)] = fullm]) = fe([r2])

b) (go f«([V]) =[(go f)ovl=Ilgo (fo)]=g«(f o)) = g«(fu([7]) = (gs © f)([7])

Beispiel 31
1) f:S' < R?ist injektiv, aber f, : 71(S%,1) 2 Z — 71(R?,1) = { e } ist nicht injektiv.

2) f:R — St (cos2mt,sin 2nt) ist surjektiv, aber f, : m1(R,0) = { e } — (9%, 1) =
7 ist nicht surjektiv.

Bemerkung 48
Sei f: X — Y ein Homéomorphismus zwischen topologischen Rdumen X, Y. Dann gilt:

fo m(X,z) = m (Y, f(x))
ist ein Isomorphismus fiir jedes z € X.
Beweis: Sei g: Y — X die Umkehrabbildung, d. h. g ist stetig und fog=1idy, go f =idx
= feoge = (fog)s = (idy)s = idy (v.p(x) und g« o fu = idr (x,2)-

Definition 45
Seien X,Y topologische Rdume, zg € X,y0 € Y, f,9: X — Y stetig mit f(zo) = yo = g(xo).

f und g heifen homotop (f ~ g), wenn es eine stetige Abbildung H : X x I — Y mit

H(z,0) = f(z) ¥z € X
H(z,1) = g(z) Vo € X
H( ): 0V8€I

gibt.

Bemerkung 49
Sind f und g homotop, so ist f, = g« : ™ (X, x0) = ™1 (Y, v0)-
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Beweis: Sei 7 ein geschlossener Weg in X um g, d. h. [y] € m1 (X, o).
Z.z.: foy~gory
Sei dazu Hy : I x I =Y, (t,s) — H(v(t),s). Dann gilt:
Hy(t,0) = H((t),0) = (fo)(t) Vie I

H,(1,s) = H(y(1),s) = H(zo,8) =yo Vs € [
H(y(t),1) = g(y(t)) YVt I

Beispiel 32
f: X—=>Y g:Y > Xmitgof~idyx, fog~idy

= f ist Isomorphismus. Konkret: f : R? = {0}, g: {0} — R?
:>fog:id{0},gof:]R2—>R2,x»—)Ofﬁrallex.
go f ~ idg2 mit Homotopie: H : R? x I — R? H(z,s) = (1 — s)z (stetig!)

= H(z,0) =z = idg2(z), H(z,1) =0, H(0,s) =0Vs € I.

Satz 3.1 (Satz von Seifert und van Kampen ,light*)
Sei X ein topologischer Raum, U,V C X offen mit U UV = X und U NV wegzusam-
menhangend.

Dann wird 71 (X, z) fiir x € U NV erzeugt von geschlossenen Wegen um z, die ganz in
U oder ganz in V verlaufen.

Beweis: Sei v : I — X ein geschlossener Weg um z. Uberdecke I mit endlich vielen offenen
Intervallen Iy, Is, ..., I, die ganz in 4y~ 1(U) oder ganz in y~!(V) liegen.

O.B. d. A. sei y(I1) CU,~v(I2) CV, etc.

Wahle t; € I; N I;4+1, also y(t;) € UNV. Sei 0; Weg in U NV von xy nach (t;) = = ist
homotop zu

Y1k O1L k01 kYo k09 k- kOp_1 %72
—_—— N——

in U inV

x
Abbildung 3.8: Topologischer Raum X

Beispiel 33
1) Sei X wie in Abbildung 3.8. w1 (X, z) wird ,frei“ erzeugt von a und b, weil 71 (U, x) =
(a) 2 Z,m1(V,x) = (b) = Z, insbesondere ist a * b nicht homotop zu b * a.

2) Torus: 71 (T2, X) wird erzeugt von a und b.



47

3.3. UBERLAGERUNGEN

~
(9N

N IANAANAN

R N

N

N
NN
N

727

27727277727727227727777
277777777777777777
277777777727727727777

277277777772772777777

TI7I777 7777707777

TIIT777777 777077

ey

77777077777

7
ey 7227277777
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3.3 Uberlagerungen

Definition 46
Es seien X, Y zusammenhéngende topologische Rdume und p : Y — X eine stetige Abbil-
dung.

p heift Uberlagerung, wenn jedes z € X eine offene Umgebung U = U(z) C X besitzt,
sodass p~1(U) disjunkte Vereinigung von offenen Teilmengen V; CYist (j € I) und
p\vj : V; = U ein Homéomorphismus ist.

Beispiel 34

1) siehe Abbildung 3.10
2) siehe Abbildung 3.11

R" — T" = R*/Z"

w

W

S" — P™"(R)

)
)
)
) St — S 2+ 22, siehe Abbildung 3.12

Ut

6

ot

L) Bl ] DD [ [

D) D) D ) [ [

D) Bl D] D[] [

S
—
[N
N
e~
(&2}
iy

6

Abbildung 3.11: R? — T2 = R? /7?2
/w/ .

Abbildung 3.12: ¢ — (cos4rt, sin 47t)

Bemerkung 50
Uberlagerungen sind surjektiv.

Beweis: Sei p : Y — X eine Uberlagerung und z € X beliebig. Dann existiert eine offene
Umgebung U(z) € X und offene Teilmengen V; C X mit p~*(U) = JV; und ply; : V; = U
ist Hom6omorphismus.
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D. h. es existiert ein y € Vj, so dass p|Vj(y) = z. Da z € X beliebig war und ein y € Y
existiert, mit p(y) = x, ist p surjektiv. |

Definition 47
Seien (X, %Tx), (Y, Ty) topologische Rdume und f : X — Y eine Abbildung.

[ heift offen : VU € Tx : f(U) € Ty

Bemerkung 51
Uberlagerungen sind offene Abbildungen.

Beweis: Seiy € V und = € p(V), sodass x = p(y) gilt. Sei weiter U = U,, eine offene Umgebung
von x wie in Definition 46 und V; die Komponente von p~1(U), die y enthilt.

Dann ist V' N'Vj offene Umgebung von y.

= p(V NVj) ist offen in p(V}), also auch offen in X. Aukerdem ist p(y) = € p(V N'Vj) und
p(V O V) € p(V).

= p(V) ist offen.

Definition 48
Sei X ein topologischer Raum und M C X.

M heiftt diskret in X, wenn M in X keinen Haufungspunkt hat.

Bemerkung 52
Sei p: Y — X Uberlagerung, = € X.

a) X hausdorffsch = Y hausdorffsch
b) p~!(z) ist diskret in Y fiir jedes z € X.

Beweis:
a) Seien yi,y2 € Y.

1. Fall: p(y1) = p(y2) = .

Sei U Umgebung von x wie in Definition 46, V;, bzw. Vj}, die Komponente von p~H(U),
die y; bzw. yo enthalt.

Dann ist Vj, # Vj,, weil beide ein Element aus p~!(z) enthalten.

= Vj, NV}, = 0 nach Voraussetzung.

2. Fall: p(y1) # p(y2)-

Dann seien U; und U; disjunkte Umgebungen von p(y;) und p(y2).

= p~1(Uy) und p~1(Us) sind disjunkte Umgebungen von y; und ys.
b) Seiy €Y

1. Fall: y € p~'(2)

Finde vj, sodass kein ...

2. Fall: y ¢ p~!(z)
T
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Bemerkung 53
Sei p: Y — X Uberlagerung, x1,zs € X.

Dann ist [p~1(z1)| = |p~(22)].!

Beweis: Sei U Umgebung von x1 wie in Definition 46, z € U. Dann enthalt jedes Vj,j € Ix
genau ein Element von p~!(z)

= [p~!(z)| ist konstant auf U

ii_ﬁ; ’pfl(g;)] ist konstant auf X

Definition 49
Sei p: Y — X Uberlagerung, Z ein weiterer topologischer Raum, f : Z — X stetig.

Eine stetige Abbildung f : Z — Y heift Liftung von f, wenn po f = f ist.

5
> : I

c *

2 |
[ ]

1

0 .

0 1 2 3 4 5 6
T Liften R2/Z2

Abbildung 3.13: Beim Liften eines Weges bleiben geschlossene Wege im allgemeinen nicht ge-
schlossen

Bemerkung 54 (Eindeutigkeit der Liftung)
Sei Z zusammenhéngend und fy, f1 : Z — Y Liftungen von f.

dz0 € Z : fo(z0) = fi(20) = fo=h

Z------ Ty
\////
P
f
X

Abbildung 3.14: Situation aus Bemerkung 54

Hp~!(z1)| = oo ist erlaubt!
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Beweis: Sei T'={z € Z| fo(z) = fi(2) }.
Z. z.: T ist offen und Z \ T ist auch offen.

Sei z € T,z = f(2),U Umgebung von x wie in Definition 46, V' die Komponente von p~!(U),
die y := fo(z) = fi(z) enthalt.

Sei ¢ : U — V die Umkehrabbildung zu p|y .

Sei W := f~HU) N f3 X (V)N f; (V). W ist offene Umgebung in Z von .

Behauptung: W C T

Denn fiix w € W ist q(f(w)) = a((po fo)) () = ((gop) o fo) () = folw) = a(f(w)) = fi(w)
= T ist offen.

Analog: Z \ T ist offen.

Satz 3.2
Sei p: Y — X Uberlagerung, v : I — X ein Weg, y € Y mit p(y) = v(0) =: =.

Dann gibt es genau einen Weg 4 : I — Y mit 5(0) =y und po 5§ = .

p: Y — X Uberlagerung, X,Y wegzusammenhingend. p stetig und surjektiv, zu z € X3
Umgebung U, so dass p~1(U) = U V;

ply; : V; = U Hom6omorphismus.

Bemerkung 55
Wege in X lassen sich zu Wegen in Y liften.

Zu jedem y € p~1(v(0)) gibt es genau einen Lift von +.

Proposition 3.3
Seien p : Y — X eine Uberlagerung, a,b € X, 70,7 : I — X homotope Wege von a
nach b, @ € p~!(a), o, 71 Liftungen von g bzw. 1 mit ¥;(0) = a.

Dann ist ¥p(1) = 71(1) und ~p ~ 71.

Beweis: Sei H : I x I — X Homotopie zwischen v; und ~s.

