Programmierparadigmen

0. Auflage, 31. Mérz 2014 Martin Thoma

Vorwort

Dieses Skript wird/wurde im Wintersemester 2013/2014 von Mar-

tin Thoma zur Vorlesung von Prof. Dr. Snelting und Jun.-Prof. Dr. Hum-
mel geschrieben. Dazu wurden die Folien von Prof. Dr. Snelting
und Jun.-Prof. Dr. Hummel benutzt, die Struktur sowie einige
Beispiele, Definitionen und Sétze iibernommen.

Das Ziel dieses Skriptes ist vor allem in der Klausur als Nach-
schlagewerk zu dienen; es soll jedoch auch vorher schon fiir die
Vorbereitung genutzt werden kénnen und nach der Klausur als
Nachschlagewerk dienen.

Ein Link auf das Skript ist unter
martin-thoma.com/programmierparadigmen
zu finden.

Anregungen, Verbesserungsvorschlage,
Erganzungen

Noch ist das Skript im Aufbau. Es gibt viele Baustellen und es ist
fraglich, ob ich bis zur Klausur alles in guter Qualitét bereitstellen
kann. Daher freue ich mich iiber jeden Verbesserungsvorschlag.

Anregungen, Verbesserungsvorschlidge und Ergénzungen kénnen
per Pull-Request gemacht werden oder mir per E-Mail an info@martin-
thoma.de geschickt werden.

http://martin-thoma.com/programmierparadigmen/

Erforderliche Vorkenntnisse

Grundlegende Kenntnisse vom Programmieren, insbesondere mit
Java, wie sie am KIT in ,,Programmieren” vermittelt werden, wer-
den vorausgesetzt. Auferdem kdnnte ein grundlegendes Verstédndnis
fiir das O-Kalkiil aus ,Grundbegriffe der Informatik“ hilfreich sein.

Die Unifikation wird wohl auch in ,Formale Systeme® erklért; das
konnte also hier von Vorteil sein.

Die Grundlagen des Kapitels ,Parallelitiat® wurden in Software-
technik I (kurz: SWT I) gelegt.

Inhaltsverzeichnis

1.1
1.2
1.3
14
1.5

2.1
2.2
2.3

3.1

4.1
4.2
4.3
4.4
4.5

Programmiersprachen

Abstraktiono oL
Paradigmeno oL
Typisierung
Kompilierte und interpretierte Sprachen
Diesunddas

Programmiertechniken

Rekursiono
Backtracking 0oL
Funktionen hoherer Ordnung

Logik

Pradikatenlogik erster Stufe
3.1.1 Symbole
3.1.2 Terme
3.1.3 Ausdriicke
3.14 1.Stufe
3.1.5 Freie Variablen
3.1.6 Metasprachliche Ausdriicke
3.1.7 Substitutionen

A-Kalkiil

Reduktionen
Auswertungsstrategien L.
Church-Zahlen
Church-Booleans
Weiteres

N ot w W

10

15
15
18
18

19
19
19
20
21
22
23
23
24

Inhaltsverzeichnis vi

4.6 Fixpunktkombinator 33
4.7 Literaturo 35

5 Typinferenz 37
5.1 Typsystem. 39

5.2 Let-Polymorphismus 40
5.3 Beispiele 42
531 Ax.Ay.xy ... 42

5.3.2 Selbstapplikation 44

6 Parallelitat 47
6.1 Architekturen L. 48
6.2 Prozesskommunikation 50
6.3 Parallelitdat in Java 52
6.4 Message Passing Modell 52

7 Java 55
7.1 Thread, ThreadPool, Runnable und ExecutorService 55
7.2 Futures 57
7.3 Beispiele 58

7.4 Literatur. 61

8 Haskell 63
8.1 Erste Schritte o000 63
8.1.1 HelloWorld 63

82 Syntax 64
8.2.1 Klammern und Funktionsdeklaration 64

822 if Jelse 65

823 Rekursion 65

824 Listen 66

825 Strings. 68

8.2.6 Letund where 68

8.2.7 Funktionskomposition 69

8.2.8 § (Dollar-Zeichen) und ++ 69

8.2.9 Logische Operatoren 70

vii Inhaltsverzeichnis
83 Typen 70
8.3.1 Standard-Typen 70
8.3.2 Typinferenz 71
8.3.3 type 73
834 data 73

8.4 Lazy Evaluation 73
85 Beispiele 74
8.5.1 Quicksort 74
85.2 Fibonacci 74
8.5.3 Polynome 75
85.4 Hirsch-Index 76
8.5.5 Lauflingencodierung 77
8.5.6 Intersections 77
8.5.7 Funktionen héherer Ordnung 78
8.5.8 Chruch-Zahlen 79
859 Trees.o 79
8.5.10 Standard Prelude 80

8.6 Weitere Informationen 81
9 Prolog 83
9.1 Erste Schritte 83
9.1.1 HelloWorld 83

9.2 Syntax 83
9.2.1 Arithmetik 84
922 Listen, 85

93 Beispiele o 86
93.1 Humans 86
932 Splits 87
9.3.3 Delete 87
9.3.4 Zebraratsel, 88

9.4 Weitere Informationen 89
10 Scala 91
10.1 Erste Schritte 91
10.1.1 HelloWorld 91

10.2 Vergleich mit Java 92

Inhaltsverzeichnis viii
10.3 Syntax 93
10.3.1 Logische Operatoren 94

10.4 Companion Object 94
10.5 actoro 94
10.5.1 Message Passing 94

10.6 Weiteres oo 95
10.7 Beispiele 95
10.7.1 Wetter 95
10.8 Weitere Informationen 96
11 X10 97
11.1 Erste Schritte 98
11.2 Syntax 98
11.2.1 Logische Operatoren 98
11.2.2 Closures 98
11.2.3 async 99
11.2.4 atomic 99
11.2.5 Bedingtes Warten. 100
11.2.6 Lokalisierung 101
11.3 Datentypen 102
11.3.1 Arrayso 102
11.3.2 struct L. 102
11.4 Beispiele o 103
11.5 Weitere Informationen 104
12 C 105
12.1 Datentypen oL 105
12.2 ASCII-Tabelle 106
12.3 Syntax 106
12.3.1 Logische Operatoren 106

12.4 Prazedenzregeln 106
12.5 Beispiele 106
12.5.1 HelloWorld 106
12.5.2 Pointer, 107

1 Inhaltsverzeichnis

13 MPI
13.1 Erste Schritte
13.2 MPI Datatypes
13.3 Funktionen
13.4 Beispiele oo
13.5 Weitere Informationen

14 Compilerbau

14.1 Funktionsweise
14.2 Lexikalische Analyse

14.2.1 Regulédre Ausdriicke

1422 Lex
14.3 Syntaktische Analyse
14.4 Semantische Analyse
14.5 Zwischencodeoptimierung
14.6 Codegenerierung
14.7 Literatur oo

15 Java Bytecode
15.1 Instruktionen,
15.1.1 if-Abfragen
15.1.2 Konstanten
15.2 Weiteres
15.3 Polnische Notation
15.4 Weitere Informationen

Bildquellen
Abkiirzungsverzeichnis
Erganzende Definitionen
Symbolverzeichnis

Stichwortverzeichnis

129
129
130
131
131
131
132

135

137

139

143

145

1 Programmiersprachen

Definition 1
FEine Programmiersprache ist eine formale Sprache, die
durch eine Spezifikation definiert wird und mit der Algorith-
men beschrieben werden konnen. Elemente dieser Sprache
heiffen Programme.

Ein Beispiel fiir eine Sprachspezifikation ist die Java Language
Specification.! Obwohl es kein guter Stil ist, ist auch eine Referenz-
implementierung eine Form der Spezifikation.

Im Folgenden wird darauf eingegangen, anhand welcher Kriterien
man Programmiersprachen unterscheiden kann.

1.1 Abstraktion

Wie nah an den physikalischen Prozessen im Computer ist die
Sprache? Wie nah ist sie an einer mathematisch / algorithmischen
Beschreibung?

Definition 2
Eine Maschinensprache beinhaltet ausschlieklich Instruk-
tionen, die direkt von einer CPU ausgefiihrt werden kénnen.
Die Menge dieser Instruktionen sowie deren Syntax wird Be-
fehlssatz genannt.

Beispiel 1 (Maschinensprachen)
1) x86

1Zu finden unter http://docs.oracle.com/javase/specs/

http://docs.oracle.com/javase/specs/

1.1. ABSTRAKTION 4

2) SPARC

Definition 3 (Assembler)
Eine Assemblersprache ist eine Programmiersprache, deren
Befehle dem Befehlssatz eines Prozessor entspricht.

Beispiel 2 (Assembler)
Folgendes Beispiel stammt von https://de.wikibooks.
org/wiki/Assembler-Programmierung_flir_x86-Prozessoren
_Das_erste_Assemblerprogramm:

firstp.asm

1 org 100h

2 Start:

3 mov ax, 5522h
4 mov cx, 1234h
5 xchg cx,ax

6 mov al, O

7 mov ah, 4Ch

8 int 21h

Definition 4 (Hohere Programmiersprache)
Eine Programmiersprache heifst héher, wenn sie nicht aus-
schlieflich fiir eine Prozessorarchitektur geschrieben wurde
und turing-vollstdndig ist.

Beispiel 3 (H6here Programmiersprachen)
Java, Python, Haskell, Ruby, TCL, ...

Definition 5 (Domé&nenspezifische Sprache)
Eine doménenspezifische Sprache (engl. domain-specific lan-
guage; kurz DSL) ist eine formale Sprache, die fiir ein bestimm-
tes Problemfeld entworfen wurde.

Beispiel 4 (Doménenspezifische Sprache)
1) HTML

2) VHDL

https://de.wikibooks.org/wiki/Assembler-Programmierung_f�r_x86-Prozessoren/_Das_erste_Assemblerprogramm
https://de.wikibooks.org/wiki/Assembler-Programmierung_f�r_x86-Prozessoren/_Das_erste_Assemblerprogramm
https://de.wikibooks.org/wiki/Assembler-Programmierung_f�r_x86-Prozessoren/_Das_erste_Assemblerprogramm

5 1. PROGRAMMIERSPRACHEN

1.2 Paradigmen

Eine weitere Art, wie man Programmiersprachen unterscheiden
kann ist das sog. ,,Programmierparadigma’, also die Art wie man
Probleme 16st.

Definition 6 (Imperatives Paradigma)
In der tmperativen Programmierung betrachtet man Program-
me als eine Folge von Anweisungen, die vorgibt auf welche Art
etwas Schritt fiir Schritt gemacht werden soll.

Beispiel 5 (Imperative Programmierung)
In folgenden Programm erkennt man den imperativen Pro-
grammierstil vor allem an den Variablenzuweisungen:

int fib(int n) {
if (n < 0) {
return -1;

int fib[2] = {0, 1}, tmp;

for (; n > 0; n——) {
tmp = fib[1];
fib[1l] = fib[0] + fib([1l];
fib[0] = tmp;

}

return fib[0];

}

Definition 7 (Prozedurales Paradigma)
Die prozeduralen Programmierung ist eine Erweiterung des
imperativen Programmierparadigmas, bei dem man versucht
die Probleme in kleinere Teilprobleme zu zerlegen.

Definition 8 (Funktionales Paradigma)
In der funktionalen Programmierung baut man auf Funktionen
und ggf. Funktionen hoherer Ordnung, die eine Aufgabe ohne
Nebeneffekte 16sen.

1.2. PARADIGMEN 6

Beispiel 6 (Funktionale Programmierung)
Der Funktionale Stil kann daran erkannt werden, dass keine
Werte zugewiesen werden:

fibAkk n nl n2

| (n == 0) = nl

| (n == 1) = n2

| otherwise = fibAkk (n - 1) n2 (nl + n2)
fib n = fibAkk n 0 1

Haskell ist eine funktionale Programmiersprache, C ist eine nicht-
funktionale Programmiersprache.

Wichtige Vorteile von funktionalen Programmiersprachen sind:

e Sie sind weitgehend (jedoch nicht vollstandig) frei von Sei-
teneffekten.

e Der Code ist haufig sehr kompakt und manche Probleme
lassen sich sehr elegant formulieren.

Definition 9 (Logisches Paradigma)
Das logische Programmierparadigma baut auf der forma-
len Logik auf. Man verwendet Fakten und Regeln und einen
Inferenzalgorithmus um Probleme zu 16sen.

Der Inferenzalgorithmus kann z. B. die Unifikation nutzen.

Beispiel 7 (Logische Programmierung)
Obwohl die logische Programmierung fiir Zahlenfolgen weni-
ger geeignet erscheint, sei hier zur Vollstandigkeit das letzte
Fibonacci-Beispiel in Prolog:

fib (0, A, _, A).
fib(N, A, B, F) := Nl is N - 1,

Sum is A + B,

fib (N1, B, Sum, F).
fib(N, F) :— fib(N, 0, 1, F).

7 1. PROGRAMMIERSPRACHEN

1.3 Typisierung

Programmiersprachen kénnen anhand der Art ihrer Typisierung
unterschieden werden.

Definition 10 (Typisierungsstéirke)
Es seien X,Y Programmiersprachen.

X heifst stéarker typisiert als Y, wenn X mehr bzw. niitzlichere
Typen hat als Y.

Beispiel 8 (Typisierungsstéirke)
Die stérke der Typisierung ist abhéngig von dem Anwendungs-
zenario. So hat C im Gegensatz zu Python, Java oder Haskell
beispielsweise keine booleschen Datentypen.