Firselseivys: [ — X, t— H(t,s).
Sei s Lift von s mit 75(0) = a
Sei H:Ix1—Y, H(ts):=(st),s)
Dann gilt:

(i) H ist stetig (Beweis wie fiir Bemerkung 54)

(i) H(t,0) =o(t) = H(t, 1) = 71 (t)

(i) F(0,5) = 7:(0) = a
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() F(1,5) € p~(b)
Da p~!(b) diskrete Teilmenge von Y ist

= by = H(l,s)=H(1,0)vVsel
= bo = b1 und H ist Homotopie zwischen g und ;. |

Folgerung 3.4
Sei p: Y — X eine Uberlagerung, zo € X, yo € P~ (o)

a) p1:m(Y,y0) — m(X,zg) ist injektiv
b) [m1(X, o) : p«(m1(Y, y0))] = deg(p)
Beweis:
a) Sei 4 ein Weg in Y um yp und p.([7]) = e, also po§ ~ v,

Nach Proposition 3.3 ist dann 4 homotop zum Lift des konstanten Wegs v,, mit
Anfangspunkt yo, also zu v, = [y] =€

b) Sei d = degp,p~*(z0) = { yo,v1,---,Ya_1 } Fiir einen geschlossenen Weg v in X um
xg sei 4 die Liftung mit 4(0) = yo.
(1) € {yo,---,Yda—1 } hingt nur von [y] € 71 (X, zo) ab.

Fiir geschlossene Wege vg,v1 um z gilt:

Jo(1) =71 (1)
& [fox7 € m(Y,y0)
< [o* 71 '] € pu(mi(Y.50))
< [v0] und [y1]liegen in der selben Nebenklasse bzgl.p.(m1 (Y, y0))

Zuie€{0,...,d—1} gibt es Weg §; in Y mit 6;(0) = yo und 0;(1) = y;
= p U J; ist geschlossener Weg in X um .
= Jedes y; mit i =0,...,d — 1 ist (1) fiir ein [y] € m (X, zp).
Bemerkung 56
Sei p: Y — X Uberlagerung und X einfach zusammenhiingend.

Dann ist p ein HomGomorphismus.

Beweis: Wegen Bemerkung 55.a ist auch Y einfach zusammenhéngend und wegen Bemer-
kung 55.b ist deg(p) = 1, p ist also bijektiv.

1

Nach Bemerkung 51 ist p offen = p~ ist stetig. = p ist Hom6omorphismus. ]

Definition 50 . .
Eine Uberlagerung p : X — X heifit universell, wenn X einfach zusammenhingend ist.

Beispiel 35
R — St (cos2mt,sin 27t)

R? - T? = R?/7?
S" — P™M(R) fir n > 2
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Satz 3.5
Sei p: X — X eine universelle Uberlagerung, ¢ : Y — X weitere Uberlagerung.

Sei zg € X, %9 € X,y0 € Y mit q(y1) = z0, p(20) = 0.

Dann gibt es genau eine Uberlagerung p: X — Y mit $(2) = yo.

Beweis: Sei z € X,y, : I — X ein Weg von g nach z.
Sei 07 die eindeutige Liftung von p o vy, nach y mit d2(0) = yp.
Setze p(z) = dz(1).
Da X einfach zusammenhéngend ist, hingt j(z) nicht vom gewihlten y, ab.
Offensichtlich ist ¢(p(z)) = p(z).
p ist stetig (in z € X). Sei W C Y offene Umgebung von p(z).

q offen
e

q(W) ist offene Umgebung von p(z) - d(p(z)).

Sei U C q(W) offen wie in Definition 46 und V' C ¢~ }(U) die Komponente, die (z) enthiilt.
O.B.d. A.seiVCW.

Sei Z := p~Y(U). Fiir u € Z sei 6 ein Weg in Z von z nach u.

= vz * § ist Weg von xy nach u
=p(u) eV

= Z Cp (W)

= p ist stetig

Folgerung 3.6 ) ) 3
Sind p: X — X und ¢ : Y — X universelle Uberlagerungen, so sind X und Y homéomorph.

Beweis: Seien zy € X,z € X mit p(zy) = o und o € ¢~ H(xo) C Y.

Nach Satz 3.5 gibt es genau eine Uberlagerung

f:X =Y mit f(zo) =Yy und go f =p
und genau eine Uberlagerung

g:Y — X mit g(3o) = 7o und pog = ¢

Damit gilt: pogo f =qgo f=p,qgofog=pog=q. Also ist go f : X — X Lift von
p: X — X mit (go f)(zp) = 2p.

Da auch id; diese Eigenschaft hat, folgt mit Bemerkung 53: go f =id ;.
Analog gilt fog=idy. |

Die Frage, wann es eine universelle Uberlagerung gibt, beantwortet der folgende Satz:
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Satz 3.7

Es sei X ein wegzusammenhéngender topologischer Raum in dem jeder Punkt eine
Umgebungsbasis aus einfach zusammenhéngenden Mengen hat.

Dann gibt es eine universelle Uberlagerung.

Beweis: Scizg € X und X := { (z,[4]) | # € X,y Weg von x, nach z }undp: X = X, (,[7]) —
.

Die Topologie auf X ist folgende: Definiere eine Umgebungsbasis von (z, [y]) wie folgt: Es
sei U eine einfach zusammenhédngende Umgebung von x und

U=0U(z,1) :={(y,[y*al) | y € U, Weg in U von x nach y }

p ist Uberlagerung: plg U — U bijektiv. p ist stetig und damit plg ein Homdomorphismus.

Sind 71,72 Wege von zg nach = und 1 ~ 79, so ist U(z, [11]) N U(x, [y2]) = 0, denn: Ist
Y1 % e~ 9 % @, S0 ist auch y1 ~ 7o. Also ist p eine Uberlagerung.

X ist einfach zusammenhéngend: Es sei g := (zg,e) und 7 : [ — X ein geschlossener Weg
um Zo.

Sei v 1= p(7).

Annahme: [§] # e

Mit Bemerkung 55.a folgt dann: [v] # e.

Dann ist der Lift von v nach & mit Anfangspunkt 2y ein Weg von #y nach (zg, [7]). Wider-
spruch.

Definition 51
Es sei p:Y — X eine Uberlagerung und f : Y — Y ein Homéomorphismus.

f heifst Decktransformation von p :<< po f = p.

Ist p eine Decktransformation und | Deck(Y/X)| = degp, so heifit p regulér.

Bemerkung 57
a) Die Decktransformationen von p bilden eine Gruppe, die sog. Decktransformations-

gruppe Deck(p) = Deck(Y/X) = Deck(Y — X)
b) Ist f € Deck(Y/X) und f # id, dann hat f keinen Fixpunkt.
c) |Deck(Y/X)| < degp

d) Ist p eine reguldre Decktransformation, dann gilt: Vo € X : Deck(Y/X) operiert
transitiv auf der Menge der Urbilder p~!(z).

Beweis:
a) Es gilt:
o idy € DeckY/X,
e f,geDeckY/X = po(fog)=(poflog=pog= fogeDeckY/X
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o f€DeckY/X = pof=p=poft=(pof)oft=po(foft)=p=
f~' e DeckY/X

b) Die Menge
Fix(f)={yeY | fly) =y}

ist abgeschlossen als Urbild der Diagonale A CY x Y unter der stetigen Abbildung
y — (f(y),y). Auberdem ist Fix(f) offen, denn ist y € Fix(f), so sei U eine Umgebung
von p(y) € X wie in Definition 46 und U C p~!(U) die Komponente, die y enthilt;
also p : V' — U ein Homomorphismus. Dann ist W := f~1(V) NV offene Umgebung
von y.

Fiir z € Wist f(z) € V und p(f(z)) = p(z). Da p injektiv auf V ist, folgt f(z) = z,
d. h. Fix(f) # 0.

Da Y zusammenhéngend ist, folgt aus Fix(f) # 0 schon Fix(f) =Y, also f = idy.

c) Es sei 29 € X, deg(p) = d und p~1(20) = {yo,...,y4_1 }. Fiir f € Deck(Y/X) ist
f(yO) :{yﬂv"‘7yd—1 }

Zui€{0,...,d—1} gibt es hochstens ein f € Deck(Y/X) mit f(yo) = y1, denn ist
fwo) = g(yo), soist (¢~ — flyo = o, also nach Bemerkung 57.c g~' o f =idy.

Beispiel 36
1) p:R— St :Deck(R/SY) ={t—t+n|ncZ} =7

2) p: R T? : Deck(R2/T?) 2 Z x Z = 72
3) p: 8™ = P"(R) : Deck(¢g"/P™"(R)) ={x+— ta } =Z/27

Nun werden wir eine Verbindung zwischen der Decktransformationsgruppe und der Fundamen-
talgruppe herstellen:

Satz 3.8
Ist p: X — X eine universelle Uberlagerung, so gilt:

Deck(X /X) = m(X,x0) VYoo € X

Beweis: Wihle 7y € p~!(z¢). Es sei p : Deck(Z/x) — m1(X, z0) die Abbildung, die f auf [p(y)]
abbildet, wobei 7 ein Weg von #p nach f(2y) sei. Da & einfach zusammenhéngend ist, ist
¢ bis auf Homotopie eindeutig bestimmt und damit auch p wohldefiniert.

e p ist Gruppenhomomorphismus: Seien f,g € Deck(X/X) = Ygof = Vg * 9(Vf) =
P(gor) = P(1g) * (P o g)(vf) = plg) # p(f)
——

=p

e Satz 3.2 _ Bem. 57.c
o pist injektiv: p(f) = e = pyf) ~ Tup === Yf ~ Vi = flw0) = T === f =

idz.

e p ist surjektiv: Sei [y] € m (X, xzp), ¥ Lift von v nach & mit Anfangspunkt zy. Der
Endpunkt von 4 sei x7.
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p ist regulire Uberlagerung: Seien o, 27 € X mit p(zp) = p(#1). Nach Satz 3.5 gibt
es genau eine Uberlagerung 5 : X — X mit p = p o p und p(z) = #1. Somit ist § eine
Decktransformation und damit p eine regulire Uberlagerung.

Da p regulire Uberlagerung ist, gibt es ein f € Deck(X/X) mit f(x) = 27.
Aus der Definition von p folgt: p(f) = p(vr) = v

Beispiel 37 (Bestimmung von 7 (S%))
p:R — S t s (cos2nt,sin2nt) ist universelle Uberlagerung, da R zusammenhingend ist.

Firn € Z sei f, : R = Rt +— t + n die Translation um n.
Es gilt: (po fn)(t) = p(fn(t)) =p(t) Vt € R, d. h. f, ist Decktransformation.