Im Gegensatz zu Haskell hat Java keine GADTs?.
Definition 11 (Polymorphie)

a) Ein Typ heift polymorph, wenn er mindestens einen
Parameter hat.

b) Eine Funktion heift polymorph, wenn ihr Verhalten nicht
von dem konkreten Typen der Parameter abhangt.

Beispiel 9 (Polymorphie)

In Java sind beispielsweise Listen polymorphe Typen:

ArrayList<String> 11 = new ArrayList<String>();
ArrayList<Integer> 12 = new ArrayList<Integer>();
Entsprechend sind auf Listen polymorphe Operationen wie

add und remove definiert.

Definition 12 (Statische und dynamische Typisierung)

a) Eine Programmiersprache heiftt statisch typisiert, wenn
eine Variable niemals ihren Typ &ndern kann.

Zgeneralized algebraic data type

1.3. TYPISIERUNG 8

b) Eine Programmiersprache heift dynamisch typisiert,
wenn eine Variable ihren Typ &ndern kann.

Beispiele fiir statisch typisierte Sprachen sind C, Haskell und Java.
Beispiele fiir dynamisch typisierte Sprachen sind Python und PHP.

Vorteile statischer Typisierung sind:

e Performance: Der Compiler kann mehr Optimierungen vor-
nehmen.

e Syntaxcheck: Da der Compiler die Typen zur Compile-
Zeit iiberpriift, gibt es in statisch typisierten Sprachen zur
Laufzeit keine Typfehler.

Vorteile dynamischer Typisierung sind:

e Manche Ausdriicke, wie der Y-Combinator in Haskell, lassen
sich nicht typisieren.

Der Gedanke bei dynamischer Typisierung ist, dass Variablen keine
Typen haben. Nur Werte haben Typen. Man stellt sich also Varia-
blen eher als Beschriftungen fiir Werte vor. Bei statisch typisierten
Sprachen stellt man sich hingegen Variablen als Container vor.

Definition 13 (Explizite und implizite Typisierung)
Sei X eine Programmiersprache.

a) X heifst explizit typisiert, wenn fiir jede Variable der
Typ explizit genannt wird.

b) X heifit implizit typisiert, wenn der Typ einer Varia-
ble aus den verwendeten Operationen abgeleitet werden
kann.

Sprachen, die implizit typisieren kdnnen nutzen dazu Typinferenz.

Beispiele fiir explizit typisierte Sprachen sind C, C++ und Java.
Beispiele fiir implizit typisierte Sprachen sind JavaScript, Python,
PHP und Haskell.

9 1. PROGRAMMIERSPRACHEN

Mir ist kein Beispiel einer Sprache bekannt, die dynamisch und
explizit typisiert ist.

Vorteile expliziter Typisierung sind:
e Lesbarkeit
Vorteile impliziter Typisierung sind:
e Tippfreundlicher: Es ist schneller zu schreiben.

o Anfangerfreundlicher: Man muss sich bei einfachen Pro-
blemen keine Gedanken um den Typ machen.

Definition 14 (Duck-Typing und strukturelle Typisierung)

a) Eine Programmiersprache verwendet Duck-Typing, wenn
die Parameter einer Methode nicht durch die explizite
Angabe von Typen festgelegt werden, sondern durch die
Art wie die Parameter verwendet werden.

b) Eine Programmiersprache verwendet strukturelle Ty-
pisierung, wenn die Parameter einer Methode nicht
durch die explizite Angabe von Typen festgelegt werden,
sondern explizit durch die Angabe von Methoden.

Strukturelle Typsierung wird auch typsicheres Duck-Typing ge-
nannt. Der Satz, den man im Zusammenhang mit Duck-Typing
immer hohrt, ist

+When I see a bird that walks like a duck and swims like a duck
and quacks like a duck, I call that bird a duck.”

Beispiel 10 (Strukturelle Typisierung)

Folgende Scala-Methode erwartet ein Objekt, das eine Methode
namens quack besitzt:

def quacker (duck:
{def quack (value: String): String}) {
println (duck.quack ("Iike a duck!"))

1.4. KOMPILIERTE UND INTERPRETIERTE SPRACHEN 10

Diese Funktion ist vom Typ (duck: AnyRefdef quack (value:
String): String)Unit.

1.4 Kompilierte und interpretierte Sprachen

Sprachen werden iiberlicherweise entweder interpretiert oder kompi-
liert, obwohl es Programmiersprachen gibt, die beides unterstiitzen.

C und Java werden kompiliert, Python und TCL interpretiert.

1.5 Dies und das

Definition 15 (Seiteneffekt)
Seiteneffekte sind Veranderungen des Zustandes eines Pro-
gramms.

Manchmal werden Seiteneffekte auch als Nebeneffekt oder Wirkung
bezeichnet. Meistens meint man insbesondere unerwiinschte oder
iiberaschende Zustandsénderungen.

Definition 16 (Unifikation)
Die Unifikation ist eine Operation in der Logik und dient zur
Vereinfachung pradikatenlogischer Ausdriicke. Der Unifikator
ist also eine Abbildung, die in einem Schritt dafiir sorgt, dass
auf beiden Seiten der Gleichung das selbe steht.

Beispiel 11 (Unifikation®)

Gegeben seien die Ausdriicke

AQ = (a,b, Z)

Groftbuchstaben stehen dabei fiir Variablen und Kleinbuchsta-
ben fiir atomare Ausdriicke.

11 1. PROGRAMMIERSPRACHEN

Ersetzt man in A; nun X durch a, Y durch b und in Ay die
Variable Z durch f (b), so sind sie gleich oder ,unifiziert. Man
erhéalt

mit
o={Xw—aY —bZ— f(b)}

Definition 17 (Allgemeinster Unifikator)
Ein Unifikator o heiltt allgemeinster Unifikator, wenn es fiir
jeden Unifikator ~ eine Substitution § mit

vy=do0
gibt.

Beispiel 12 (Allgemeinster Unifikator?)
Sei
C={f(a,D)=Y,X =g(b),g(Z) =X}

eine Menge von Gleichungen iiber Terme.

Dann ist
y = [Y9f(a,b), Db, Xog(b), Z8b]

ein Unifikator fiir C'. Jedoch ist
o=1[Yof(a,D), X2g(b), Zb]
der allgemeinste Unifikator. Mit
d = [D=b)

gilt y=4d0o00.

1.5. DIES UND DAS 12

Algorithmus 1 Klassischer Unifikationsalgorithmus

function UNIFY(Gleichungsmenge C')

if C == () then
return ||
else

Essei {6, =0, }UC ==C

if 6, == 6, then
UNIFY (C")

elseif ;==Y and Y ¢ FV(0,) then
UNIFY ([Y26,]C") o[Y0,]

elseif 6, ==Y and Y ¢ FV (6;) then
UNIFY ([Y26;]C") o[Y 6]

else if 6, == f(},...,0"") and 6, == f(6},...,0" then
UNIFY(C'U{ 0] =6},...00 =07 })

else
fail

Dieser klassische Algorithmus hat eine Laufzeit von O(2") fiir
folgendes Beispiel:

f(X1>X2a cee 7Xn) = f(g(XﬁaXO)ag(Xth)v cee 7g(X'fL—17Xn—1))

Der Paterson- Wegman-Unifikationsalgorithmus ist deutlich effizien-

ter. Er basiert auf dem Union-Find-Algorithmus und funktioniert
wie folgt:

4Folie 268 von Prof. Snelting
https://de.wikipedia.org/w/index.php?title=Unifikation_
(Logik) &01did=116848554#Beispiel

https://de.wikipedia.org/w/index.php?title=Unifikation_(Logik)&oldid=116848554#Beispiel
https://de.wikipedia.org/w/index.php?title=Unifikation_(Logik)&oldid=116848554#Beispiel

13 1. PROGRAMMIERSPRACHEN

Algorithmus 2 Paterson-Wegeman Unifikationsalgorithmus

function UNIFY(Knoten p, Knoten q)
S <= FIND(p)
t < FIND(q)
if s ==t oder s.GETATOM == t.GETATOM then
return True
if s,t Knoten fiir gleichen Funktor, mit Nachfolgern
S1y...,8p bzw. t1,...,t, then
UNION(s, t)
k+1
b+ True
while £ < n and b do
b < UNIFY(sg,)
k+—k+1
return True
if s oder t ist Variablen-Knoten then
UNION(s, t)
return True
return False

2 Programmiertechniken

2.1 Rekursion

Definition 18 (rekursive Funktion)
Eine Funktion f : X — X heifst rekursiv definiert, wenn in
der Definition der Funktion die Funktion selbst wieder steht.

Beispiel 13 (rekursive Funktionen)
1) Fibonacci-Funktion:

fib : No — N(]
Fib(n) n falls n <1
ib(n) =
fib(n — 1) + fib(n — 2) sonst

Erzeugt die Zahlen 0,1,1,2,3,5,8,13,...

2) Fakultat:

I Ny — Ny
1 falls n <1
n! =
n-(n—1)! sonst

3) Binomialkoeffizient:

<> :N0XN0—>N0

<n>_ 1 falls k=0Vk=n
B L GoD) + (71) somst

2.1. REKURSION 16

Ein Problem von rekursiven Funktionen in Computerprogrammen
ist der Speicherbedarf. Fiir jeden rekursiven Aufruf miissen alle
Umgebungsvariablen der aufrufenden Funktion (,stack frame®)
gespeichert bleiben, bis der rekursive Aufruf beendet ist. Im Fall der
Fibonacci-Funktion sieht ist der Call-Stack in Abb. 2.1 abgebildet.

fib(3)
- call(fib(2))
— call({fib(1)})
L return 1
— call(fib(@)})
L return 1
L return fib(1)+fib(8)=1+1
- call(fib(1))
— call({fib(1)})
L return 1
— call(fib(@)})
L return 1
L return fib(1)+fib(8)=1+1
L return fib(2)+fib(1)=2+2

Abbildung 2.1: Call-Stack der Fibonacci-Funktion

Bemerkung 1
Die Anzahl der rekursiven Aufrufe der Fibonacci-Funktion fo

ist:
Jo(n) = {; . fib(n) — 1 i:ﬁz Z > (1)
Beweis:
e Offensichtlich gilt fo(0) =1
o Offensichtlich gilt fo(1) =1=2- fib(1) — 1
o Offensichtlich gilt fo(2) =3 =2
e Fiirn > 3:

fe(n) =1+ fo(n—1) + fo(n —2)
=1+ (2- fib(n—1) — 1) + (2 fib(n — 2) — 1)

17 2. PROGRAMMIERTECHNIKEN

=2-(fib(n — 1) + fib(n —2)) — 1
= 2. fib(n) — 1

Mit Hilfe der Formel von Moivre-Binet folgt:

und ¢ :==1—¢

fce(’)<M> mit ¢ := Lt V3

-1 2

Dabei ist der Speicherbedarf O(n). Dieser kann durch das Benutzen
eines Akkumulators signifikant reduziert werden. TODO

Definition 19 (linear rekursive Funktion)
Eine Funktion heiftt linear rekursiv, wenn in jedem Definitions-
zweig der Funktion héchstens ein rekursiver Aufruf vorkommt.

Definition 20 (endrekursive Funktion)
Fine Funktion heiftt endrekursiv, wenn in jedem Definitions-
zweig der Rekursive aufruf am Ende des Ausdrucks steht. Der
rekursive Aufruf darf also insbesondere nicht in einen anderen
Ausdruck eingebettet sein.

Auf Englisch heifien endrekursive Funktionen tail recursive.

Beispiel 14 (Linear- und endrekursive Funktionen)
1) fak n = if (n==0) then 1 else (n » fak (n-1))
ist eine linear rekursive Funkion, aber nicht endrekur-
siv, da nach der Riickgabe von fak (n-1) noch die
Multiplikation ausgewertet werden muss.

2) fakAcc n acc = if (n==0) then acc else fakAcc
(n=1) (n+xacc)
ist eine endrekursive Funktion.

3) fibn =n <=1 ? n : fib(n-1) + fib (n-2)
ist weder linear- noch endrekursiv.

Wenn eine rekursive Funktion nicht terminiert oder wenn

2.2. BACKTRACKING 18

2.2 Backtracking

Unter Backtracking versteht man eine Programmiertechnik, die
(eventuell implizit) auf einem Suchbaum arbeitet und mittels Tie-
fensuche versucht eine Losung zu finden.

Beispiel 15 (Backtracking)
Probleme, bei deren (vollstindigen) Losung Backtracking ver-
wendet wird, sind:

1) Damenproblem
2) Springerproblem
3) Rucksackproblem

2.3 Funktionen hoéherer Ordnung

Funktionen héherer Ordnung sind Funktionen, die auf Funktionen
arbeiten. Bekannte Beispiele sind:

e map (function, list)
map wendet function auf jedes einzelne Element aus 11 st
an.

e filter (function, list)
filter gibt eine Liste aus Elementen zuriick, fiir die function
mit true evaluiert.

e reduce (function, list)
function ist fiir zwei Elemente aus 11ist definiert und gibt
ein Element des gleichen Typs zuriick. Nun steckt reduce
zuerst zwei Elemente aus 1ist in function, merkt sich
dann das Ergebnis und nimmt so lange weitere Elemente aus
list, bis jedes Element genommen wurde.
Bei reduce ist die Assoziativitdt wichtig (vgl. Seite 78)

3 Logik

3.1 Pradikatenlogik erster Stufe

Folgendes ist von http://de.wikipedia.org/wiki/Pr%C3%
Addikatenlogik_erster_Stufe

Die Prédikatenlogik erster Stufe ist ein Teilgebiet der mathema-
tischen Logik. Sie befasst sich mit der Struktur gewisser mathe-
matischer Ausdriicke und dem logischen Schliefsen, mit dem man
von derartigen Ausdriicken zu anderen gelangt. Dabei gelingt es,
sowohl die Sprache als auch das Schliefsen rein syntaktisch, das
heiflt ohne Bezug zu mathematischen Bedeutungen, zu definieren.

[

Wir beschreiben hier die verwendete Sprache auf rein syntaktische
Weise, das heifst wir legen die betrachteten Zeichenketten, die
wir Ausdriicke der Sprache nennen wollen, ohne Bezug auf ihre
Bedeutung fest.

3.1.1 Symbole

Eine Sprache erster Stufe wird aus folgenden Symbolen aufgebaut:
° vaaa/\ava_>797_'7<7)75
e sogenannte Variablensymbole vg, v1,v9, .. .,

e cine (moglicherweise leere) Menge C von Konstantensymbo-
len,

e cine (moglicherweise leere) Menge F von Funktionssymbolen,

http://de.wikipedia.org/wiki/Pr%C3%A4dikatenlogik_erster_Stufe
http://de.wikipedia.org/wiki/Pr%C3%A4dikatenlogik_erster_Stufe

3.1. PRADIKATENLOGIK ERSTER STUFE 20

e cine (moglicherweise leere) Menge R von Relationssymbolen.

Das Komma wird hier nur als Trennzeichen fiir die Aufzéhlung
der Symbole benutzt, es ist nicht Symbol der Sprache.

3.1.2 Terme

Die nach folgenden Regeln aufgebauten Zeichenketten heifsen Ter-
me:

e Ist v ein Variablensymbol, so ist v ein Term.
e Ist ¢ ein Konstantensymbol, so ist ¢ ein Term.

e Ist f ein 1-stelliges Funktionssymbol und ist ¢; ein Term, so
ist ft; ein Term.

e Ist f ein 2-stelliges Funktionssymbol und sind ¢1, ¢y Terme,
S0 ist ftity ein Term.

e [st f ein 3-stelliges Funktionssymbol und sind 1, t2, t3 Terme,
S0 ist ftitats ein Term.

e und so weiter fiir 4,5,6,...-stellige Funktionssymbole.

Ist zum Beispiel ¢ eine Konstante und sind f und g 1- bzw. 2-
stellige Funktionssymbole, so ist fgwvs fc ein Term, da er sich durch
Anwendung obiger Regeln erstellen ldsst: ¢ ist ein Term, daher auch
fe; feund vy sind Terme, daher auch guvs fc und damit schlieflich

auch fgusfe.

Wir verzichten hier auf Klammern und Kommata als Trennzeichen,
das heift wir schreiben fguve fc und nicht f(g(ve, f(c))). Wir setzen
damit implizit voraus, dass unsere Symbole derart beschaffen sind,
dass eine eindeutige Lesbarkeit gewahrleistet ist.

Die Regeln fiir die Funktionssymbole fasst man oft so zusammen:

e Ist f ein n-stelliges Funktionssymbol und sind tq,...,t,
Terme, so ist fty...t, ein Term.

21 3. LOGIK

Damit ist nichts anderes als die oben angedeutete unendliche Folge
von Regeln gemeint, denn die drei Punkte ... gehoren nicht zu
den vereinbarten Symbolen. Dennoch wird manchmal von dieser
Schreibweise Gebrauch gemacht.

Uber den Aufbau der Terme lassen sich weitere Eigenschaften
definieren. So definieren wir offenbar durch die folgenden drei
Regeln rekursiv, welche Variablen in einem Term vorkommen:

e Ist v ein Variablensymbol, so sei var(v) = {v}.
e Ist ¢ ein Konstantensymbol, so sei var(c) = 0.

e Ist f ein n-stelliges Funktionssymbol und sind ty,...,t,
Terme, so sei var(fty...t,) = var(t1) U...Uvar(t,).

3.1.3 Ausdriicke

Wir erkldren nun durch Bildungsgesetze, welche Zeichenketten wir
als Ausdriicke der Sprache ansehen wollen.

Atomare Ausdriicke

e Sind t1 und to Terme, so ist t1 = £9 ein Ausdruck.

e Ist R ein 1-stelliges Relationssymbol und ist ¢; ein Term, so
ist Rt ein Ausdruck.

o Ist R ein 2-stelliges Relationssymbol und sind ¢1,¢2 Terme,
so ist Rt1te ein Ausdruck.

e und so weiter fiir 3,4,5,...-stellige Relationssymbole.

Dabei gelten die oben zur Schreibweise bei Termen gemachten
Bemerkungen.

3.1. PRADIKATENLOGIK ERSTER STUFE 22

Zusammengesetzte Ausdriicke

Wir beschreiben hier, wie sich aus Ausdriicken weitere gewinnen
lassen.

e Ist p ein Ausdruck, so ist auch -y ein Ausdruck.

e Sind ¢ und ¢ Ausdriicke, so sind auch (p A), (¢ V ¥),
(¢ —) und (¢ <> 1) Ausdriicke.

e Ist ¢ ein Ausdruck und ist x eine Variable, so sind auch Vxp
und Jxp Ausdriicke.

Damit sind alle Ausdriicke unserer Sprache festgelegt. Ist zum
Beispiel f ein 1-stelliges Funktionssymbol und R ein 2-stelliges
Relationssymbol, so ist : Yoo ((Rvpvy V vg = fv1) — Jug—Rugus)
ein Ausdruck, da er sich durch Anwendung obiger Regeln aufbauen
lasst. Es sei noch einmal darauf hingewiesen, dass wir die Ausdriicke
mittels der genannten Regeln rein mechanisch erstellen, ohne dass
die Ausdriicke zwangslaufig irgendetwas bezeichnen missten.

3.1.4 1. Stufe

Unterschiedliche Sprachen erster Stufe unterscheiden sich lediglich
in den Mengen C, F und R, die man iiblicherweise zur Symbol-
menge S zusammenfasst und auch die Signatur der Sprache nennt.
Man spricht dann auch genauer von S-Termen bzw. S-Ausdriicken.
Die Sprache, das heifst die Gesamtheit aller nach obigen Regeln
gebildeten Ausdriicke, wird mit L(S), L% oder L7 bezeichnet. Bei
letzterem steht die rémische [fiir die 1-te Stufe. Dies bezieht
sich auf den Umstand, dass geméf letzter Erzeugungsregel nur
iiber Variable quantifiziert werden kann. L}g sieht nicht vor, iiber
alle Teilmengen einer Menge oder iiber alle Funktionen zu quan-
tifizieren. So lassen sich die tiblichen [[Peano-Axiomel| nicht in
Lf ausdriicken, da das Induktionsaxiom eine Aussage iiber alle
Teilmengen der natiirlichen Zahlen macht. Das kann als Schwa-
che dieser Sprache angesehen werden, allerdings sind die Axiome

23 3. LOGIK

der Zermelo-Fraenkel-Mengenlehre samtlich in der ersten Stufe
mit dem einzigen Symbol € formulierbar, so dass die erste Stufe
prinzipiell fiir die Mathematik ausreicht.

3.1.5 Freie Variablen

Weitere Eigenschaften von Ausdriicken der Sprache L‘? lassen sich
ebenfalls rein syntaktisch definieren. Geméf dem oben beschriebe-
nen Aufbau durch Bildungsregeln definieren wir die Menge frei(y)
der im Ausdruck ¢ frei vorkommenden Variablen wie folgt:

o frei(ty = to) = var(ty) U var(ta)

frei(Rty ...t,) = var(t;) U...Uvar(ty,)
o frei

o frei(p A1) = frei(¢) U frei(¢)) und genauso fir V, —, <

o frei(Vayp) = ei(cp) \ {z}

o frei(Jzy) = frei(p) \ {z}

Nicht-freie Variable heiften gebundene Variable. Ausdriicke ¢ oh-
ne freie Variable, das heifft solche mit frei(y) = (), nennt man
Sdtze. Samtliche in obigem motivierenden Beispiel angegebenen
Axiome der geordneten abelschen Gruppen sind bei entsprechen-
der Ubersetzung in die Sprache L{0,+,7,§} Sétze, so zum Beispiel
YugVvy +vgvp = +vvg fiir das Kommutatlvgesetz

(
(mp) = frei(p)
(
(

3.1.6 Metasprachliche Ausdriicke

Das gerade gegebene Beispiel YvgVvi +vgv1 = +wvivg als Symboli-
sierung des Kommutativgesetzes in der Sprache L} Hs) zeigt,
dass die entstehenden Ausdriicke oft schwer lesbar sind. Daher
kehrt der Mathematiker, und oft auch der Logiker, gern zur klassi-
schen Schreibweise Vz,y : x + y = y + « zuriick. Letzteres ist aber

3.1. PRADIKATENLOGIK ERSTER STUFE 24

kein Ausdruck der Sprache LEO”L’_’S} sondern nur eine Mitteilung
eines solchen Ausdrucks unter Verwendung anderer Symbole ei-
ner anderen Sprache, hier der sogenannten [[Metasprache||, das
heifst derjenigen Sprache, in der man iiber L§O7+’_’§} spricht. Aus
Griinden der besseren Lesbarkeit lasst man auch gern iiberfliissige
Klammern fort. Das fiihrt nicht zu Problemen, solange klar bleibt,
dass man die leichter lesbaren Zeichenketten jederzeit zuriickiiber-

setzen konnte.

3.1.7 Substitutionen

Héaufig werden in der Mathematik Variablen durch Terme ersetzt.
Auch das lésst sich hier rein syntaktisch auf Basis unserer Symbole
erkldaren. Durch folgende Regeln legen wir fest, was es bedeuten
soll, den Term ¢t fiir eine Variable x einzusetzen. Wir folgen da-
bei wieder dem regelhaften Aufbau von Termen und Ausdriicken.
Die Ersetzung wird als []% notiert, wobei die eckigen Klammern
weggelassen werden diirfen.

Fiir Terme s wird die Einsetzung s% wie folgt definiert:

e [st v ein Variablensymbol, so ist v% gleich ¢ falls v = z und
v sonst.

e Ist ¢ ein Konstantensymbol, so ist c% =c.

e Sind f ein n-stelliges Funktionssymbol und ¢q,...,t, Terme,
so ist [ft1.. tn]% = ft1% .. .tn%.

Fiir Ausdriicke schreiben wir eckige Klammern um den Ausdruck,
in dem die Substitution vorgenommen werden soll. Wir legen fest:

o [t =ty)t =ttt =1t

o [Rty...ty)t =Rty L. . t,L

o [~elt =[]t
o [(pVo)];:

t
([¢]L v [¥]%) und genauso fiir A, —, <>

25 3. LOGIK

° [Elmga]% := Jx; analog fir den Quantor V

o [Fyp]L :=Jy[p]L falls # # y und y ¢ var(t); analog fiir den
Quantor V

o [Fypll = Elu[cp]%é falls # y und y € var(t), wobei u eine
Variable sei, die nicht in ¢ oder ¢ vorkommt, zum Beispiel die
erste der Variablen vg, v1,ve,.. ., die diese Bedingung erfiillt.
Die analoge Festlegung wird fiir V getroffen.

Bei dieser Definition wurde darauf geachtet, dass Variablen nicht
unbeabsichtigt in den Einflussbereich eines Quantors geraten. Falls
die gebundene Variable z im Term auftritt, so wird diese zuvor
durch eine andere ersetzt, um so die Variablenkollision zu vermei-
den.

Definition 21 (Freie Variable)
Eine Variable, die nicht gebunden ist, heif’t frei.

Beispiel 16 (Freie Variablen?!)
In dem Ausduck (Ax — zy) ist y eine freie Variable.

Definition 22 (Kombinator)
Ein Kombinator ist eine Funktion oder Definition ohne freie
Variablen.

Beispiel 17 (Kombinatoren?)
1) da—a

2) da— Ab—a
3) A\f = Xa— \b— fba

!Quelle: http://www.haskell.org/haskellwiki/Free_variable
2Quelle: http://www.haskell.org/haskellwiki/Combinator

http://www.haskell.org/haskellwiki/Free_variable
http://www.haskell.org/haskellwiki/Combinator

4 \-Kalkiul

Der M-Kalkiil (gesprochen: Lambda-Kalkiil) ist eine formale Spra-
che. In diesem Kalkiil gibt es drei Arten von Termen 7":

e Variablen: =
e Applikationen: (7'S)
e Lambda-Abstraktion: \z.T

In der Lambda-Abstraktion nennt man den Teil vor dem Punkt die
Parameter der A-Funktion. Wenn etwas dannach kommt, auf die
die Funktion angewendet wird so heifit dieser Teil das Argument:

Argument
=
Az 2?5 =5
~

Parameter

Beispiel 18 (A-Funktionen)
1) Az.z heifst Identitét.

2) (Az.2?)(\y.y + 3) = Ay.(y + 3)?
3) (Aac.(Ay.yx)) ab

=(Ay.ya)b
=ba

In Beispiel 18.3 sieht man, dass A-Funktionen die Argumente
von Links nach rechts einziehen.

Die Funktionsapplikation sei linksassoziativ. Es gilt also:

4.1. REDUKTIONEN 28

abcd=((ab)c)d

Definition 23 (Gebundene Variable)
Eine Variable heifst gebunden, wenn sie der Parameter einer
A-Funktion ist.

Definition 24 (Freie Variable)
Eine Variable heiftt frei, wenn sie nicht gebunden ist.