Ist umgekehrt g irgendeine Decktransformation, so gilt insbesondere fiir ¢ = 0:
(cos(2mg(0)), sin(27g(0))) = (p o 9)(0) = p(0) = (1,0)

Es existiert n € Z mit g(0) = n. Da auch f,,(0) =0+ n = n gilt, folgt mit Bemerkung 57.c
g = fn. Damit folgt:

Deck(R/SY) ={f.|n€Z} =27
Nach Satz 3.8 also m1(S!) = Deck(R/S!) = Z

3.4 Gruppenoperationen

Definition 52
Sei (G, -) eine Gruppe und X eine Menge.

Eine Gruppenoperation von G auf X ist eine Abbildung o:

o:GxX—=X, (g,2)—~g-x,

fiir die gilt:
a) lgox =2 VreX
b) (g-h)ox=go(hox) Vg,he GVxr e X

Beispiel 38
1) G=(Z,+),X=Rnz=z+n

2) G operiert auf X = G durch goh:=g-h

3) G operiert auf X = G durch goh:=g-h-g~!, denn
i) lgoh=1g-h-15' =h
i) (91-92)0h=1(g1-92) h-(g-92)"

=g1-(g2-h-g5") g5
=gio(g20h)
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Definition 53
Sei GG eine Gruppe, X ein topologischer Raum und o : G x X — X eine Gruppenoperation.

a) G operiert durch Hom6omorphismen, wenn fiir jedes g € G die Abbildung
mg: X = X,x—gox
ein Homoomorphismus ist.

b) Ist G eine topologische Gruppe, so heifft die Gruppenoperation o stetig, wenn o :
G x X — X stetig ist.

Bemerkung 58

Jede stetige Gruppenoperation ist eine Gruppenoperation durch Homéomorphismen.

Beweis: Nach Voraussetzung ist o|{g Ixx : X = X,z gou stetig.

Die Umkehrabbildung zu m,, ist mg-1:

(mgfl omyg)(z) = mgfl(mg(x))
— my 1(goa)
=g 'o(gow)

Def. 52.b_
gt g)on

=1lgox
Def. 52.a
=X

Beispiel 39
In Beispiel 38.1 operiert Z durch Homéomorphismen.

Bemerkung 59
Sei G eine Gruppe und X eine Menge.

a) Die Gruppenoperation von G auf X entsprechen bijektiv den Gruppenhomomorphismen
0:G — Perm(X)=Sym(X)={f:X — X | f ist bijektiv }

b) Ist X ein topologischer Raum, so entsprechen dabei die Gruppenoperationen durch
Homéomorphismus den Gruppenhomomorphismen G — Homoo(X)

Beweis:

Sei o : G x X — X eine Gruppenoperation von G auf X. Dann sei o : G — Perm(X)
definiert durch o(g9)(X) =g -z Vg e G,z € X, also o(g) = m.

o ist Homomorphismus: o(g1 - g2) = myg,.g, = Mg, 0 Mg, = 0(g1) © 0(g2), denn fiir x € X :
o(g1 - g2)(2) = (91-g2) ow = g1 o (g2 0 x) = 0(g1)(e(g2) (%)) = (e(g1) © 0(92))(x)

Umgekehrt: Sei ¢ : G — Perm(X) Gruppenhomomorphismus. Definiere o : G x X — X
durch g oz = o(g)(x).

z. 7z. Definition 52.b:

g1o(g20z) = 0(g1)(g20)
= 0(g1)(0(92)(x))
= (o(g1) © 0(g2))(x)
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ist Hom.
= 0(g1 - g2) ()

=(g1-g2)0x

z. z. Definition 52.a: 1g -z = o(1g)(z) = idx(z) = =, weil p Homomorphismus ist.

Beispiel 40
Sei X ein wegzusammenhingender topologischer Raum, p : X — X eine universelle Uberla-
gerung, o € X, £y € X mit (o) = xo.

Dann operiert 71 (X, zg) auf X durch Homomorphismen wie folgt:

Fiir [y] € m1 (X, z9) und & € X sei [y] o & = 7 % o(1) wobei 7 ein Weg von @ nach & in X
sei, 0 :=p(d) =pod.

Also: 4 ist ein Weg in X von xg nach z = p(Z) und m die Liftung von v * § mit
Anfangspunkt 2.

[v] - % héngt nicht von der Wahl von 4 ab; ist 4 ein anderer Weg von & nach #, so sind &

und &' homotop, also auch fm und « * ¢’ homotop.
Gruppenoperation, denn:

i) [lod=ecx0=27

i) 1 x 7z *6(1) = [ % 72) 0 2 = (] * [12]) 0 7

Y1 %72 % 0(1) = [v1] 0 (92 % 0)(1) = [11] o ([r2] 0 @)

Erinnerung:Die Konstruktion aus Bemerkung 59 induziert zu der Gruppenoperation 71 (X, zg)
aus Beispiel 40 einen Gruppenhomomorphismus g : 71 (X, z9) — Homoo(X). Nach Satz 3.8 ist

o(m1 (X, ) = Deck(X/X)
= { f: X — X Homdomorphismus ‘ pof :p}
Beispiel 41
Sei X := S? C R? und 7 die Drehung um die z-Achse um 180°.
g = (1) = {id, 7} operiert auf S? durch Homéomorphismen.

Frage: Was ist S2/G? Ist S?/G eine Mannigfaltigkeit?



4 Euklidische und nichteuklidische
Geometrie

Definition 54
Das Tripel (X, d, G) heifft genau dann eine Geometrie, wenn (X, d) ein metrischer Raum

und () # G C P(X) gilt. Dann heift G die Menge aller Geraden.

4.1 Axiome fur die euklidische Ebene

Axiome bilden die Grundbausteine jeder mathematischen Theorie. Eine Sammlung aus Axiomen

nennt man Axiomensystem. Da der Begriff des Axiomensystems so grundlegend ist, hat man
auch ein paar sehr grundlegende Forderungen an ihn: Axiomensysteme sollen widerspruchsfrei
sein, die Axiome sollen moglichst unabhéngig sein und Vollstidndigkeit wire auch toll. Mit
Unabhéngigkeit ist gemeint, dass kein Axiom sich aus einem anderem herleiten ldsst. Dies scheint
auf den ersten Blick eine einfache Eigenschaft zu sein. Auf den zweiten Blick muss man jedoch
einsehen, dass das Parallelenproblem, also die Frage ob das Parallelenaxiom unabhéingig von
den restlichen Axiomen ist, iiber 2000 Jahre nicht gelost wurde. Ein ganz anderes Kaliber ist
die Frage nach der Vollstdndigkeit. Ein Axiomensystem gilt als Vollstdndig, wenn jede Aussage
innerhalb des Systems verifizierbar oder falsifizierbar ist. Interessant ist hierbei der Gédelsche
Unvollstandigkeitssatz, der z. B. fiir die Arithmetik beweist, dass nicht alle Aussagen formal
bewiesen oder widerlegt werden kénnen.

Kehren wir nun jedoch zuriick zur Geometrie. Euklid hat in seiner Abhandlung ,,Die Elemente*
ein Axiomensystem fiir die Geometrie aufgestellt.

Euklids Axiome
e Strecke zwischen je zwei Punkten
e Jede Strecke bestimmt genau eine Gerade
e Kreis (um jeden Punkt mit jedem Radius)

e Je zwei rechte Winkel sind gleich (Isometrie, Bewegung)

e Parallelenaxiom von Euklid:
Wird eine Gerade so von zwei Geraden geschnitten, dass die Summe der Innenwinkel zwei
Rechte ist, dann schneiden sich diese Geraden auf der Seite dieser Winkel.

Man mache sich klar, dass das nur dann nicht der Fall ist, wenn beide Geraden par-
allel sind und senkrecht auf die erste stehen.
Definition 55
Eine euklidische Ebene ist eine Geometrie (X, d, G), die Axiome §1 - §5 erfiillt:

§1) Inzidenzaxiome:
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(i) Zu P # Q € X gibt es genau ein g € G mit { P,Q } C g.
(i) [g| >2 VgeG
(iii) X ¢ G
§2) Abstandsaxiom: Zu P,Q, R € X gibt es genau dann ein g € G mit { P,Q, R } C g,
wenn gilt:
e d(P,R) =d(P,Q) + d(Q, R) oder
e d(P,Q) =d(P,R) + d(R,Q) oder
e d(Q,R) =d(Q,P)+d(P,R)

Definition 56
Sei (X, d,G) eine Geometrie und seien P,Q, R € X.

a) P, @, R liegen kollinear, wenn es g € G gibt mit { P,Q, R} C g.

b) Q liegt zwischen P und R, wenn d(P, R) = d(P,Q) + d(Q, R)

c) Strecke PR :={(Q € X | Q liegt zwischen P und R }
)

d) Halbgeraden:

PR :={Q € X | Q liegt zwischen P und R oder R liegt zwischen P und Q }
PR™ :={Q € X | P liegt zwischen @ und R }

P R
-------- L R Ry R R
PR~ PR
PR*

Abbildung 4.1: Halbgeraden

Bemerkung 60
a) PRTUPR™ = PR

b) PRFN PR ={P}
Beweis:

a) ,,C* folgt direkt aus der Definition von PR™ und PR~
,2% Sei Q € PR = P,Q, R sind kollinear.
Q liegt zwischen P und R = Q € PR

2{R liegt zwischen P und Q = Q € PR
P liegt zwischen Q und R = Q) € PR

b) ,,0 ist offensichtlich
»,C% Sei PRT N PR™. Dann ist d(Q, R) = d(P,Q) + d(P, R) weil Q € PR~ und

{ d(P,R) = d(P,Q) + d(Q, R) oder }
d(P,Q)=d(P,R)+d(R,Q)

=d(Q,R) =2d(P,Q) +d(Q,R)
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=d(P,Q)=0

=P=qQ

d(P,Q) = 2d(P,R) + d(P, Q)
=P=R

= Widerspruch

Definition 57
§3) Anordnungsaxiome

(i) Zu jeder Halbgerade H mit Anfangspunkt P € X und jedem r € R>( gibt es
genau ein Q € H mit d(P,Q) = r.

(i) Jede Gerade zerlegt X \ g = Hy U Hy in zwei nichtleere Teilmengen Hy, Ho, sodass
fir alle A€ H;, B€ Hy mit 4,5 € {1,2} gilt: ABNg# 0 & i # j.