Satz 4.1
Der untypisierte A-Kalkiil ist Turing-Aquivalent.

4.1 Reduktionen

Definition 25 (Redex)
Eine A-Term der Form (Ax.t;)ts heifst Redex.

Definition 26 (a-Aquivalenz)
Zwei Terme T, T heiflen a—Aquivalent, wenn 17 durch kon-
sistente Umbenennung in 75 iiberfithrt werden kann.

Man schreibt dann: T} = Tb.
Beispiel 19 (a-Aquivalenz)

\z.x = \y.y
\e.xz = \y.yy
Az (Ay.z(Az.zy)y) = Aa.(Ax.z(Ae.zx)x)
Definition 27 (3-Aquivalenz)
Eine S-Reduktion ist die Funktionsanwendung auf einen Re-

dex:
()\x.tl) to = tl[a: — tQ]

29 4. \-KALKOUL

Beispiel 20 (3-Aquivalenz)
a) (A\z.z)y=zx—yl=y

b) (A\z. z (Az. 2))(y 2) £ (x (A\z. x))[z — vy 2](y 2)(A\z. x)

Definition 28 (n-Aquivalenz')
Die Terme Az.f x und f heiffen n-Aquivalent, wenn z ¢ FV (f)
gilt.

Man schreibt: Az.f z = f.

Beispiel 21 (n-Aquivalenz?)

)\az.Ay.fz:cyg)\:c.fzx
fzdxe fzx
ez 2 Az (\e. x) @

)\x.fa:a:;]éfx

4.2 Auswertungsstrategien

Definition 29 (Normalenreihenfolge)
In der Normalenreihenfolge-Auswertungsstrategie wird der
linkeste dufserste Redex ausgewertet.

Definition 30 (Call-By-Name)
In der Call-By-Name Auswertungsreihenfolge wird der linkeste
duferste Redex reduziert, der nicht von einem A umgeben ist.

Die Call-By-Name Auswertung wird in Funktionen verwendet.
Haskell verwendet die Call-By-Name Auswertungsreihenfolge zu-
sammen mit sharing“. Dies nennt man Lazy Evaluation. Ein spezi-

alfall der Lazy-Evaluation ist die sog. Kurzschlussauswertung. Das
bezeichnet die Lazy-Evaluation von booleschen Ausdriicken.

4.3. CHURCH-ZAHLEN 30

Definition 31 (Call-By-Value)
In der Call-By-Value Auswertung wird der linkeste Redex
reduziert, der nicht von einem A umgeben ist und dessen
Argument ein Wert ist.

Die Call-By-Value Auswertungsreihenfolge wird in C und Java
verwendet. Auch in Haskell werden arithmetische Ausdriicke in
der Call-By-Name Auswertungsreihenfolge reduziert.

4.3 Church-Zahlen

Im A-Kalkiil lasst sich jeder mathematische Ausdruck darstellen,
also insbesondere beispielsweise auch Azx.z + 3. Aber ,,3“ und ,,+*
ist hier noch nicht das A-Kalkiil.

Zuerst miissen wir uns also Gedanken machen, wie man natiirliche
Zahlen n € N darstellt. Dafiir diirfen wir nur Variablen und A
verwenden. Eine Mdglichkeit das zu machen sind die sog. Church-
Zahlen.

Dabei ist die Idee, dass die Zahl angibt wie haufig eine Funktion
f auf eine Variable z angewendet wird. Also:

e 0:=)\f 2.z
o 1:=\f z.fz
e 2:=\f z.f(fz2)
o 3=\ 2 f(f(f2))
Auch die gewohnten Operationen lassen sich so darstellen.

Beispiel 22 (Nachfolger-Operation)

succ : = Anfz.f(nfz)

31 4. \-KALKOUL

= An.(Af(Azf(nfz)))
Dabei ist n die Zahl.
Will man diese Funktion anwenden, sieht das wie folgt aus:

succl = (Anfz.f(nfz))1
= (Anfz.f(nfz)) (Af z.fz)
—_——

n

=Az.f(Af z.f2)fz
= Afz.f(f?)
=2

Beispiel 23 (Vorgénger-Operation)

pair := Aa.Ab.Af. fadb
fst := Ap.p(Aa.\b.a)
snd := Ap.p(Aa.\b.b)
next := Ap. pair(snd p) (succ(sndp))
pred := An. fst(n next(pair cocp))

Beispiel 24 (Addition)

plus := Amnfz.mf(nfz)

Dabei ist m der erste Summand und n der zweite Summand.

Beispiel 25 (Multiplikation)

times : = Amnf.m s (n f 2)

ll=

amnfz.n(ms)z

Dabel ist m der erste Faktor und n der zweite Faktor.

4.4. CHURCH-BOOLEANS 32

Beispiel 26 (Potenz)

Abe.eb
Avefz.ebfz

exp :

=

Dabei ist b die Basis und e der Exponent.

4.4 Church-Booleans

Definition 32 (Church-Booleans)
True wird zu Ctrue := ALAS.L.
False wird zu c¢glge := ALAS.f.

Hiermit lasst sich beispielsweise die Funktion is_zero definieren,
die True zuriickgibt, wenn eine Zahl 0 représentiert und sonst
False zurlickgibt:

is_zero = An. n (AZ. Cralse) CTrue

4.5 Weiteres

Satz 4.2 (Satz von Curch-Rosser)
Wenn zwei unterschiedliche Terme a und b dquivalent
sind, d.h. mit Reduktionsschritten beliebiger Richtung
ineinander transformiert werden kénnen, dann gibt es einen
weiteren Term ¢, zu dem sowohl a als auch b reduziert
werden konnen.

33 4. \-KALKOUL

4.6 Fixpunktkombinator

Definition 33 (Fixpunkt)
Sei f: X =Y eine Funktion mit) # A= X NY und a € A.
a heift Fixpunkt der Funktion f, wenn f(a) = a gilt.
Beispiel 27 (Fixpunkt)
1) f1i:R—=R; f(z) = 2? = x; = 0 ist Fixpunkt von f, da
f(0) = 0. x2 = 1 ist der einzige weitere Fixpunkt dieser

Funktion.

2) fa: N — N hat ganz N als Fixpunkte, also insbesondere
unendlich viele Fixpunkte.

3) f3:R—R; f(x) =2+ 1 hat keinen einzigen Fixpunkt.

4) fa:RIX] = RIX]; f(p) = p* hat p1(«) = 0 und pa(z) =
1 als Fixpunkte.

Definition 34 (Kombinator)
Ein Kombinator ist eine Abbildung ohne freie Variablen.

Beispiel 28 (Kombinatoren?®)
1) Xa. a

2) Aa. A\b. a
3) Af.- Aa. Ab.fba

Definition 35 (Fixpunkt-Kombinator)
Sei f ein Kombinator, der f g = g (f ¢) erfiillt. Dann heifit f
Fixpunktkombinator.

Insbesondere ist also f ¢ ein Fixpunkt von g.
Definition 36 (Y-Kombinator)
Der Fixpunktkombinator
Y =M. (Az. f (z) Az. f (zx))
heifst Y-Kombinator.

3Quelle: http://www.haskell.org/haskellwiki/Combinator

http://www.haskell.org/haskellwiki/Combinator

4.6. FIXPUNKTKOMBINATOR 34

Beh.: Der Y-Kombinator ist ein Fixpunktkombinator.

Beweis: *

Teil 1: Offensichtlich ist Y ein Kombinator.
Teil 2: z. Z. Y f=*f (Y f)

Vif= (Af Qe f (zz) Az f(z2) f

=7 Az.f (z z) Az f (zz))
7P Qe f (@ 2) (. f (z 2)))
=7 F (A Qe f (2 2)) (. f (2 2)) f)
-
|
Definition 37 (Turingkombinator)
Der Fixpunktkombinator
O := Az yy (zxy))(Az. \y. y (x x y))
heifft Turingkombinator.
Beh.: Der Turing-Kombinator © ist ein Fixpunktkombinator.
Beweis: °
Teil 1: Offensichtlich ist © ein Kombinator.
Teil 2: z. Z.: ©f =* f (O f)
Sei O := (Az. \y. y (x = y)). Dann gilt:
© f=((A\z. Ay y (z z y)) Oo) f
=7 (\y.y (80 80 v)) f
=7 f (©0O0f)
=/(©f)
|

4Quelle: Vorlesung WS 2013/2014, Folie 175
®Quelle: Ubungsblatt 6, WS 2013,/2014

35 4. \-KALKOUL

4.7 Literatur

e http://c2.com/cgi/wiki?FreeVariable

e http://www.lambda-bound.com/book/lambdacalc/
node9.html

http://c2.com/cgi/wiki?FreeVariable
http://www.lambda-bound.com/book/lambdacalc/node9.html
http://www.lambda-bound.com/book/lambdacalc/node9.html

5 Typinferenz

Definition 38 (Datentyp)
Ein Datentyp oder kurz Typ ist eine Menge von Werten, mit
denen eine Bedeutung verbunden ist.

Beispiel 29 (Datentypen)
e bool = { True, False }

e char = vgl. Seite 106

o intyagen = [2%2,2% —1]NN

e intggy = [-2 — 1,2 —1]NN!
e float = siehe IEEE 754

e Funktionstypen, z. B. int — int oder char — int

Hinweis: Typen sind unabhéngig von ihrer Représentation. So
kann ein bool durch ein einzelnes Bit reprisentiert werden oder
eine Bitfolge zugrunde liegen.

Auf Typen sind Operationen definiert. So kann man auf numeri-
schen Typen eine Addition (+), eine Subtraktion (-), eine Multi-
plikation (*) und eine Division (/) definieren.

Ich schreibe hier bewusst ,eine” Multiplikation und nicht ,die Mul-
tiplikation, da es verschiedene Moglichkeiten gibt auf Gleitpunkt-
zahlen Multiplikationen zu definieren. So kann man beispielsweise
die Assoziativitdt unterschiedlich wéahlen.

Beispiel 30 (Multiplikation ist nicht assoziativ)
In Python 3 ist die Multiplikation linksassoziativ. Also:

siehe ISO/IEC 9899:TC2, Kapitel 7.10: Sizes of integer types <limits.h>

38

>>> 0.1x0.1%x0.3
0.0030000000000000005
>>> (0.1x0.1)%0.3
0.0030000000000000005
>>> 0.1x(0.1%x0.3)
0.003

Definition 39 (Typvariable)
Eine Typvariable reprasentiert einen Typen.

Hinweis: Ublicherweise werden kleine griechische Buchstaben (o, 3, 71, T2, . . .

als Typvariablen gewahlt.

Genau wie Typen bestimmte Operationen haben, die auf ihnen
definiert sind, kann man sagen, dass Operationen bestimmte Typen,
auf die diese Anwendbar sind. So ist

a+p

fiir numerische o und 8 wohldefiniert, auch wenn o und 3 boolesch
sind oder beides Strings sind kénnte das Sinn machen. Es macht
jedoch z. B. keinen Sinn, wenn « ein String ist und S boolesch.
Die Menge aller Operationen, die auf die Variablen angewendet
werden, nennt man Typkontext. Dieser wird iiblicherweise mit I'
bezeichnet.

Das Ableiten einer Typisierung fiir einen Ausdruck nennt man
Typinferenz. Man schreibt: F (Az.2) : & — int.

Bei solchen Ableitungen sind haufig viele Typen moglich. So kann
der Ausdruck

Az.2
Mit folgenderweise typisiert werden:
e F (Az.2) : bool — int

o - (A\z.2) :int — int

39 5. TYPINFERENZ

o F (A\z.2) : Char — int
o F(A\x.2):a—int

In der letzten Typisierung stellt « einen beliebigen Typen dar.

5.1 Typsystem

Definition 40 (Typsystem ' -t : T?)
Ein Typkontext I' ordnet jeder freien Variable x einen Typ
I'(x) durch folgende Regeln zu:

¢ € Const

CONST:F'_C:TC

Nz)=r1
VAR :(— - ——
I'ke: 7

Fz:mkbt:n
ABS:
5 'FXxt:mm — 1

APP:Fl—tl,TQT F}_tQ:TQ
F'Etite: 7

Dabei ist der lange Strich kein Bruchstrich, sondern ein Symbol
der Logik das als Schlussstrich bezeichnet wird. Dabei ist der
Zéhler als Voraussetzung und der Nenner als Schlussfolgerung zu
verstehen.
Definition 41 (Typsubstituition)
Eine Typsubstituition ist eine endliche Abbildung von Typva-
riablen auf Typen.

WS 2013 / 2014, Folie 192

5.2. LET-POLYMORPHISMUS 40

Fiir eine Menge von Typsubsitutionen wird iiberlicherweise o als
Symbol verwendet. Man schreibt also beispielsweise:

o = [ag9bool, agva; — o]

Definition 42 (L6sung eines Typkontextes)
Sei t eine beliebige freie Variable, T = 7(t) ein beliebiger Typ
o eine Menge von Typsubstitutionen und I' ein Typkontext.

(0, 7) heifst eine Losung fir (T,), falls gilt:
ol'Ft:7

Beispiel 31 (Typisierungsregel)
Das Folgende nennt man eine Typisierungsregel:

I'Fb:bool Thkax:7 T'hy:7T
'+if bthenxelsey: 7

5.2 Let-Polymorphismus

4Das Programm P = let f = Az. 2 in f (f true) ist eine poly-
morphe Hilfsfunktion, da sie beliebige Werte auf 2 Abbildet. Auch
solche Ausdriicke sollen typisierbar sein.

Die Kodierung
letz = ¢1 in ¢

ist bedeutungsgleich mit

()\CC tg)tl

Das Problem ist, dass

P=M\f. f(f true) (A\z. 2)

3Klausur WS 2010 / 2011
WS 2013 / 2014, Folie 205fF

41 5. TYPINFERENZ

so nicht typisierbar ist, da in

fempb f(f true):...

ABS EAXff(f true): ...

miusste
7f = bool — int

und zugleich
Tf = int — int

in den Typkontext eingetragen werden. Dies ist jedoch nicht mog-
lich. Stattdessen wird

letx = t1 in t9

als neues Konstrukt im A-Kalkiil erlaubt.

Definition 43 (Typschema)
Ein Typ der Gestalt Vai. Vas. ... Yay,.7 heifft Typschema.
Es bindet freie Variablen aq,...,a, in 7.

Beispiel 32 (Typschema)
Das Typschema Va. @ — « steht fiir unendlich viele Typen
und insbesondere fiir folgende:

1) int — int, bool — bool, ...
2) (int — int) — (int — int), ...
3) ...

Definition 44 (Typschemainstanziierung)
Sei 1o ein Nicht-Schema-Typ. Dann heifst der Typ

Tl = 7o)
eine Instanziierung vom Typschema Va. 7 und man schreibt:
(Vo 7) = Tl = 73]

Beispiel 33 (Typschemainstanziierung)
Folgendes sind Beispiele fiir Typschemainstanziierungen:

5.3. BEISPIELE 42

1) Ya. @« — a = int — int
2) Ya. o — o > (int — int) — (int — int)
3) int > int
Folgendes sind keine Typschemainstanziierungen:
1) o — a % int — int
2) «a % bool
3) Va. a — a % bool

Zu Typschemata gibt es angepasste Regeln:

=7 77

vaR L@

ykx:T
und

I'x:m Ft:m 71 kein Typschema
'FXxt:mm — 1

ABS

5.3 Beispiele

Im Folgenden wird die Typinferenz fiir einige A-Funktionen durch-
gefiihrt.

5.3.1 \z. \y. = ¢°

Gesucht ist ein Typ 7, sodass sich - Ax. Ay. x y : 7 mit einem
Ableitungsbaum nachweisen ldsst. Es gibt mehrere solche 7, aber

®Losung von Ubungsblatt 6, WS 2013 / 2014

43 5. TYPINFERENZ

wir suchen das allgemeinste. Die Regeln unseres Typsystems (siche
Seite 39) sind syntazgerichtet, d. h. zu jedem A-(Teil)-Term gibt
es genau eine passende Regel.

Fir Ax. Ay. = y wissen wir also schon, dass jeder Ableitungsbaum
von folgender Gestalt ist. Dabei sind «; Platzhalter:

VAR (z:a2,y:a4) (z)=as VAR (z:a2,y:04) (y)=ar

ABS Tian,yiaariag Tia,y:askyiar
ABS Tiag,y oz y:as
ABS ok y. z Yy a3

FAX. Ay.zy:aq

Das was wir haben wollen steht am Ende, also unter dem unterstem
Schlussstrich. Dann bedeutet die letzte Zeile

FAXz. Ay.zy:aq

Ohne (weitere) Voraussetzungen lasst sich sagen, dass der Term
AT Ay. Ty

vom Typ a; ist.

Links der Schlussstriche steht jeweils die Regel, die wir anwenden.

Also entweder ABS, VAR, CONST oder APP.

Nun gehen wir eine Zeile hoher:

riaskF M. xy s

Diese Zeile ist so zu lesen: Mit der Voraussetzung, dass x vom Typ
oy ist, lasst sich syntaktisch Folgern, dass der Term A\y. x y vom
Typ as ist.

Hinweis: Alles was in Zeile ¢ dem F steht, steht auch in jedem
»,Nenner” in Zeile j < ¢ vor jedem einzelnen .

5.3. BEISPIELE 44

Folgende Typgleichungen C' lassen sich aus dem Ableitungsbaum
ablesen:

C={a1=a2— a3}
U{as=aq4 > a5}
U{ag=ar > a5}
U{ag=a9}
U{ar=aq}

Diese Bedingungen (engl. Constraints) haben eine allgemeinste
Losung mit einem allgemeinsten Unifikator o¢:

oc = [av(ag = a5) = ag — as,
Qv — as,
30y — A,
agvay — Qs,

arvoy]

Hinweis: Es gilt (ag — a5) = a4 — a5 = (g = a5) = (g —)

Also gilt: Der allgemeinste Typ von Az. A\y. = y ist oc(a1) =
(g = as) = ag — as.

5.3.2 Selbstapplikation®

Im Folgenden wird eine Typinferenz fiir die Selbstapplikation, also

ANC. X T

5Losung von Ubungsblatt 6, WS 2013 / 2014

45 5. TYPINFERENZ

durchgefiihrt.

Zuerst erstellt man den Ableitungsbaum:

VAR (20) (s yap (o))
APP T:oobkx T as
ABS
FAXre.zz:o

Dies ergibt die Constraint-Menge

C={a1=ay—as} ABS-Regel (5.1)
U{as=aq4 — a3} APP-Regel (5.2)
U{as =2} Linke VAR-Regel (5.3)
U{au=aa} Rechte VAR-Regel (5.4)

Aus Gleichung (5.3) und Gleichung (5.4) folgt:

Qg = g = Q5

Also lésst sich Gleichung (5.2) umformulieren:

Qg = (xvg — Q3

Offensichtlich ist diese Bedingung nicht erfiillbar. Daher ist ist die
Selbstapplikation nicht typisierbar. Dies wiirde im Unifikationsal-
gorithmus (vgl. Algorithmus 1) durch den occur check festgestellt
werden.

6 Parallelitat

Systeme mit mehreren Prozessoren sind heutzutage weit verbreitet.
Inzwischen sind sowohl in Desktop-PCs als auch Laptops, Tablets
und Smartphones ,Multicore-CPUs* verbaut. Daher sollten auch
Programmierer in der Lage sein, Programme fiir mehrere Kerne
zu entwickeln.

Parallelverarbeitung kann auf mehreren Ebenen statt finden:

e Bit-Ebene: Werden auf 32-Bit Computern long long,
also 64-Bit Zahlen, addiert, so werden parallel zwei 32-Bit
Additionen durchgefiihrt und das carry-flag benutzt.

e Anweisungs-Ebene: Die Ausfiihrung von Anweisungen in
der CPU besteht aus mehreren Phasen (Instruction Fetch,
Decode, Execution, Write-Back). Besteht zwischen aufeinan-
derfolgenden Anweisungen keine Abhéngigkeit, so kann der
Instruction Fetch-Teil einer zweiten Anweisung parallel zum
Decode-Teil einer ersten Anweisung geschehen. Das nennt

man Pipelining. Man spricht hier auch von Instruction Level
Parallelism (ILP)

e Datenebene: Es kommt immer wieder vor, dass man in
Schleifen eine Operation fiir jedes Objekt eines Contaitainers
(z. B. einer Liste) durchfiihren muss. Zwischen den Anweisun-
gen verschiedener Schleifendurchléufe besteht dann eventuell
keine Abhéngigkeit. Dann konnen alle Schleifenaufrufe par-
allel durchgefiihrt werden.

e Verarbeitungsebene: Verschiedene Programme sind unab-
héngig von einander.

6.1. ARCHITEKTUREN 48

Gerade bei dem letzten Punkt ist zu beachten, dass echt parallele

Ausfiihrung nicht mit verzahnter Ausfiihrung zu verwechseln ist.
Auch bei Systemen mit nur einer CPU und einem Kern kann
man gleichzeitig den Browser nutzen und einen Film iiber eine
Multimedia-Anwendung laufen lassen. Dabei wechselt der Schedu-
ler sehr schnell zwischen den verschiedenen Anwendungen, sodass
es sich so anfiihlt, als wiirden die Programme echt parallel ausge-
fithrt werden.

Weitere Informationen zu Pipelining gibt es in der Vorlesung , Rech-
nerorganisation* bzw. ,Digitaltechnik und Entwurfsverfahren“ (zu
der auch ein exzellentes Skript angeboten wird). Informationen
iiber Schedulung werden in der Vorlesung ,Betriebssysteme™ ver-
mittelt.

6.1 Architekturen

Es gibt zwei Ansétze, wie man Parallelrechner entwickeln kann:

e Gemeinsamer Speicher: In diesem Fall kann jeder Pro-
zessor jede Speicherzelle ansprechen. Dies ist bei Multicore-
CPUs der Fall.

e Verteilter Speicher: Es ist auch moglich, dass jeder Pro-
zessor seinen eigenen Speicher hat, der nur ihm zugénglich
ist. In diesem Fall schicken die Prozessoren Nachrichten (engl.

message passing). Diese Technik wird in Clustern eingesetzt.

Eine weitere Art, wie man Parallelverarbeitung klassifizieren kann,
ist anhand der verwendeten Architektur. Der der {iblichen, sequen-
tiellen Art der Programmierung, bei der jeder Befehl nach einan-

der ausgefiihrt wird, liegt die sog. Von-Neumann-Architektur
zugrunde. Bei der Programmierung von parallel laufenden Anwen-

dungen kann man das PRAM-Modell (kurz fiir Parallel Random

Access Machine) zugrunde legen. In diesem Modell geht man von ei-

49 6. PARALLELITAT

ner beliebigen Anahl an Prozessoren aus, die iiber lokalen Speicher
verfiigen und synchronen Zugriff auf einen gemeinsamen Speicher
haben.

Anhand der Flynn’schen Klassifikation kénnen Rechnerarchi-
tekturen in vier Kategorien unterteilt werden:

‘ Single Instruction Multiple Instruction
Single Data | SISD MISD
Multiple Data | SIMD MIMD

Dabei wird die Von-Neumann-Architektur als SISD-Architektur
und die PRAM-Architektur als SIMD-Architektur klassifiziert. Es
ist so zu verstehen, dass ein einzelner Befehl auf verschiedene
Daten angewendet wird.

Bei heutigen Multicore-Rechnern liegt MIMD vor.

MISD ist nicht so richtig sinnvoll.

Definition 45 (Nick’s Class)
Nick’s Class (in Zeichen: NC) ist die Klasse aller Probleme,
die im PRAM-Modell in logarithmischer Laufzeit 16sbar sind.

Beispiel 34 (Nick’s Class)
Folgende Probleme sind in NC:

1) Die Addition, Multiplikation und Division von Ganzzah-
len,

2) Matrixmultiplikation, die Berechnung von Determinan-
ten und Inversen,

3) ausschlieklich Probleme aus P, also: NC C P

Es ist nicht klar, ob P C NC gilt. Bisher wurde also noch kein
Problem P € P gefunden mit P ¢ NC.

6.2. PROZESSKOMMUNIKATION

50

6.2 Prozesskommunikation

Die Prozesskommunikation wird durch einige Probleme erschwert:

Definition 46 (Wettlaufsituation)
Ist das Ergebnis einer Operation vom zeitlichen Ablauf der
Einzeloperationen abhéingig, so liegt eine Wettlaufsituation

Vor.

Beispiel 35 (Wettlaufsituation)
Angenommen, man hat ein Bankkonto mit einem Stand von
2000 Euro. Auf dieses Konto wird am Monatsende ein Ge-
halt von 800 Euro eingezahlt und die Miete von 600 Euro
abgehoben. Nun stelle man sich folgende beiden Szenarien vor:

t | Prozess 1: Lohn Prozess 2: Miete Kontostand
1| Lade Kontostand Lade Kontostand 2000
2 | Addiere Lohn 2000
3 | Speichere Kontostand 2800
4 Subtrahiere Miete 2800
5 Speichere Kontostand | 1400

Dieses Problem existiert nicht nur bei echt parallelen Anwen-
dungen, sondern auch bei zeitlich verzahnten Anwendungen.

Definition 47 (Semaphore)
Eine Semaphore S = (¢, r, f, L) ist eine Datenstruktur, die
aus einer Ganzzahl, den beiden atomaren Operationen r =
,reservieren probieren und f = freigeben‘ sowie einer Liste

L besteht.

r gibt entweder Wahr oder Falsch zuriick um zu zeigen, ob
das reservieren erfolgreich war. Im Erfolgsfall wird ¢ um 1
verringert. Es wird genau dann Wahr zuriick gegeben, wenn ¢
positiv ist. Wenn Wahr zuriickgegeben wird, dann wird das
aufrufende Objekt der Liste hinzugefiigt.

f kann nur von Objekten aufgerufen werden, die in L sind.
Wird f von o € L aufgerufen, wird o aus L entfernt und ¢ um

51 6. PARALLELITAT

eins erhoht.

Semaphoren kénnen eingesetzt werden um Wettlaufsituationen zu
verhindern.

Definition 48 (Monitor)
Ein Monitor M = (m,c) ist ein Tupel, wobei m ein Mutex
und c eine Bedingung ist.