Diese Teilmengen H; heiken Halbebenen bzgl. g.
§4) Bewegungsaxiom: Zu P,Q, P, Q" € X mit d(P,Q) = d(P’,Q’) gibt es mindestens
2 Isometrien 1, @2 mit ¢;(P) = P’ und ¢;(Q) = Q',i = 1, 2!

§5) Parallelenaxiom: Fiir jedes g € G und jedes P € X \ g gibt es hochstens ein h € G
mit hNg = (.2

Satz 4.1 (Satz von Pasch)
Seien P, Q, R nicht kollinear, g € G mit gN{ P,Q, R} = 0 und g N PQ # 0.

Dann ist entweder g N PR # () oder g N QR # 0.

Dieser Satz besagt, dass Geraden, die eine Seite eines Dreiecks (also nicht nur eine Ecke)
schneiden, auch eine weitere Seite scheiden.

Beweis: gNPQ # 0
dg)P und @ liegen in verschiedenen Halbebenen bzgl. g
= 0. B. d. A. R und P liegen in verschieden Halbebenen bzgl. g

= gNRP #(

Bemerkung 61
Sei P,@ € X mit P # @ sowie A, B € X \ PQ mit A # B. Auferdem seien A und B in der
selben Halbebene bzgl. PQ sowie Q und B in der selben Halbenebe bzgl. PA.

Dann gilt: PBt N AQ # ()

Auch Bemerkung 61 lasst sich Umgangssprachlich sehr viel einfacher ausdriicken: Die Diagonalen
eines konvexen Vierecks schneiden sich.

Beweis: Sei P’ € PQ—,P'# P 224l pp schneidet AP UAQ

Sei C' der Schnittpunkt. Dann gilt:

'Die ,Verschiebung® von P'Q’ nach PQ und die Isometrie, die zusétzlich an der Gerade durch P und Q spiegelt.
2h heift ,Parallele zu g durch P
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Abbildung 4.2: Situation aus Bemerkung 61

(i) C € PB*, denn A und B liegen in derselben Halbebene bzgl. PQ = P'Q, also auch
AP’ und AQ.

(ii) C liegt in derselben Halbebene bzgl. PA wie B, weil das fiir @ gilt.
AP’ liegt in der anderen Halbebene bzgl. PA = C ¢ P'A = C € AQ
Da C € PB* und C € AQ folgt nun direkt: ) # { C'} € PBT N AQ |

Bemerkung 62
Seien P,@ € X mit P # Q und A, B € X\ PQ in der selben Halbebene bzgl. PQ. Auferdem
sei d(A, P) =d(B,P) und d(A,Q) = d(B, Q).

Dann ist A = B.

P

Abbildung 4.3: Bemerkung 62: Die beiden roten und die beiden blauen Linien sind gleich lang.
Intuitiv weifs man, dass daraus folgt, dass A = B gilt.

Beweis: durch Widerspruch
Annahme: A # B

Dann ist B ¢ (PAUQA) wegen §2.
1. Fall: @ und B liegen in derselben Halbebene bzgl. PA

chclgmg 61 PB+N m 7& @

Sei C' der Schnittpunkt vom PB und AQ.
Dann gilt:
(i) d(A,C) +d(A,Q) = d(B,Q) < d(B,C) + d(C, Q) = d(A,C) < d(B,C)
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ety

N

P [N

(a) 1. Fall (b) 2. Fall

Abbildung 4.4: Fallunterscheidung aus Bemerkung 62

(i) a) B liegt zwischen P und C.
d(P,A)+d(A,C) > d(P,C) =d(P,B)+d(B,c) = d(P,A)+d(B,C) = d(A,c) >
d(B,C) = Widerspruch zu Punkt (i)
b) C liegt zwischen P und B
d(P,C) +d(C, A) > d(P, A) = d(P, B) = d(P,C) + d(C, B)

=d(C,A) > d(C,B)
= Widerspruch zu Punkt (i)

2. Fall: Q und B liegen auf verscheiden Halbebenen bzgl. PA.
Dann liegen A und @ in derselben Halbebene bzgl. PB.

Tausche A und B = Fall 1 [ |

Bemerkung 63
Sei (X, d,G) eine Geometrie, die §1 - §3 erfiillt und ¢ eine Isometrie mit p(P) = P und

(@) =Q.

Dann gilt p(S) =S VS € PQ.
Beweis:

O.B.d. A.sei S Em@d( P,Q)=4d(P,S)+d(5,Q)
P 4P, 0(Q)) = d(e(P), 9(S)) + d(9(S), #(Q))
Pag “")d<P Q) = d(P,o(S)) + d(¢(5), Q)
©(5) liegt zwischen P und @
= d(P790(S)) =d(P,9)

Do) =5

Proposition 4.2
In einer Geometrie, die §1 - §3 erfiillt, gibt es zu P, P',Q,Q’ mit d(P,Q) = d(P’,Q’)
hochstens zwei Isometrien mit ¢(P) = P’ und p(Q) = Q'
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Aus den Axiomen folgt, dass es in den Situation §4 hochstens zwei Isometrien mit

@i(P) = P und ¢;(Q) = Q' gibt.

Beweis: Seien o1, @2, p3 Isometrien mit p;(P) = P, ¢;(Q) =Q’, i =1,2,3
Beh.: (1) 3R € X \ PQ mit p1(R) = p2(R).
Beh.: (2) Hat ¢ 3 Fixpunkte, die nicht kollinear sind, so ist ¢ = idx.

Aus Beh. 1 und Beh. 2 folgt, dass goz_l o1 =idx, also 3 = @1, da P, @ und R in diesem
Fall Fixpunkte sind.

Beweis:
Beh.: Sind P # @ Fixpunkte einer Isometrie, so ist ¢(R) = R fiir jedes R € PQ.

Beweis: (von Beh. 2 mit Bemerkung 63) Seien P, Q und R Fixpunkte von ¢,
R € PGund A ¢ PQUPRUQR. Sei B € PQ\{P,Q}. Dann ist ¢(B) = B
wegen Bemerkung 63.

Bemerkung 63
=

Ist R € AB, so enthélt AB 2 Fixpunkte von ¢ p(A) = A.

Abbildung 4.5: P, Q, R sind Fixpunkte, B € PQ\{P,Q}, A¢ PQUPRUQR

Ist R ¢ AB,soist ABNPR # () oder AB € RQ # () nach Satz 4.1. Der Schnittpunkt
C ist dann Fixpunkt von ¢’ nach Bemerkung 63 = ¢(A) = A.

Beweis: (von Beh. 1) Sei R € X \ PQ. Von den drei Punkten ¢1(R), p2(R), p3(R)
liegen zwei in der selben Halbebene bzgl. P'Q" = ¢;(PQ).

O. B. d. A. seien ¢1(R) und 2(R) in der selben Halbebene.
Es gilt:

d(P', 1(R)) = d(¢1(P), ¢1(R))
, R)

(
(
(p2(P), p2(R))
(
(

]!

P’ 02(R))
Q' p2(R))

I
SV -V~ ~ W ¥

und analog d(Q’, ¢1(R)) = d(Q’, p2(R))
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Bemerkung 64
Mit Bemerkung 62 lassen sich die Kongruenzsétze fiir Dreiecke, wie man sie aus der Schule
kennt, beweisen.

Proposition 4.3
Sei (X, d,G) eine Geometrie mit den Axiomen §1 - §4.

Dann gibt es zu jedem g € G und jedem P € X \ g ein h € G mit P € h und g N h # (.

Abbildung 4.6: Situation aus Proposition 4.3

Beweis: Sei f € G mit P € f. Ist fNg=10, so setze h := f. Andernfalls sei { Q } :== fNg.

Sei ¢ die eindeutige Isometrie mit (Q) = P, ¢(P) = P’, die die Halbebenen bzgl. f nicht
vertauscht.

Setze h := (g).
Z.7..hng=70.
Andernfalls sei { R} =hnNyg.

Bemerkung 65
Jeder Innenwinkel eines Dreiecks ist kleiner als alle nicht-anliegenden Auftenwinkel.

Beweis: Sei ¢ die Isometrie, die @ auf P und P auf P’ mit P’ € f,d(P, P") = d(P, Q) abbildet
und die Halbebenen bzgl. f erhilt.

Beh.: (Herz) ¢(g)Ng=10

Beweis: Ist ¢(g) Ng # 0, so ist R der Schnittpunkt.

QUZ P

Abbildung 4.7: Skizze zu Behauptung 4
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Definition 58
a) Ein Winkel ist ein Punkt P € X zusammen mit 2 Halbgeraden mit Anfangspunkt P.
Man schreibt: Z/Ri PRy bzw. /RyPR;?

b) Zwei Winkel sind gleich, wenn es eine Isometrie gibt, die den einen Winkel auf den
anderen abbildet.

c) ZR)P'R), heift kleiner als ZR; PRy, wenn es eine Isometrie ¢ gibt, mit ¢(P) = P/,
o(PR[") = P'R{ und op(R}) liegt in der gleichen Halbebene bzgl. PRy wie Ry und in
der gleichen Halbebene bzgl. PRy wie Ry

d) Im Dreieck APQR gibt es Innenwinkel und Aufsenwinkel.

[ ]
/

\\\ 2
\
le °
P R} Ry
(a) LR| P'Rj ist kleiner als ZR1 PRy (b) und AuRenwin-
vgl. Definition 58.c kel in APQR, vgl. Definiti-

on 58.d

Abbildung 4.8: Situation aus Definition 58

Bemerkung 66
In einem Dreieck ist jeder Innenwinkel kleiner als jeder nicht anliegende Aufsenwinkel.

Abbildung 4.9: Situation aus Bemerkung 66

Beweis: Zeige ZPRQ < ZRQP'.
Sei M der Mittelpunkt der Strecke QR. Sei A € M P~ mit d(P, M) = d(M, A).

3Fiir dieses Skript gilt: ZR1 PRy = ZR2PR;. Also sind insbesondere alle Winkel < 180°.
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Es gilt: d(Q, M) = d(M,R) und d(P, M) = d(M, A) sowie ZPMR = ZAMQ = AMRQ
ist kongruent zu AAMQ, denn eine der beiden Isometrien, die Z/PM R auf ZAM () abbildet,
bildet R auf QQ und P auf A ab.

=/ MQA=/MRP = /QRP = /PRQ.
Noch zu zeigen: /MQA < ZRQP’, denn A liegt in der selben Halbebene bzgl. PQ wie M.

Beweis: (von Proposition 4.3) Wire ¢(g) nicht parallel zu g, so gébe es einen Schnitt-
punkt R. Dann ist ZQPR < ZRQP~ nach Bemerkung 66 und ZQPR = ZRQP~, weil
©(LRQP") = ZRPQ

Folgerung 4.4
Die Summe zweier Innenwinkel in einem Dreieck ist kleiner als 7, d. h. es gibt eine Isometrie
e mit p(Q) = P und p(QP1) = PR, sodass ¢(R) in der gleichen Halbebene bzgl. PQ
liegt wie R.

Beweis: Die Summe eines Innenwinkels mit den anliegenden Aufienwinkeln ist 7, d. h. die
beiden Halbgeraden bilden eine Gerade.

Abbildung 4.10: In der sphérischen Geometrie gibt es, im Gegensatz zur euklidischen Geometrie,
Dreiecke mit drei 90°-Winkeln.

Proposition 4.5
In einer Geometrie mit den Axiomen §1 - §4 ist in jedem Dreieck die Summe der
Innenwinkel < 7.

Sei im Folgenden ,JWS* die ,Innenwinkelsumme*.
Beweis: Sei A ein Dreieck mit IWS(A) =7 +¢
Sei « ein Innenwinkel von A.
Beh.: Es gibt ein Dreieck A" mit IWS(A') = IWS(A) und einem Innenwinkel o/ < §.

Dann gibt es fiir jedes n ein A, mit IWS(A,) = IWS(A) und Innenwinkel o < 7. Fiir
5w < € ist dann die Summe der beiden Innenwinkel um A,, gréfer als 7 = Widerspruch
zu Folgerung 4.4.
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c D
,
a (8]
A B
(a) Summe der Winkel «, 8 und ~ (b) Situation aus Proposition 4.5

Abbildung 4.11: Situation aus Proposition 4.5

Beweis: (der Behauptung) Sei M der Mittelpunkt RC und A’ € M A~ mit d(A’, M) =
d(A,M) = A(MA'C) und A(MAB) sind kongruent. = ZABM = ZA'CM und
LMA'C =ZMAB. = a+ +~v=IWS(AABC) = IWS(AAA'C) und a; + a2 = a,
alsoo. B.d. A, ag < §

Bemerkung 67
In einer euklidischen Ebene ist in jedem Dreieck die Innenwinkelsumme gleich 7.

Abbildung 4.12: Situation aus Bemerkung 67

Beweis: Sei g eine Parallele von AB durch C.
e Es gibt o/ = a wegen Proposition 4.3.
e Es gibt 8/ = 3 wegen Proposition 4.3.
e Es gibt o” = o/ wegen Aufgabe 7.

= IWS(AABC) =~v+d"+ ' ==

4.2 Weitere Eigenschaften einer euklidischen Ebene

Satz 4.6 (Strahlensatz)
In &hnlichen Dreiecken sind Verhéltnisse entsprechender Seiten gleich.

Der Beweis wird hier nicht gefiihrt. Fiir Beweisvorschlége ware ich dankbar.
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Y,
3T A2z
21 z
14
—0 x A2z )

1,0 1 2 3 4 =

Abbildung 4.13: Strahlensatz

Abbildung 4.14: Die Dreiecke AABC und AAB’C’ sind ahnlich.
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4.2.1 Flacheninhalt

Definition 59
,Simplizialkomplexe® in euklidischer Ebene (X, d) heiffen flichengleich, wenn sie sich in
kongruente Dreiecke zerlegen lassen.

Ay

(a) Zwei kongruente Dreiecke (b) Zwei weitere kongruente Drei-
ecke

Abbildung 4.15: Fliachengleichheit

Der Fliacheninhalt eines Dreiecks ist 1/2 - Grundseite - Hohe.

C

A B

Abbildung 4.16: Flachenberechnung im Dreiecks

Zu zeigen: Unabhéingigkeit von der gewéhlten Grundseite.

C

Strahlensatz
=

Satz 4.7 (Satz des Pythagoras)
Im rechtwinkligen Dreieck gilt a? + b> = ¢2, wobei ¢ die Hypothenuse und a, b die beiden
Katheten sind.
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a

A ¢ B b a

(a) a,b sind Katheten und c ist die Hypo- (b) Beweisskizze
thenuse

Abbildung 4.18: Satz des Pythagoras

Beweis: (a+b)-(a+b)=a’+2ab+b>=c?+4- (3 a-b)

Satz 4.8
Bis auf Isometrie gibt es genau eine euklidische Ebene, namlich X = R? d =
euklidischer Abstand, G = Menge der iiblichen Geraden.

Beweis:
(i) (R? dpuaiq) ist offensichtlich eine euklidische Ebene.

(ii) Sei (X,d) eine euklidische Ebene und g1, go Geraden in X, die sich in einem Punkt
0 im rechten Winkel schneiden. Sei X der Fufpunkt des Lots von P auf g; (vgl.
Aufgabe 8 (c)).

Sei Y der Fufipunkt des Lots von P auf gs.
Setze h(P) := (zp,yp) mit zp = d(X,0) und yp := d(Y,0).

Dadurch Wirc& X — R? ai dem Quadranten definiert, in dem P liegt (d. h.
VQ € X mit PQ Ng; = 0 = PQ N g3) Fortsetzung auf ganz X durch konsistente
Vorzeichenwahl.

Beh.: (1) h ist surjektiv
Beh.: (2) h ist abstandserhaltend (— injektiv)

Beweis: (von 1) Sei (z,y) € R% z. B. 2 > 0,y > 0. Sei P’ € g; mit d(0,P') = x
und P’ auf der gleichen Seite von go wie P.

Beweis: (von 2) Zu Zeigen: d(P, Q) = d(h(P),h(Q))

d(P,Q)?
h(Q) = (2, yq)

Pyth T
YOS 4P, R)? + d(R, Q) = (yg — yp)? + (xq — zp)?.
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92 g2
X X
P
°
P yp
g1 0 xp g1
(a) Schritt 1 (b) Schritt 2

Abbildung 4.19: Beweis zu Satz 4.8

4.3 Hyperbolische Geometrie

Definition 60
Sei

H::{ZEC]%(,Z)>0}:{(:U,y)ER2‘y>()}
die obere Halbebene bzw. Poincaré-Halbebene und G = G1 U G5 mit

Gi={gn CH|ImeRreRyog:g1={z€eH:|z—m|=7r}}
Go={g@pCH|dJxecR:go={zeH: R(z)=x}}

Die Elemente von H heifen hyperbolische Geraden.

Bemerkung 68 (Eigenschaften der hyperbolischen Geraden)
Die hyperbolischen Geraden erfiillen. ..

a) ...die Inzidenzaxiome §1
b) ...das Anordnungsaxiom §3 (ii)
c¢) ...nicht das Parallelenaxiom §5

Beweis:

a) Offensichtlich sind §1 (iii) und §1 (ii) erfiillt. Fur §1 (i) gilt:
Gegeben z1, z0 € H
Existenz:

Fall 1 %(2’1) = %(Zg)
= z1 und zo liegen auf

g={z€C|R(z)=R(z) NH}

Siehe Abbildung 4.21a.
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g2

X - TOO

yp

0 Tp g1

(a) Schritt 1 (b) Schritt 2 (Bild 13)

Abbildung 4.20: Beweis zu Satz 4.8

Fall 2 R(z1) # R(22)

Betrachte nun z; und z9 als Punkte in der euklidischen Ebene. Die Mittelsenkrech-
te zu diesen Punkten schneidet die x-Achse. Alle Punkte auf der Mittelsenkrechten
zu z1 und zo sind gleich weit von z1 und z9 entfernt. Daher ist der Schnittpunkt mit
der z-Achse der Mittelpunkt eines Kreises durch z; und z2 (vgl. Abbildung 4.21b)

Y, Yy
41 41
3 t Zs A
2 T \\ 2\
2 4 N2,
1 1 AIZ} \\‘\‘\\
—0 A | A : . —0 t t \‘\%\ t >
-1 0 1 9 3 4 5 £ -1 0 1 2 3 4 5 %
(a) Fall 1 (b) Fall 2

Abbildung 4.21: Zwei Punkte liegen in der hyperbolischen Geometrie immer auf genau einer
Geraden

b) TODO
c) Siehe Abbildung 4.22.

Definition 61
Es seien a,b,c,d € C mit ad — bc # 0 und ¢ : C — C eine Abbildung definiert durch

az+b
o(z):= ot d
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o heilst Mobiustransformation.

Proposition 4.9
a) Die Gruppe SLa(R) operiert auf H durch die Mébiustransformation

(2) = a b o _7az—i—b
o(z) := e d z'_cz—l—d

b) Die Gruppe PSLa(R) = SL2(R)/ (4 ) operiert durch o auf H.

c) PSLy(R) operiert auf R U { oo }. Diese Gruppenoperation ist 3-fach transitiv, d. h.
zu g < 1 < Too € R gibt es genau ein 0 € PSLa(R) mit o(zg) =0, o(x1) =1,

(o) = 00.

d) SL2(R) wird von den Matrizen
A0 1 a 0 1 .
(0 )\_1> , <0 1> und <_1 0> mit a, A € R

e) PSLy(R) operiert auf G.

erzeugt.

Beweis:
a) Seiz=z+iy€eH,d. h.y>0und o = <CCL Z) € SLy(R)
a(z +iy) +b
~olz) = clx+iy) +d
(ax +b) +iay (cx+d)—icy
- (cx+d) +icy (cx+d)—icy
~ (ax+b)(cx +d) +aycy . ay(cx+d) — (ax +b)cy
T (ex+d)2+ (ey)? T e + d)2 + (cy)?
_axcr +axd +bex +bd+aycy . (ad — be)y
(cz + d)2 + (cy)? ez + )2 + (cy)?
SLa(R) ac(z? + y?) + adx + bex +bd Y
- (cx +d)? + (cy)? ex +d)2 + (cy)?