Monitore konnen mit einer Semaphore, bei der ¢ = 1 ist, imple-
mentiert werden. Monitore sorgen dafiir, dass auf die Methoden
der Objekte, die sie reprisentieren, zu jedem Zeitpunkt nur ein
mal ausgefithrt werden koénnen. Sie sorgen also fiir gegenseitigen
Ausschluss.
Beispiel 36 (Monitor)

Folgendes Beispiel von https://en.wikipedia.org/w/

index.php?title=Monitor_ (synchronization) &oldid=

596007585 verdeutlicht den Nutzen eines Monitors:

monitor class Account {
private int balance := 0
invariant balance >= 0

public method boolean withdraw (int amount)
precondition amount >= 0

if balance < amount:
return false

else:
balance := balance - amount
return true

public method deposit (int amount)
precondition amount >= 0

balance := balance + amount

https://en.wikipedia.org/w/index.php?title=Monitor_(synchronization)&oldid=596007585
https://en.wikipedia.org/w/index.php?title=Monitor_(synchronization)&oldid=596007585
https://en.wikipedia.org/w/index.php?title=Monitor_(synchronization)&oldid=596007585

6.3. PARALLELITAT IN JAVA 52

6.3 Parallelitat in Java

Java unterstiitzt mit der Klasse Thread und dem Interface Runnable
Parallelitét.

Interessante Stichworder sind noch:
e ThreadPool
e Interface Executor
e Interface Future<V>

e Interface Callable<V >

6.4 Message Passing Modell

Das Message Passing Modell ist eine Art, wie man parallel lau-
fende Programme schreiben kann. Dabei tauschen die Prozesse
Nachrichten aus um die Arbeit zu verteilen.

Ein wichtiges Konzept ist hierbei der Kommunikator. Ein Kom-
munikator definiert eine Gruppe von Prozessen, die mit einander
kommunizieren kénnen. In dieser Gruppe von Prozessen hat je-

der Prozesse einen eindeutigen Rang, den sie zur Kommunikation

nutzen.

Die Grundlage der Kommunikation bilden send und receive Opera-
tionen. Prozesse schicken Nachrichten an andere Prozesse, indem
sie den eindeutigen Rang und einen tag angeben, der die Nachricht
identifiziert.

Wenn ein Prozess mit einem einzigen weiteren Prozess kommuni-

ziert, wird dies Punkt-zu- Punkt- Kommunikation genannt.

53 6. PARALLELITAT

Wenn ein Prozess allen anderen eine Nachricht schickt, nennt man

das Broadcast.

7 Java

Im Folgenden wird in aller Kiirze erklart, wie man in Java Pro-
gramme schreibt, die auf mehreren Prozessoren laufen.

7.1 Thread, ThreadPool, Runnable und
ExecutorService

Interface Runnable
< java.lang.Thread

e Methods:

— void run (): When an object implementing interface
Runnable is used to create a thread, starting the thread
causes the object’s run method to be called in that
separately executing thread.

Class Thread
< java.lang.Thread

e implements Runnable

Class ThreadPoolExecutor
+— java.util.concurrent.ThreadPoolExecutor

Beispiel 37 (ExecutorService, Future!)
public static void main(String[] args) throws
InterruptedException, ExecutionException {
ExecutorService pool =
Executors.newFixedThreadPool (4) ;

7.1. THREAD, THREADPOOL, RUNNABLE UND EXECUTORSERVICE 56

List<Future<String>> futures =
new ArrayList<Future<String>>();

for(int i = 0; i < 10; i++) {

futures.add (pool.submit (new StringTask (i)));
}
for (Future<String> future : futures) {

String result = future.get();
System.out.println(result);

pool.shutdown () ;

Interface Callable<V>
< java.util.concurrent

e Parameter:

— V - the result type of method call ()
e Ermoglicht die Riickgabe von Ergebnissen

Beispiel 38 (Callable?)
public final class StringTask implements Callable<Str
int id;
public StringTask (int id) {
this.id = id;
}
public String call() {
return "Run " + id;

WS 2013/2014, Kapitel 41, Folie 28
WS 2013/2014, Kapitel 41, Folie 27

57 7. JAVA

7.2 Futures

wEin Future (engl. ,Zukunft‘) oder ein Promise (engl. ,Versprechen‘)
bezeichnet in der Programmierung einen Platzhalter (Proxy) fiir ein
Ergebnis, das noch nicht bekannt ist, meist weil seine Berechnung
noch nicht abgeschlossen ist.“

Interface Future<v>
< java.util.concurrent

e Parameter:
— V: The result type returned by this Future’s get method
e Erlauben die Riickgabe von Ergebnissen
Beispiel:

Beispiel 39 (Runnable, ExecutorService, ThreadPool3)
public final class StringTask implements Runnable {
int id;
public StringTask (int id) {
this.id = id;
}
public void run() {
// do calculation

ExecutorService pool =
Executors.newFixedThreadPool (4) ;

for(int 1 = 0; i < 10; i++){
pool.execute (new StringTask (i));

}

pool.shutdown () ;

executor.awaitTermination () ;

3WS 2013/2014, Kapitel 41, Folie 26

1

2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

7.3. BEISPIELE 58

7.3 Beispiele

Die folgenden Quelltexte wurden von Axel Busch erstellt.

Das folgende Programm lauft in ca. 4min und 36 s Sekunden auf
einem Kern einer Intel Pentium P6200 CPU:

- SingleCorePrimeTest. java
/* @author Axel Busch x/

public class SingleCorePrimeTest {

public static boolean isPrime (int n) {
if (n < 2) {
return false;

for (int i = 2; i <= Math.sgrt(n); ++i)
if (n $ 1 == 0) {
return false;

}

return true;

public static void main (String[] args) {
int target = 10_000_000;
long start System.currentTimeMillis () ;
for (int 1 2; 1 <= target; ++i) {
isPrime (i) ;

}
long end = System.currentTimeMillis () ;
System.out.println (end-start);

}

Der folgende Code Testet das ganze mit mehreren Kernen auf einer

{

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

59

7. JAVA

Intel Pentium P6200 CPU:

import
import
import
import
import
import
import
import
import

public

MultipleCorePrimeTest. java
java.util .Arraylist;

java.util.List;
java.util.concurrent.Callable;
java.util.concurrent .ExecutionException;
java.util.concurrent.ExecutorService;
java.util.concurrent.Executors;
java.util.concurrent.FutureTask;
java.util.concurrent.TimeUnit;
java.util.concurrent.TimeoutException;

class MultipleCorePrimeTest {

public static void count (int target, int threads)

throws InterruptedException,

TimeoutException {
ExecutorService executor =
Executors.newFixedThreadPool (threads) ;
List<FutureTask<Integer>> taskList =
new ArrayList<FutureTask<Integer>>();
long startTime = System.currentTimeMillis();

for (int i = 1; i <= threads; ++i) {
int ilen = target / threads;

/+ Test following intervall for primes */

final int start = (1 - 1) *x ilen;
final int end = (i != threads)
? 1 x ilen - 1
target;

FutureTask<Integer> task =
new FutureTask<Integer> (
new Callable<Integer> () {
@Override
public Integer call() {
int count = 0;

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

50

51

52

53

54

55

57

58

59

60

61

62

63

64

65

66

67

68

69

7.3. BEISPIELE 60

for (int i = start; i <= end;
++i) |
if (SingleCorePrimeTest.
isPrime (1))
++count;
}

return count;

)
taskList.add(task);
executor.submit (task) ;

executor.shutdown () ;
if (!executor.awaitTermination (10,
TimeUnit .MINUTES)) {
throw new TimeoutException();

}

final long endTime = System.currentTimeMillis();
int count = 0;
for (int i = 0; 1 < taskList.size(); ++i) {

try {

count += taskList.get (i) .get();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();

}
System.out.println (threads + " thread: "
+ (endTime - startTime) + " ms");

public static void main(String[] args) {
final int target = 100_000_000;
try {

70

71

72

73

74

75

76

77

61

7. JAVA

count (target,
count (target,
count (target,
count (target,

) ;
) ;
)

14

I

8);

} catch (Exception e)

e.printStackTrace();

{

1 thread: 4min 38s
2 threads: 3min 14s
4 threads: 2min 44s
8 threads: 2min 41s

7.4 Literatur

e Java ist auch eine Insel: Kapitel 14 - Threads und nebenldu-
fige Programmierung

e vogella.com: Java concurrency (multi-threading) - Tutorial

e Links zur offiziellen Java 8 Dokumentation:

ThreadPoolExecutor
Runnable

Thread

Callable

Future

http://openbook.galileocomputing.de/javainsel9/javainsel_14_004.htm
http://www.vogella.com/tutorials/JavaConcurrency/article.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html

8 Haskell

Haskell ist eine funktionale Programmiersprache, die 1990 in Versi-
on 1.0 veroffentlicht wurde. Namensgeber ist Haskell Brooks Curry,
der die mathematischen Grundlagen der funktionalen Program-
mierung entwickelte.

Wichtige Konzepte sind:
1. Funktionen hoherer Ordnung
2. anonyme Funktionen (sog. Lambda-Funktionen)
3. Pattern Matching
4. Unterversorgung
5. Typinferenz

Haskell kann mit ,Glasgow Haskell Compiler mittels ghci inter-
pretiert und mittels

8.1 Erste Schritte

Haskell kann unter www.haskell.org/platform/ fir alle Platt-
formen heruntergeladen werden. Unter Debian-Systemen ist das
Paket ghc bzw. haskell-platform relevant.

8.1.1 Hello World

Speichere folgenden Quelltext als hello-world.hs:

http://www.haskell.org/platform/

8.2. SYNTAX 64

hello-world.hs
1 main = putStrLn "Hello, World!"

Kompiliere ihn mit ghc -0 hello hello-world.hs. Es wird
eine ausfithrbare Datei erzeugt.

Alternativ kann es direkt mit runghc hello-world.hs ausge-
fithrt werden.

8.2 Syntax

8.2.1 Klammern und Funktionsdeklaration

Haskell verzichtet an vielen Stellen auf Klammern. So werden
im Folgenden die Funktionen f(z) := ¥2% und g(z) := z - f(2?)
definiert:

f :: Floating a => a —> a
f x = sin x / X

g :: Floating a => a -> a
g x =x * (f (x*x))

Die Funktionsdeklarationen mit den Typen sind nicht notwendig,
da die Typen aus den benutzten Funktionen abgeleitet werden.

Zu lesen ist die Deklaration wie folgt:

[Funktionsname] :: [Typendefinitionen] =>
Signatur

T. Def. Die Funktion f benutzt als Parameter bzw. Riickgabewert
einen Typen. Diesen Typen nennen wir a und er ist vom
Typ Floating. Auch b, wasweisich oder etwas dhnliches
wére ok.

Signatur Die Signatur liest man am einfachsten von hinten:

65 8. HASKELL

— £ bildet auf einen Wert vom Typ a ab und

— f hat genau einen Parameter a

8.2.2 if / else

Das folgende Beispiel definiert den Binomialkoeffizienten (vgl. Bei-
spiel 13.3):

binom :: (Eq a, Num a, Num al) => a -> a -> al
binom n k =

if (k==0) || (k==n)

then 1

else binom (n-1) (k-1) + binom (n-1) k

Das konnte man auch mit sog. Guards machen:

binom :: (Eq a, Num a, Num al) => a -> a -> al
binom n k

| (k==0) || (k==n) =1

| otherwise = binom (n-1) (k-1)

+ binom (n-1) k

8.2.3 Rekursion

Die Fakultdtsfunktion wurde wie folgt implementiert:

1 falls m =0
n- fak(n) sonst

fak(n) := {

fak :: (Eq a, Num a) => a -> a
fak n = if (n==0) then 1 else n * fak (n-1)

8.2. SYNTAX

66

Diese Implementierung benotigt O(n) rekursive Aufrufe und hat

einen Speicherverbrauch von O(n). Durch einen Akkumulator
kann dies verhindert werden:

fakAcc (Eq a, Num a)
fakAcc n acc = if (n==0)
then acc

else fakAcc

(n-1)

=> a => a -=> a

(nxacc)

fak (Eq a, Num a) => a —> a
fak n = fakAcc n 1
8.2.4 Listen
e [] erzeugt die leere Liste,
e [1,2,3] erzeugt eine Liste mit den Elementen 1,2,3
e : wird cons genannt und ist der Listenkonstruktor.
e list !'! i gibt das ¢-te Element von 1ist zuriick

head list gibt den Kopf von 1ist zuriick, tail list

den Rest:

Prelude> head

*xx Exception:

Prelude> tail

*xx Exception:

Prelude> tail
[]

Prelude> head
1

Prelude> null
True

Prelude> null
False

[1

Prelude.head:

[1

Prelude.tail:

(1]

(1]

empty list

empty list

67 8. HASKELL

e last [1,9,1, 3] gibt 3 zuriick.

e length list gibt die Anzahl der Elemente in 1ist zu-
riick.

e maximum [1,9,1,3] gibt 9 zuriick (analog: minimum).
e null list priift, ob 1ist leer ist.

e take 3 [1,2,3,4,5] gibt [1,2, 3] zuriick.

e drop 3 [1,2,3,4,5] gibt [4,5] zuriick.

e reverse [1,9,1,3] gibt [3,1,9,1] zurtick.

e clem item list gibt zuriick, ob sich item in 1ist be-
findet.

Beispiel in der interaktiven Konsole

Prelude> let mylist = [1,2,3,4,5,6]
Prelude> head mylist

1

Prelude> tail mylist
[2,3,4,5,6]

Prelude> take 3 mylist
[1,2,3]

Prelude> drop 2 mylist
[3,4,5,6]

Prelude> mylist
[1,2,3,4,5,6]

Prelude> mylist ++ sndList
[1,2,3,4,5,6,9,8,7]

List-Comprehensions

List-Comprehensions sind kurzschreibweisen fiir Listen, die sich
an der Mengenschreibweise in der Mathematik orientieren. So

8.2. SYNTAX 68

entspricht die Menge
myList ={1,2,3,4,5,6 }
test ={x € myList |z > 2}

in etwa folgendem Haskell-Code:

Prelude> let mylist = [1,2,3,4,5,6]
Prelude> let test = [x | x <= mylist, x>2]
Prelude> test

[3,4,5,6]

Beispiel 40 (List-Comprehension)
Das folgende Beispiel zeigt, wie man mit List-Comprehensions
die unendliche Liste aller pythagoreischen Tripels erstellen

kann:

triples :: [(Integer, Integer, Integer)]

triples = [(x,y,2z) | z <=[1..1,
X <= [1..z],
y <= [1..z],
z"2 == x"2 + y"2

]
8.2.5 Strings

e Strings sind Listen von Zeichen:
tail ABCDEF" gibt "BCDEF" zuriick.