= 3(0(2) = wratr@r > 0

Die Abbildung bildet also nach H ab. Auferdem gilt:

<1 O> T+ iy .
0z = =Trt+1y==z

0 1 1
und
a b . a b . _(a b Oa’z+b’
c d ¢ d)°%) " \¢ a dz+d
a’ z+b'
_ac’zj-_d’—i_b
Ca’z+b’+d

cz+d
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a(a’z4b")+b(c' z+d’)
c'z4d’

c(a’ z+b')+d(c' z+d")
' z+d’

_aldz+b) +b(dz+d)
Cc(dz+V)+d(dz+d)
_ (ad" 4+ bc)z + ab' + bd’
(ca’ +db)z + cb + dd
ad' +bc  ab + bd'

<ca' +db b + dd’) °F

-((¢a) (& 0))e

b) Es gilt o(2) = (—0)(2) fiir alle 0 € SLy(R) und 2z € H.

c) Ansatz:az(i Z) U(mo):%;()iaxo%—b:()éb:—axo

0(Too) =00 = oo +d=0=d =~
U(xl):1:>(ll’1—|—b:cgjl+d
a(ry — ) = c(r1 — Too) = ¢ = a2=20

T1—Too

= —a? 24 7;011:;”:’0 + azxoifll_’fi =1

2 _ J— 2 — —Loo

= a7 (20 — ) = 1 = a” = —(xri;)gfxlimo)
d) TODO d)
e) Es geniigt die Aussage fiir Matrizen aus Proposition 4.9 (d) zu zeigen.

A0 2 . o . o
co=1{4y 1) also o(z) = A°z. Daraus ergeben sich die Situationen, die in

Abbildung 4.23a und Abbildung 4.23b dargestellt sind.

e Offensichtlich gilt die Aussage fiir o = <é 61L>

. 0 1 .
e Seinun o = <_1 0), also 0(2) = —+

Bemerkung 69
Zu hyperbolischen Geraden g1, g2 gibt es 0 € PSLa(R) mit o(g1) = go.

Beweis: Nach Proposition 4.9 (c¢) gibt es ¢ mit o(a;) = b; und o(a2) = be. Dann existiert
o(g1) := g2 wegen dem Inzidenzaxiom §1 und ist eindeutig bestimmt.

Definition 62
Seien z1, 29, 23, 24 € C paarweise verschieden.

Dann heift
DV L 2:2 . (Zl - 2'4) . (2’3 — 22)
(21,22, 23, 24) 1= > = CETSHCETY
z3—22
Doppelverhaltnis von zq, ..., z4.

Bemerkung 70 (Eigenschaften des Doppelverhéltnisses)
a) DV(z1,...,24) € C\{0,1}

b) DV(217Z47’Z37Z2) !

= DV(z1,22,23,24)
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_ 1
c) DV(z3,29,21,24) = N EREEn]

)
d) DV ist auch wohldefiniert, wenn eines der z; = co oder wenn zwei der z; gleich sind.
e) DV(0,1,00,24) = z4 (Der Fall z4 € {0,1,00 } ist zugelassen).

)

f) Fir o0 € PSLy(C) und z1,...,24 € CU{ 00 } ist
DV(o(z1),0(22),0(23),0(24)) = DV(21, 22, 23, 24)

und fiir o(z) =

|l

gilt

DV(o(z1),0(22),0(23),0(24)) = DV(21, 22, 23, 24)

g) DV(z1,22,23,24) ERU{ 0 } < 21,..., 24 liegen auf einer hyperbolischen Geraden.
Beweis:

a) DV(z1,...,24) # 0, da z; paarweise verschieden
DV(z1,...,24) # 1, da:

Annahme: DV(z1,...,24) =1

< (21 — 22)(23 — 24) = (21 — 24) (23 — 22)
& 2123 — 2923 — 2124 + 2024 = 2123 — 2324 — 2122 + 2224
& 2923 + 2124 = 2324 + 2122
<> 2923 — 2324 = 2129 — %124
& 23(20 — 24) = 21(22 — 24)

& 23 = 21 oder z9 = 24

Alle z; sind paarweise verschieden = Widerspruch ]
— (z1—20)(z3—za) _ 1
b) DV(21, 24,23, 22) = G203 Ge—2) = DV ez
_ (m—z)(z1—22) _ 1
¢) DV(z3, 22,21, 24) = (Zi—z;)~(21—Zi) " DV(21,22,23,24)

d) Zwei der z; diirfen gleich sein, da:

Fall 1 z1 = z4 oder 23 = 29
In diesem Fall ist DV (z1,...,24) =0

Fall 2 z1 = z9 oder z3 = 24
Mit der Regel von L’Hospital folgt, dass in diesem Fall DV(zy,..., z4) = oo gilt.

Fall 3 21 = z3 oder z9 = 24
Durch Einsetzen ergibt sich DV (z1,...,24) = 1.

Im Fall, dass ein z; = oo ist, ist entweder DV(0, 1, 00, z4) = 0 oder DV (0, 1, 00, 24) +00

e) DV(0,1,00,2y) = 0z2aboenl) _ saloe) _

(0—1)-(co—z4) 00—24
f) TODO
g) Sei 0 € PSLy(C) mit o(21) =0, 0(22) =1, 0(z3) = 0o (gibt es?)
Bem. 70.f

= " DV(z1,...,24) = DV(0,1,00,0(24))
= DV(z1,...,24) ERU{ 00}
& o(zg) ERU{o0}
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Behauptung folgt, weil o(R U co) ein Kreis oder eine Gerade in C ist.

Definition 63
Fiir 21, 2o € H sei g, ., die eindeutige hyperbolische Gerade durch z; und 23 und ay, as die
wSchnittpunkte” von g, ., mit RU { oo }.

Dann sei d(z1, 22) := %ln | DV (a1, 24, a2, z2)| und heife hyperbolische Metrik.
Beh.: Die hyperbolische Metrik ist eine Metrik auf H.
Beweis: Wegen Bemerkung 70.f ist
d(z1,22) :=d(0(21),0(22)) mit o(a1) =0, o(az) = o
d. h. 0(gs, 2,) = iR (imaginére Achse).
also gilt 0. B. d. A. 21 =da und 25 = ¢b mit a,b € R und a < b.

2d(ia,ib) =1In | DV(0,ia, 00, 1b) |
(0 —1ib)(co —ia)

=1
B0 " ia) (oo = ib) |
—ln| 2]
a
=Inb—1Ina

Also: d(z1,22) >0, d(z1,22) =0 21 = 29

2d(z2,21) = In DV (aqg, 22, a1, 21)
— In DV (00, ib, 0, ia)

Bem_T0.by ) DV(0,ib, 00, ia)

= 2d(2’1, 22)

Liegen drei Punkte z1, 22,23 € C auf einer hyperbolischen Geraden, so gilt d(z1,23) =
d(z1, z2) + d(z2, z3) (wenn z9 zwischen z; und z3 liegt).

Dreiecksungleichung: Beweis ist umstédndlich und wird hier nicht gefiithrt. Es sei auf die
Vorlesung , Hyperbolische Geometrie” verwiesen.

Satz 4.10
Die hyperbolische Ebene H mit der hyperbolischen Metrik d und den hyperbolischen
Geraden bildet eine ,nichteuklidische Geometrie®, d. h. die Axiome §1 - §4 sind erfiillt,
aber Axiom §5 ist verletzt.
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78

_=5 x
Abbildung 4.22: Hyperbolische Geraden erfiillen §5 nicht.
)
3 A2z
Yy
31 27 z
1 4
2
—0 ! i A t >
-1 0 1 2 3 4 7T

(b) Fall 2 (Strahlensatz)

Abbildung 4.24: Inversion am Kreis
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Ubungsaufgaben

Aufgabe 7

Seien (X, d) eine absolute Ebene und P, @, R € X Punkte. Der Scheitelwinkel des Winkels
/ZPQR ist der Winkel, der aus den Halbgeraden QP~ und QR~ gebildet wird. Die

Nebenwinkel von ZPQR sind die von QPT und QR~ bzw. QP~ und QR™ gebildeten
Winkel.

Zeigen Sie:
(a) Die beiden Nebenwinkel von ZPQR sind gleich.
(b) Der Winkel ZPQR ist gleich seinem Scheitelwinkel.

Aufgabe 8

Sei (X, d) eine absolute Ebene. Der Abstand eines Punktes P zu einer Menge Y C X von
Punkten ist definiert durch d(P,Y) :=infd(P,y)ly € Y.

Zeigen Sie:

(a) Ist AABC ein Dreieck, in dem die Seiten AB und AC kongruent sind, so sind die
Winkel ZABC und /BC A gleich.

(b) Ist AABC ein beliebiges Dreieck, so liegt der langeren Seite der grofere Winkel
gegeniiber und umgekehrt.

(c) Sind g eine Gerade und P ¢ g ein Punkt, so gibt es eine eindeutige Gerade h mit
P € h und die g im rechten Winkel schneidet. Diese Grade heifit Lot von P auf g
und der Schnittpunkt des Lots mit g heilst LotfufSpunkt.

Aufgabe 9

Seien f, g, h € G und paarweise verschieden.

Zeigen Sie: f|[gAg||h=f| R

Aufgabe 10

Beweise den Kongruenzsatz SSS.



5 Krummung

5.1 Kriimmung von Kurven

Definition 64
Sei v : I = [a,b] = R™ eine C*°-Funktion.

a) 7 heift durch Bogenlidnge parametrisiert, wenn ||/(¢)||2 = 1 fiir alle ¢t € I. Dabei
ist /(1) = (1), 72(), - -, Y (t))

b) 1(7) = [7||+/(t)]|d heikt Lénge von ~

Bemerkung 71 (Eigenschaften von Kurven I)
Sei v : I = [a,b] - R™ eine C*°-Funktion.

a) Ist v durch Bogenldnge parametrisiert, so ist [(v) = b — a.

b) Ist v durch Bogenldnge parametrisiert, so ist 7/(¢) orthogonal zu " (t) fiir alle t € I.

Beweis: von Bemerkung 71.b:

L= 'Ol = Iy = ('), 7' (1)

=0= %W(t)ﬁ/(t))
_ %M(W;(a +5(t)5 (1))

= 2(7{ () - 1 (t) + V5 (1) - Y4 (2))
=2(7"(t).7(t))

Definition 65
Sei 7y : I — R? eine durch Bogenlinge parametrisierte Kurve.

a) Fir ¢t € I sei n(t) Normalenvektor an v in ¢, d. h.
(n(t),7'() =0, |In(t)]l =1

und det((y1(¢),n(t))) = +1
b) Nach Bemerkung 71.b sind n(t) und 4”(t) linear abhéngig, d. h. es gibt x(t) € R mit

2(t) = (1) - n(t)

k(t) heift Kriimmung von = in t.
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Beispiel 42
Gegeben sei ein Kreis mit Radius r, d. h. mit Umfang 27r. Es gilt:

r

t t
~(t) = (r - cos —, T - sin ) fir ¢t € [0, 27r]
T

ist parametrisiert durch Bogenlange.

S
=
| Il
*\’—‘ﬁ\*—‘/\/\/—\/_\
|
o . .
2 <
A
|
<
=
| =+
~_

Definition 66
Sei v : I — R3 eine durch Bogenlinge parametrisierte Kurve.

a) Fir t € I heift x(t) := [|7"(¢)| die Kriimmung von + in ¢.

b) Ist fur t € I die Ableitung +"(¢) # 0, so heift 4”(t) Normalenvektor an v in ¢.

c) b(t) sei ein Vektor, der v/(t), n(t) zu einer orientierten Orthonormalbasis von R? ergiinzt.

Also gilt:
det(Vl(t)7 n(t)v b(t)> =1

b(t) heift Binormalenvektor, die Orthonormalbasis
{~'(1),n(t),0(t) }

heiflt begleitendes Dreibein.

Bemerkung 72 (Eigenschaften von Kurven IT)
Sei v : I — R3 durch Bogenlinge parametrisierte Kurve.

a) n(t) ist orthogonal zu /().
b) b(t) aus Definition 66.c ist eindeutig.

5.2 Tangentialebene

Erinnerung Sie sich an Definition 32 ,regulédre Flache®.
Aquivalent dazu ist: S ist lokal von der Form

f={zeR?|flz)=0}
fiir eine C*°-Funktion f:R* — R.

Wirkligh
R°?
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Definition 67
Sei S C R? eine reguldre Fliche, s € S, F : U — V N S eine lokale Parametrisierung um s
(d. h.seV)
(u,v) = (x(u,v),y(u,v), z(u,v))
Fiir p = F~1(s) € U sei

oz Oz
Ieu) = | ) )
&) 8
ou v
und DpF : R? — R3 die durch Jg(p) definierte lineare Abbildung.

Dann heifst T3S := Bild(D,F') die Tangentialebene an s € S.

Bemerkung 73
TS ist 2-dimensionaler Untervektorraum von R3.

Bemerkung 74
TS hiangt nicht von der gewahlten Parametrisierung ab.

Beweis:
Beh.: T,S = { x € R? | Iparametrisierte Kurve 7 : [—¢, +¢] — S fiir ein £ > 0 mit 7(0) = S und +/(0)

Bemerkung 75
Sei S = V(f) eine reguldre Fliche in R3, also f : V — R eine C*°-Funktion, V C R? offen,
grad(f)(z) # 0 fiir alle z € S.

Dann ist TS = (grad(f)(s))* fiir jedes s € S.

Beweis: Sei z € TS, : [—¢,+¢] — S eine parametrisierte Kurve mit € > 0 und +/(0) = s,
sodass 7/(0) = z gilt. Da y(t) € S fir alle t € [—¢,¢],ist foy=0
= 0= (f27)(0) = (grad(f)(+(0)),7'(0))
= T:S C grad(f)(s)*"

L2 705 = (grad(f)(s))*

Definition 68
a) Ein Normalenfeld auf der Fliche S ist eine Abbildung n : § — S C R3 mit
n(s) € T,S™* fiir jedes s € S.

b) S heift orientierbar, wenn es ein stetiges Normalenfeld auf S gibt.

Manchmal wird zwischen einem Normalenfeld und einem FEinheitsnormalenfeld unterschieden.
Im folgenden werden diese Begriffe jedoch synonym benutzt.

Bemerkung 76 (Eigenschaften von Normalenfeldern)
a) Ein Normalenfeld auf S ist genau dann stetig, wenn es glatt ist (also C*°).

b) Zu jedem s € S gibt es eine Umgebung V' C R? von s und eine lokale Parametrisierung
F:U — V von S um s, sodass auf F(U) =V NS ein stetiges Normalenfeld existiert.

c¢) S ist genau dann orientierbar, wenn es einen differenzierbaren Atlas von S aus lokalen
Parametrisierungen F; : U; — V;, ¢ € [ gibt, sodass fiir alle 4,7 € F und alle
seV;nV;NS gilt:
Vi=V;
—
det(Ds Fjo F1)
—_—

cR3%3



83 5.3. GAUSS-KRUMMUNG

Beweis: Wird hier nicht gefiihrt.

Beispiel 43
1) S =52 ny =idge ist stetiges Normalenfeld.
ng = —idg2 ist auch stetiges Normalenfeld.

2) S = Mobiusband (vgl. Abbildung 5.1) ist nicht orientierbar. Es existiert ein Norma-
lenfeld, aber kein stetiges Normalenfeld.

‘Iﬁ?‘.

Abbildung 5.1: M6biusband

5.3 GauB-Kriimmung

Bemerkung 77
Sei S eine regulire Fliche, s € S, n(s) ist ein Normalenvektor in s, z € T,(S5), ||z|| = 1.

Sei E der von x und n(s) aufgespannte 2-dimensionale Untervektorraum von R3.

Dann gibt es eine Umgebung V' C R3 von s, sodass
C:=6+E)NnSnvV

das Bild einer durch Bogenldnge parametrisierten Kurve v : [—¢,&] — s enthélt mit y(0) = s
und 7/(0) = x.

Beweis: ,Satz iiber implizite Funktionen®, siehe z. B. github.com/MartinThoma/LaTeX-examples/
tree/master/documents/Analysis\%20II

Definition 69
In der Situation aus Bemerkung 77 heifit die Kriimmung x~(0) der Kurve v in der Ebene
(s + E) im Punkt s die Normalenkriimmung'von S in s in Richtung = = ~/(0).

Man scheibt: £+(0) := Knor (S, x)

Beispiel 44
1) $=82=V(X?24+Y?4 Z%2 - 1) ist die Kugel um den Ursprung mit Radius 1, n = id,
s=1(0,0,1), x = (1,0,0)
= FE=R-z+R-n(s) (z,2-Ebene)

'Die Kriimmung ist nur bis auf das Vorzeichen bestimmt.


https://github.com/MartinThoma/LaTeX-examples/tree/master/documents/Analysis%20II
https://github.com/MartinThoma/LaTeX-examples/tree/master/documents/Analysis%20II
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C = EN S ist Kreislinie
KNor(S, ) = % =1

2) S =V(X?4+ 22 —1) CR? ist ein Zylinder (siche Abbildung 5.2a). s = (1,0,0)
z1=1(0,1,0) = E1 =R-e; + R- ey (z,y-Ebene)
SNE; =V(X2+Y?-1)NE, Kreislinie in F
= KNor(s,x1) = 1
x9 = (0,0,1), B2 =R-e; + R-e3 (z, 2-Ebene)
VNE;NS={(1,0,2) €R?| z € R} ist eine Gerade
= KNor(s,22) =0

3) S=V(X2-Y?%2-2),s=(0,0,0) (Hyperbolisches Paraboloid, siche Abbildung 5.2b)
T = (17070)a 7’1,(8) = (07 0, 1)

I = (0, 1, 0)
KNor(8,71) = 2
ﬁNor(Sax2) = -2
5. na
4
3k
2k
W\
tr \\\\\\\‘\\\‘\\‘-““
- Nt
: T
1
0
Yy
N 15 L .
(a) S=V(X*+2°-1) by S=V(X?-Y?2-2)

Abbildung 5.2: Beispiele fiir regulédre Flachen

Definition 70
Sei S € R? eine reguliire Fliche, s € S, (n ein stetiges Normalenfeld auf )

v : [—€,e] — S eine nach Bogenlange parametrisierte Kurve (¢ > 0) mit v(0) = s und
7
7"(0) # 0.

Sei n(0) := %. Zerlege n(0) = n(0) + n(0)* mit n(0)*+ € T,S und n(0)*+ € (T,S)*.

Dann ist n(0)+ = (n(0),n(s)) - n(s)
KNor(8,7) := (7"(0),n(s)) die Normalenkriimmung.

Bemerkung 78
Sei 7(t) = y(—t), t € [—e,¢]. Dann ist kKnor(s,7) = KNor(S, Y)-

Beweis: 77(0) =~"(0), da 7' (0) = —+/(0).

Es gilt: Knor(s,y) héngt nur von |7/(0)| ab und ist gleich knor(s,7/(0)).

Bemerkung 79
Sei S eine regulédre Flidche und n = n(s) ein Normalenvektor an S in s.

Sei TS = {x € T,S | ||zl =1} = S'. Dann ist £%,(s) : TsS — R, 2 — knor(s, ) eine
glatte Funktion und Bild knor($) ist ein abgeschlossenes Intervall.
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Definition 71
Sei S eine regulédre Fliache und n = n(s) ein Normalenvektor an S in s.

a) K7 (s) = min{ k¥, (s,2) | x € T}S } und
K5 (s) :== max { K. (s, ) } z € T!S } heifen Hauptkriimmungen von S in s.

b) K(s):= k}(s) - k5 (s) heift Gauft-Kriitmmung von S in s.

Bemerkung 80
Ersetzt man n durch —n, so gilt: k" (s,z) = —k%, (z) Vo € T1S
= wp " (s) = —h5(s),
k3" (s) = 1 (5)
und K~ "(s) = K"(s) =: K(s).

Beispiel 45
1) S = S2. Dann ist k1(s) = ka(s) = £1 Vs € S2
= K(s)=1
2) Zylinder:
ki1(s) =0,k2(s) =1= K(s) =0
3) Sattelpunkt auf hyperbolischem Paraboloid:
k1(s) < 0,k2(s) =0— K(s) <0

4) S = Torus. Siehe Abbildung 5.3

Abbildung 5.3: K(Sl) > 0, K(Sg) =0, K(Sg) <0

Bemerkung 81
Sei S eine regulére Fldche, s € S ein Punkt.

a) Ist K(s) > 0, so liegt S in einer Umgebung von s ganz auf einer Seite von TsS + s.
b) Ist K(s) <0, so schneidet jede Umgebung von s in S beide Seiten von T3S + s.



Losungen der Ubungsaufgaben

LGésung zu Aufgabe 1

Teilaufgabe a) Es gilt:
(i) 0,X € Tx.

(ii) Tx ist offensichtlich unter Durchschnitten abgeschlossen, d. h. es gilt fiir alle Uy, Uy €
Tx:U1NU; € Tx.