8.2.6 Let und where

>>> let £ = 3; g = £ where £ = 7
>>> f

>>> g

69 8. HASKELL

8.2.7 Funktionskomposition

In Haskell funktioniert Funktionskomposition mit einem Punkt:

]
XX
*

H-D Qb
X X

(f .
(g
Dabei ergibt h (-3) in der mathematischen Notation

(g0 f)(=3) = flg(=3)) = f(—4) = 16

und i (-3) ergibt

(fog)(=3) =g(f(=3)) =9(9) =38

Es ist also anzumerken, dass die Reihenfolge nicht der mathemati-
schen Konvention entspricht.

8.2.8 $ (Dollar-Zeichen) und ++

Das Dollar-Zeichen $ dient in Haskell dazu Klammern zu vermeiden.
So sind die folgenden Zeilen dquivalent:

putStrLn (show $ 1 - 2)
putStrLn $ show (1 - 2)
putStrln $ show $ 1 - 2

Das doppelte Plus (++) wird verwendet um Listen mit einander
zu verbinden.

8.3. TYPEN 70

UND ODER Wahr Falsch
&& I True False

GLEICH UNGLEICH NICHT

Tabelle 8.1: Logische Operatoren in Haskell

8.2.9 Logische Operatoren

8.3 Typen

8.3.1 Standard-Typen

Haskell kennt einige Basis-Typen:

e Int: Ganze Zahlen. Der Zahlenbereich kann je nach Imple-
mentierung variieren, aber der Haskell-Standart garantiert,
dass das Intervall [-229,229 — 1] abgedeckt wird.

Integer: beliebig grofse ganze Zahlen

Float: FlieRkommazahlen

e Double: Fliekkommazahlen mit doppelter Préazision
e Bool: Wahrheitswerte
e Char: Unicode-Zeichen
Des weiteren gibt es einige strukturierte Typen:
e Listen: z. B. [1,2, 3]
e Tupel: z. B. (1,7a’,2)

e Briiche (Fractional, RealFrac)

71 8. HASKELL

e Summen-Typen: Typen mit mehreren moglichen Repréasen-
tationen

8.3.2 Typinferenz

In Haskell werden Typen aus den Operationen geschlossfolgert.
Dieses Schlussfolgern der Typen, die nicht explizit angegeben

werden miissen, nennt man Typinferent.
Haskell kennt die Typen aus Abb. 8.1.
Ein paar Beispiele zur Typinferenz:

Prelude> let x = \x -> x*X
Prelude> :t x

X :: Integer —-> Integer
Prelude> x(2)
4

Prelude> x(2.2)
<interactive>:6:3:
No instance for (Fractional Integer)
arising from the literal ‘2.2’
Possible fix: add an instance declaration for
(Fractional Integer)
In the first argument of ‘x’, namely ‘(2.2)7
In the expression: x (2.2)
In an equation for ‘it’: it = x (2.2)

Prelude> let mult = \x y=>x*y
Prelude> mult (2, 5)
<interactive>:9:5:
Couldn’t match expected type ‘Integer’ with
actual type ' (t0, tl1)~’
In the first argument of 'mult’, namely ‘(2, 5)7
In the expression: mult (2, 5)

8.3. TYPEN

72

In an equation for ‘it’: it = mult (2,
Prelude> mult 2 5
10
Prelude> :t mult
mult :: Integer —-> Integer —> Integer

Prelude> let concat = \x y => x ++ y
Prelude> concat [1,2,3] [3,2,1]
[1,2,3,3,2,1]

Prelude> :t concat

concat :: [a] => [a] =-> [a]

Read

Show

Eq

All except
10, (—>)

All except
107 ('>)

All except
10, (->)

S)

Bounded
Int, Char,
Bool, (), Or-
dering, tuples

Ord
All except 10,
(->), IOError

Num
Int, Integer,
Float, Double

Vv

Enum
(), Bool, Char, Or-
dering, Int, Integer,
Float, Double

Int I;Ieliger
Float, Double Float, Double

Integral RealFrac Floating
Int, Integer Float, Double Float, Double

Monad RealFloat
10, (), Maybe Float, Double
Functor
10, (), Maybe

MonadPlus
10, (), Maybe

Abbildung 8.1: Hierarchie der Haskell Standardklassen

73 8. HASKELL

8.3.3 type

Mit type konnen Typsynonyme erstellt werden:

type Prename = String

type Age = Double

type Person = (Prename, Age)
type Friends = [Person]
type Polynom = [Double]

8.3.4 data

Mit dem Schliisselwort data koénnen algebraische Datentypen
erzeugt werden:

data Bool = False | True

data Color = Red | Green | Blue | Indigo | Violet
data Tree a = Leaf a | Branch (Tree a) (Tree a)
data Point = Point Float Float deriving (Show)

data Tree t

Node t [Tree t]

8.4 Lazy Evaluation

Haskell wertet Ausdriicke nur aus, wenn es notig ist.

Beispiel 41 (Lazy Evaluation)
Obwohl der folgende Ausdruck einen Teilausdruck hat, der
einen Fehler zuriickgeben wiirde, kann er aufgrund der Lazy
Evaluation zu 2 evaluiert werden:

lazy-evaluation.hs

1g a b c
2 | ¢ >0 = b
3 | otherwise

a

4

8.5. BEISPIELE 74

5 main = do
6 print (g (1/0) 2 3)

8.5 Beispiele

8.5.1 Quicksort

gsort.hs
1 gsort [] = []
2 gsort (p:ps) = (gsort (filter (\x —> x<=p) ps))
3 ++ p:(gsort (filter (\x => x> p) ps))

e Die leere Liste ergibt sortiert die leere Liste.

e Wihle das erste Element p als Pivotelement und teile die
restliche Liste ps in kleinere und gleiche sowie in grofiere
Elemente mit filter auf. Konkateniere diese beiden Listen
mit ++.

Durch das Ausnutzen von Unterversorgung léasst sich das ganze
sogar noch kiirzer schreiben:

gsort.hs

1 gsort [] [1
2 gsort (p:ps) (gsort (filter (<=p) ps))
3 ++ p: (gsort (filter (> p) ps))

8.5.2 Fibonacci

fibonacci.hs

75 8. HASKELL

| (n ==1) =1
| otherwise = fib (n - 1) + fib (n - 2)

fibonacci-akk.hs

fibAkk n nl n2

| (n == 0) = nl

| (n == 1) = n2

| otherwise = fibaAkk (n — 1) n2 (nl + n2)
fib n = fibAkk n 0 1

fibonacci-zip.hs
fib =0 : 1 : zipWith (+) fibs (tail fibs)

fibonacci-pattern—-matching.hs

fib 0 = 0
fib 1 =1
fib n = fib (n - 1) + fib (n - 2)

Die unendliche Liste alle Fibonacci-Zahlen, also der Fibonacci-

Stream wird wie folgt erzeugt:

fibonacci-stream.hs
fibs :: [Integer]

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

8.5.3 Polynome

polynome.hs
type Polynom = [Double]

add :: Polynom -> Polynom -> Polynom
add a [] = a
add [] a = a

8.5. BEISPIELE 76

add (x:xs) (y:ys) = (xty) : add xs ys

eval :: Polynom -> Double -> Double
eval [] x =0
eval (p:ps) x = p + x x (eval ps Xx)
—-— alternativ:

eval p x = foldr (\element rest =>element+xxrest) 0 p
deriv :: Polynom —-> Polynom

deriv [] = []

deriv p = zipWith (x) [1..] (tail p)

8.5.4 Hirsch-Index

Parameter: Eine Liste L von Zahlen aus N
Riickgabe: max{neN|n<|{ieL|i>n}|}

hirsch-index.hs

import Data.List —--sort und reverse
hIndex :: (Num a, Ord a) => [a] -> a
hIndex 1 = helper (reverse (sort 1)) O
where helper [] acc = acc
helper (z:1ls) acc
| z > acc = helper 1ls (acc + 1)
| otherwise = acc
—-— Alternativ
hindexl = length . takeWhile id
zipWith (<=) [1l..] . reverse . sort

hindex2 = length . takeWhile (\(i, n) => n >= i)
zip [1..] . reverse . sort

10

11

12

13

14

15

16

17

18

19

20

21

[

77 8. HASKELL

8.5.5 Lauflangencodierung

lauflaengencodierung.hs

splitWhen :: (a => Bool) -> [a] -> ([a], [al)
splitWhen _ [1 = ([1, [1)
splitWhen p (x:xs)

| p x = ([]1, x:xs)

| otherwise = let (ys, zs) = splitWhen p xs

in (x:ys, zs)
—-— >>> splitWhen even [1,2,3]
-— ([1],[2,3])

group :: Eq a => [a] => [[a]]
group [] = []

group (x:xs) = let (groupl, rest) = splitWhen
in (x:groupl) : group rest

encode :: Eq a => [a] => [(a, Int)]

encode xs = map (\x => (head x, length x))

decode [] = T[]

decode ((x,n):xs) = replicate n x ++ decode xs

—-— alternativ

decode = concat . (map (\(x,n)=->replicate n x))

(group xs)

8.5.6 Intersections

intersect.hs

module Intersect where

intersect :: (Ord t) => [t] =-> [t] => [t]
intersect a [] = []

intersect [] a = []

8.5. BEISPIELE

intersect (x:xs) (y:ys)

| x == y = x : intersect xs ys

| x <y = intersect xs (y:ys)

| v >y = intersect (x:xs) ys
intersectAll :: (Ord t) => [[t]] =-> [t]
intersectAll (l:1s) = (foldr intersect 1) 1s
intersectAll [] = undefined
multiples n = [nxk | k <= [1..]]

commonMultiples a b ¢ =
intersectAll [multiples n | n <= [a,b,c]]

8.5.7 Funktionen héherer Ordnung

folds.hs
summer :: [Int] -> Int
summer = foldr (=) O
summel :: [Int] -> Int
summel = foldl (=) O
main :: IO ()

main = do
print (summer [1,2,3])
—— 0-(1-(2-3)) = 0-(1-(-1)) = 2
print (summel [1,2,3])
-— ((0-1)-2)-3 = -6

79 8. HASKELL

8.5.8 Chruch-Zahlen

church.hs

type Church ¢t = (¢t => t) —> t -> ¢
int2church :: Integer -> Church t

int2church 0 s z = z

int2church n s z = int2church (n - 1) s (s z)
church2int :: Church Integer -> Integer

church2int n = n (+1) O

8.5.9 Trees

Einen Binarbaum kann man in Haskell so definieren:

data Tree a = Empty | Node a (Tree a) (Tree a)
deriving (Show)

Einen allgemeinen Baum so:
data Tree t = Node t[Tree t]

Hier ist t der polymorphe Typ des Baumes. t gibt also an welche
Elemente der Baum enthélt.

Man kann auf einem solchen Baum auch eine Variante von map
und reduce definieren, also eine Funktion mapT, die eine weitere
Funktion £ auf jeden Knoten anwendet:

mapT :: (t =-> s) —> Tree t -> Tree s
mapT f (Node x ts) = Node (f x) (map (mapT f) ts)
reduceT :: (t => t => t) => Tree t => t

reduceT f (Node x ts) = foldl f x (map (reduceT f)

ts)

8.5. BEISPIELE 80

8.5.10 Standard Prelude

Hier sind die Definitionen eininger wichtiger Funktionen:

map :: (a => b) => [a] => [b]

map £ [] = []

map f (x:xs) = f x : map f xs

zipWith i1 (a=>b->c) -> [a]->[b]->[c]

zipWith z (a:as) (b:bs)
= z a b : zipWith z as bs

zipWith _ _ _ = [1

zip :: [a]l => [b] => [(a,b)]

zip = zipWith (,)

unzip :r [(a,b)] —> (lal], [b])

unzip = foldr (\(a,b) ~(as,bs) => (a:as,b:bs
foldl :: (a => b =>a) => a => [b] -> a

H
O
=
[oN
(-
Hh
N

-

et

|

z
foldl £ (f z x) xs

Hh
O
'_l
(o}
’_l
Hh
N
b
X
0
]

foldr :: (a => b => Db) => b -> [a] -> Db
Z

il
(@]
=
0.
=
H
N
-—
-
|

foldr £ z (x:xs) = f x (foldr f z xs)
take :: Int -> [a] => [a]
take n | n <= 0= 1[I

take _ T] = [1]

81 8. HASKELL

take n (x:xs) = x : take (n-1) xs
splitAt i Int => [a] => ([a],[a])
splitAt n xs = (take n xs, drop n xs)

8.6 Weitere Informationen

e hackage.haskell.org/package/base-4.6.0.1: Re-
ferenz

e haskell.org/hoogle: Suchmaschine fiir das Haskell-Manual

e wiki.ubuntuusers.de/Haskell: Hinweise zur Installa-
tion von Haskell unter Ubuntu

http://hackage.haskell.org/package/base-4.6.0.1
http://www.haskell.org/hoogle/
http://wiki.ubuntuusers.de/Haskell

9 Prolog

Prolog ist eine Programmiersprache, die das logische Programmier-
paradigma befolgt.