(iii)) Auch unter beliebigen Vereinigungen ist Tx abgeschlossen, d. h. es gilt fiir eine
beliebige Indexmenge I und alle U; € Tx fiir allei € I : (J,c; Ui € Tx

Also ist (X, Tx) ein topologischer Raum.

Teilaufgabe b) Wihle x = 1,y = 0. Dann gilt « # y und die einzige Umgebung von x
ist X. Day =0 € X konnen also z und y nicht durch offene Mengen getrennt werden.
(X, Tx) ist also nicht hausdorffsch.

Teilaufgabe c) Nach Bemerkung 4 sind metrische Radume hausdorffsch. Da (X, T x) nach
(b) nicht hausdorffsch ist, liefert die Kontraposition der Trennungseigenschaft, dass (X, Tx)
kein metrischer Raum sein kann.

LGésung zu Aufgabe 2

Teilaufgabe a)
Beh.: Va € Z: { a } ist abgeschlossen.
Sei a € Z beliebig. Dann gilt:

Teilaufgabe b)

Beh.: { —1,1 } ist nicht offen
Bew.: durch Widerspruch
Annahme: { —1,1 } ist offen.

Dann gibt es T' C B, sodass (Jy;er M = { —1,1 }. Aber alle U € B haben unendlich viele
Elemente. Auch endlich viele Schnitte von Elementen in ‘B haben unendlich viele Elemente
= keine endliche nicht-leere Menge kann in dieser Topologie offen sein = { —1,1 } ist
nicht offen. |

Teilaufgabe c)

Beh.: Es gibt unendlich viele Primzahlen.
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Bew.: durch Widerspruch

Annahme: Es gibt nur endlich viele Primzahlen p € P

Dann ist N
FS d. Arithmeti
ZA{ =11 R Uy
peP
endlich. Das ist ein Widerspruch zu |Z| ist unendlich und |{ —1,1 } | ist endlich. [ |

Losung zu Aufgabe 3

(a) Beh.: Die offenen Mengen von P sind Vereinigungen von Mengen der Form
H Uj X H Pi
jeJ €N, i£j
wobei J C N endlich und U; C P; offen ist.

Beweis: Nach Definition der Produkttopologie bilden Mengen der Form

HUj X HB, wobei J C N endlich und U; C Pjoffen Vj € J
1eJ ieN
idJ
eine Basis der Topologie. Damit sind die offenen Mengen von P Vereinigungen
von Mengen der obigen Form. ]

(b) Beh.: Die Zusammenhangskomponenten von P sind alle einpunktig.

Beweis: Es seinen z,y € P und z sowie y liegen in der gleichen Zusammenhangs-
komponente Z C P. Da Z zusammenhangend ist und Vi € I : p; : P — P; ist
stetig, ist p;(Z) C P; zusammenhéngend fiir alle ¢ € N. Die zusammenhéngenden
Mengen von P; sind genau {0} und {1}, d. h. fir alle ¢ € N gilt entweder
pi(Z) C{0} oder p;(Z) C{1}. Esseiz €{0,1} so, dass p;(Z) C { z } fir
alle ¢ € N. Dann gilt also:

pi(x) =z =pi(y) Vi € N
—~— ——

=T; =Yi

Somit folgt: x =y ]

LGésung zu Aufgabe 4

(a) Beh.: GL,(R) ist nicht kompakt.
Bew.: det : GL,(R) — R\ {0} ist stetig. Auferdem ist det(GL,(R)) =R\ {0}

nicht kompakt. = GL,(R) ist nicht kompakt. [ |
(b) Beh.: SL;(R) ist nicht kompakt, fir n > 1 ist SL,(R) kompakt.

Bew.: Fiir SL; (R) gilt: SLi(R) = { A € R | det A =1} = (1) = {1}. 2 SLy(R)
ist kompakt.
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SLn(R) C GL,(R) lisst sich mit einer Teilmenge des R identifizieren. Nach Satz 1.1
sind diese genau dann kompakt, wenn sie beschriankt und abgeschlossen sind. Definiere
nun fiir fiir n € N>o,m € N:

) 1
Ay, = diag, (m, et ERRY 1)

Dann gilt: det A, = 1, d. h. A, € SL,(R), und A,, ist unbeschréankt, da ||Am|lcc =
m —— 00. |

m—o0

(c) Beh.: P(R) ist kompakt.
Bew.: P(R) = S"/,~_,. Per Definition der Quotiententopologie ist die Klassenabbil-
dung stetig. Da S™ als abgeschlossene und beschriinkte Teilmenge des R"+! kompakt

ist 2 P(R) ist kompakt. |

LGésung zu Aufgabe 5

Die Definition von Homdéomorphismus kann auf Seite 8 nachgelesen werden.

Definition 72
Seien (G,*) und (H, o) Gruppen und ¢ : G — H eine Abbildung.

© heift Homomorphismus, wenn

Vg1,92 € G : @(g1 * g2) = ¢(91) © ©(g2)
gilt.

Es folgt direkt:

1) Sei X = R mit der Standarttopologie und ¢; : idg und R = (R, +). Dann ist ¢; ein
Gruppenhomomorphismus und ein Homéomorphismus.

2) Sei G = (Z,+) und H = (Z/3Z,+). Dann ist 2 : G — H,z — x mod 3 ein
Gruppenhomomorphismus. Jedoch ist @9 nicht injektiv, also sicher kein Homéomor-
phismus.

3) Sei X ein topologischer Raum. Dann ist idx ein Homoéomorphismus. Da keine
Verkniipfung auf X definiert wurde, ist X keine Gruppe und daher auch kein Grup-
penhomomorphismus.

Also: Obwohl die Begriffe &hnlich klingen, werden sie in ganz unterschiedlichen Kontexten
verwendet.

Losung zu Aufgabe 6
(a) Vor.: Sei M eine topologische Mannigfaltigkeit.
Beh.: M ist wegzusammehéngend < M ist zusammenhéngend

Beweis: ,,=“ Da M insbesondere ein topologischer Raum ist folgt diese Richtung
direkt aus Bemerkung 24.

,<=": Seien =,y € M und

Z :={z€ M |3IWeg von z nach z }
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Es gilt:

(i) Z # 0, da M lokal wegzusammenhéngend ist

(ii) Z ist offen, da M lokal wegzusammenhéngend ist
(iii) Z¢ := {2 € M | #Weg von z nach Z } ist offen

Da M eine Mannigfaltigkeit ist, existiert zu jedem Z € Z eine offene und
wegzusammenhéngende Umgebung Uz C M.

Es gilt sogar Uz C Z, denn giibe es ein Uz 3 Z € Z, so gibe es Wege 73 :
0,1] = M,72(0) = %,92(1) = @ und 7 1 [0,1] > M, 7 (0) = Z,7(1) = =
Dann wiére aber

v:[0,1] = M,

(@) = {71(256) falls 0 <z

1
2
Y2z —1) fallsl<az<1

<
<

ein stetiger Weg von Z nach z = Widerspruch.

Da M zusammenhéngend ist und M = Z U Z%  sowie Z # 0 folgt Z€ = 0.
=~

offen  offen
Also ist M = Z wegzusammenhédngend. ]

(b) Beh.: X ist wegzusammenhéngend.

Beweis: X := (R\{0})U{0,02 } und (R\ {0})U{02} sind homéomorph zu R.
Also sind die einzigen kritischen Punkte, die man nicht verbinden kénnen konnte
01 und 0.

Da (R\{0})U{0; } homéomorph zu R ist, exisitert ein Weg 71 von 0; zu einem
beliebigen Punkt a € R\ {0 }.

Da (R\ {0})U{02} ebenfalls hombomorph zu R ist, existiert aukerdem ein
Weg 72 von a nach 0y. Damit existiert ein (nicht einfacher) Weg ~ von 0; nach
05. [ ]

Losung zu Aufgabe 8

Vor

(a)

.t Sei (X, d) eine absolute Ebene, A, B,C € X und AABC ein Dreieck.

Beh.: AB~ AC = /ABC = /ACB

Bew.: Sei AB =~ AC.

= 3 Isometrie ¢ mit p(B) = C und ¢(C) = B und p(A) = A.

= ¢(LABC) = LACB

= /ABC = /ACB |

Beh.: Der langeren Seite von AABC liegt der grofere Winkel gegeniiber und umge-
kehrt.

Bew.: Sei d(A,C) > d(A, B). Nach §3 (i) gibt es C" € ACT mit d(A,C’) = d(A, B)
= (' liegt zwischen A und C.

Es gilt L ABC’ < £ ABC und aus Aufgabe 8 (a) folgt: LABC' = LAC'B.
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/BC'"A ist ein nicht anliegender Aufienwinkel zu Z/BC'A Lo 08 ¢BC'A > £BCA

= ABCA < {BC'A = {ABC" < £LABC Sei umgekehrt L ABC > £BCA, kann
wegen 1. Teil von Aufgabe 8 (b) nicht d(A, B) > d(A, C) gelten.

Wegen Aufgabe 8 (a) kann nicht d(A4, B) = d(A, C) gelten.

= d(A,B) < d(A,QC) [ ]

Vor.: Sei g eine Gerade, P€ X und P ¢ ¢

Beh.: 3! Lot

Bew.: UB10 A4(a): Es gibt Geradenspiegelung ¢ an g. ¢ vertauscht die beiden
Halbebenen bzgl. g.

= ¢(P)P schneidet g in F.

Losung zu Aufgabe 9

Sei f || hund o. B.d. A. f | g.

fHh= fNh=+#0,seialsoz e fNh Mit Axiom §5 folgt: Es gibt hochstens eine Parallele
zu g durch z, da = ¢ g. Diese ist f, da = € f und f || g. Da aber z € h, kann h nicht
parallel zu g sein, denn ansonsten gibe es zwei Parallelen zu g durch = (f # h). = g lth R

Losung zu Aufgabe 10

Seien AABC und AAB'C’" Dreiecke mit

d(A, B) = d(A', B))
d(B,C) = d(B',C")
d(C, A) = d(C", A")

Dann existiert nach §4 genau eine Isometrie ¢ mit ¢(A) = A’,p(B) = B’ und ¢(C) €
A'B'C'.

Da d(A', ") = d(A, C) = d(¢(A), p(C)) = d(A", ¢(C)) und d(B', C") = d(B', ¢(C))
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