Eine interaktive Prolog-Sitzung startet man mit swipl.

In Prolog definiert man Terme.

9.1 Erste Schritte

9.1.1 Hello World

Speichere folgenden Quelltext als hello-world.pl:

hello—-world.hs
:— initialization (main).

main :— write(’Hello World!’), nl, halt.

Kompiliere ihn mit gplc hello-world.pl. Es wird eine aus-
fiihrbare Datei erzeugt.

9.2 Syntax

In Prolog gibt es Pradikate, die Werte haben. Pradikate werden
immer klein geschrieben. So kann das Pradikat farbe mit den
Werten rot, gruen, blau, gelb - welche auch immer klein
geschrieben werden - wie folgt definiert werden:

9.2. SYNTAX 84

farbe (blau) .
farbe (gelb) .
farbe (gruen)
farbe (rot) .

e Terme werden durch , mit einem logischem und verkniipft.
e Ungleichheit wird durch ~ ausgedriickt.

So ist folgendes Pradikat nachbar (X, Y) genau dann wahr,
wenn X und Y Farben sind und X # Y gilt:

nachbar (X, Y) :—- farbe(X), farbe(Y), X \= Y.

9.2.1 Arithmetik

Die Auswertung artihmetischer Ausdriicke muss in Prolog explizit
durch is durchgefiihrt werden:

?— X 1s 5-2%5.
X = —5.

Dabei miissen alle Variablen, die im Term rechts von is vorkom-
men, istanziiert sein:

?— X 1s 372.
X = 9.

?— Y is XxX.
ERROR: 1s/2: Arguments are not sufficiently
instantiated

?— X is X+1.
ERROR: 1s/2: Arguments are not sufficiently
instantiated

Arithmetische Ausdriicke kénnen mit =:= , =\= , < , <=,
> , >= verglichen werden.

85 9. PROLOG

Beispiel 42 (Arithmetik in Prolog!)
1) even(0) .

even (X) :— X>0, X1 is X-1, odd(X1l).
odd (1) .
odd(X) :— X>1, X1 is X-1, even(X1l).

2) £ib(0,0)
fib(1,1)
fib(X,Y) :— x>1,

X1l is X-1, X2 is X-2,
fib(X1,Y1l), fib(X2,Y2),
Y is Y14Y2.

9.2.2 Listen

Das Atom [] ist die leere Liste.

Mit der Syntax [K|R] wird eine Liste in den Listekopf K und den
Rest der Liste R gesplitet:

- [X|Y] = [1,2,3,4,5].
X =1,
Y = [2, 3/ 4/ 5]-

Einen Test member (X, Liste), der True zuriickgibt wenn X
in Liste vorkommt, realisiert man wie folgt:

member (X, [X|R]) .
member (X, [Y|R]) :— member(X,R).

WS 2013 / 2014, Folie 237f

9.3. BEISPIELE 86

Eine Regel append (A, B, C), die die Listen A und B zusam-
menfiigt und als Liste C speichert, kann wie folgt erstellt werden:

append([],L,L) .
append ([X|R],L, [X|T]) :- append(R,L,T).

Die erste Regel besagt, dass das Hinzufiigen der leeren Liste zu
einer Liste L immer noch die Liste L ist.

Die zweite Regel besagt: Wenn die Liste R und I die Liste T
ergeben, dann ergibt die Liste, deren Kopf X ist und deren Rumpf
R ist zusammen mit der Liste L die Liste mit dem Kopf X und
dem Rumpf T.

Ubergibt man append(X,Y, [1,2,3,4,5]), so werden durch
Reerfiillung alle Moglichkeiten durchgegangen, wie man die Liste
[1,2,3,4,5] splitten kann.

9.3 Beispiele

9.3.1 Humans

Erstelle folgende Datei:

human.pro

human (bob) .
human (socrates) .
human (antonio) .

Kompiliere diese mit

swipl —-c human.pro
library (swi_hooks) compiled into pce_swi_hooks
0.00 sec, 2,224 bytes
human.pro compiled 0.00 sec, 644 bytes
/usr/lib/swi-prolog/library/listing compiled into
prolog_listing 0.00 sec, 21,648 bytes

o o o° o° o° Ur

87 9. PROLOG

Dabei wird eine a.out Datei erzeugt, die man wie folgt nutzen
kann:

$./a.out

Welcome to SWI-Prolog (Multi-threaded, 32 bits, Version
Copyright (c) 1990-2011 University of Amsterdam, VU Ams
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is £
software, and you are welcome to redistribute it under
conditions. Please visit http://www.swi-prolog.org for

For help, use ?- help(Topic). or ?- apropos (Word).

?— human (socrates).

true.
9.3.2 Splits
splits.pl
splits (L, ([], L)).
splits ([X|L], ([X[S], E)) :- splits(L, (S, E)).

Dieses skript soll man swipl —-f test.pl aufrufen. Dann erhélt
man:

? splits([1,2,3], Res)
Res = ([1, [1,2,3]) ;
Res = ([1], [2,3]) ;
Res = ([1,2], [3]) ;
Res = ([1,2,31, [1) ;
No

9.3.3 Delete

9.3. BEISPIELE 88

remove ([(X,A) |L],X, [(X,ANew) |L]) :— A>0, ANew is A-1.
remove ([X|L],Y, [X|L1]) :- remove(L,Y,L1l).

9.3.4 Zebraratsel

Folgendes Ratsel wurde von https://de.wikipedia.org/w/
index.php?title=Zebrar%$C3%A4tsel&oldid=126585006
entnommen:

1. Es gibt fiinf Héuser.

Der Englander wohnt im roten Haus.
Der Spanier hat einen Hund.

Kaffee wird im griinen Haus getrunken.
Der Ukrainer trinkt Tee.

Das griine Haus ist direkt rechts vom weiffen Haus.

N s wN

Der Raucher von Altem-Gold-Zigaretten héalt Schnecken als
Haustiere.

8. Die Zigaretten der Marke Kools werden im gelben Haus
geraucht.

9. Milch wird im mittleren Haus getrunken.
10. Der Norweger wohnt im ersten Haus.

11. Der Mann, der Chesterfields raucht, wohnt neben dem Mann
mit dem Fuchs.

12. Die Marke Kools wird geraucht im Haus neben dem Haus
mit dem Pferd.

13. Der Lucky-Strike-Raucher trinkt am liebsten Orangensaft.
14. Der Japaner raucht Zigaretten der Marke Parliaments.

15. Der Norweger wohnt neben dem blauen Haus.

https://de.wikipedia.org/w/index.php?title=Zebrar%C3%A4tsel&oldid=126585006
https://de.wikipedia.org/w/index.php?title=Zebrar%C3%A4tsel&oldid=126585006

89 9. PROLOG

Wer trinkt Wasser? Wem gehort das Zebra?

zebraraetsel.pro
Street=[Hausl, Haus2, Haus3],

mitglied(haus (rot,_,_),Street),

mitglied(haus (blau,_,_),Street),

mitglied (haus, (griin,_,_),Street),
mitglied(haus (rot, australier,_),Street),
mitglied(haus(_, italiener, tiger), Street),

sublist (haus(_,_, eidechse),haus(_, chinese,_),Street),
sublist (haus (blau,_,_),haus(_,_,eidechse), Street),
mitglied(haus(_,N,nilpferd), Street).

TODO

9.4 Weitere Informationen

e wiki.ubuntuusers.de/Prolog: Hinweise zur Installa-
tion von Prolog unter Ubuntu

http://wiki.ubuntuusers.de/Prolog

10 Scala

Scala ist eine objektorientierte und funktionale Programmierspra-
che, die auf der JVM aufbaut und in Java Bytecode kompiliert
wird. Scala bedeutet scalable language.

Mit sog. ,actors” bietet Scala eine Unterstiitzung fiir die Entwick-
lung prallel ausfithrender Programme.

Weitere Materialien sind unter http://www.scala-lang.org/
und http://www.simplyscala.com/ zu finden.

10.1 Erste Schritte

Scala kann auf Debian-basierten Systemen durch das Paket scala
installiert werden. Fiir andere Systeme stehen auf http://www.
scala-lang.org/download/ verschiedene Binidrdateien be-
reit.

10.1.1 Hello World
Interaktiv

$ scala
Welcome to Scala version 2.9.2 [...]

scala> println("Hello world")
Hello world

http://www.scala-lang.org/
http://www.simplyscala.com/
http://www.scala-lang.org/download/
http://www.scala-lang.org/download/

10.2. VERGLEICH MIT JAVA

92

Es kann mit ./scala-test.scala Scala funktioniert

ausgefiihrt werden.

Kompiliert

object HelloWorld ({

hello-world.scala

def main(args: Array[String]) {
println ("Hello World!")

Dieses Beispiel kann mit scalac hello-world.scala kompi-
liert und mit scala HelloWorld ausgefiihrt werden.

10.2 Vergleich mit Java

Scala und Java haben einige Gemeinsamkeiten, wie den Java
Bytecode, aber auch einige Unterschiede.

Gemeinsamkeiten Unterschiede

e Java Bytecode e Java hat Interfaces, Scala hat

e Keine Mehrfachvererbung traits.

e Statische Typisierung e Java hat primitive Typen, Scala
e Scopes

ausschlieflich Objekte.
Scala benétigt kein ; am Ende

von Anweisungen.
Scala ist kompakter.
Java hat static, Scala hat

object (Singleton)

Weitere Informationen hat Graham Lea unter http://tinyurl.
com/scala-hello-world zur Verfiigung gestellt.

http://tinyurl.com/scala-hello-world
http://tinyurl.com/scala-hello-world

93 10. SCALA

10.3 Syntax

In Scala gibt es sog. values, die durch das Schliisselwort val
angezeigt werden. Diese sind Konstanten. Die Syntax ist der UML-
Syntax dhnlich.

val name: type = value

Variablen werden durch das Schliisselwort var angezeigt:

var name: type = value

Methoden werden mit dem Schliisselwort def erzeugt:
def name (parameter: String): Unit = { code
Klassen werden wie folgt erstellt:

class Person (
val firstName: String,
var lastName: String,
age: Int) {
println("This is the constructur.")

def sayHi() = println("Hello world!")
}

und so instanziiert:

val anna = new Person("anna", "bern", 18)
anna.sayHi ()

Listen konnen erstellt und durchgegangen werden:

val list = List ("USA", "Russia", "Germany")
for (country <-— list)
println (country)

10.4. COMPANION OBJECT 94

UND ODER Wahr Falsch
&& I true false

GLEICH UNGLEICH NICHT
—— = !

Tabelle 10.1: Logische Operatoren in Scala

10.3.1 Logische Operatoren

10.4 Companion Object

Ein Companion Object ist ein Objekt mit dem Namen einer Klasse
oder eines Traits. Im Gegensatz zu anderen Objekten / Traits hat
das Companion Object zugriff auf die Klasse.

10.5 actor

Definition 49 (Aktor)
Ein Aktor ist ein Prozess, der Nebenldufig zu anderen Ak-
toren lauft. Er kommuniziert mit anderen Aktoren, indem er
Nachrichten austauscht.

Das folgende Wetter-Beispiel zeigt, wie man Aktoren benutzen
kann.

10.5.1 Message Passing

Prozesse kénnen nach dem Schema adresse ! Nachricht Nach-
richten austauschen. Dieses Schema ist asynchron.

95 10. SCALA

Prozesse konnen mit receivecase x => print (x) Nachrich-
ten empfangen, wobei in diesem Beispiel x alles matcht. Wenn eine
gesendete Nachricht vom Empfanger nicht gematcht wird, bleibt
sie dennoch gespeichert.

10.6 Weiteres

def awaitAll (timeout: Long, fts: Futurel[Any]x):

List [Option[Any]]
<— scala.actors.Futures.__

Waits until either all futures are resolved or a given time span has
passed. Results are collected in a list of options. The result of a
future that resolved during the time span is its value wrapped in
Some. The result of a future that did not resolve during the time
span is None.

Note that some of the futures might already have been awaited,
in which case their value is returned wrapped in Some. Passing a
timeout of 0 causes awaitAll to return immediately.

10.7 Beispiele

10.7.1 Wetter

Das folgende Script sendet parallel Anfragen iiber verschiedene
ZIP-Codes an die Yahoo-Server, parst das XML und extrahiert
die Stadt sowie die Temperatur:

weather.scala

import scala.io._

import scala.xml. {Source => Source2, _}
import scala.actors._

import Actor._

10.8. WEITERE INFORMATIONEN 96

¢ def getWeatherInfo (woeid: String) = {

7 val url = "http://weather.yahooapis.com/forecastrss?
8 val response = Source.fromURL (url) .mkString

9 val xmlResponse = XML.loadString(response)

10 println (xmlResponse \\ "location” \\ "@city",

11 xmlResponse \\ "condition" \\ "@temp")

12 }

13

14 val caller = self

15

16 for (id <-= 2391271 to 2391279) {

17 actor{ getWeatherInfo(id.toString) }
18}

19

20 for (id <= 2391271 to 2391279) {

21 receiveWithin (5000) {

22 case msg => println (msqg)

23 }

24 }

10.8 Weitere Informationen

e http://www.scala-lang.org/api

e http://docs.scala-lang.org/style/naming—-conventions.
html

http://www.scala-lang.org/api
http://docs.scala-lang.org/style/naming-conventions.html
http://docs.scala-lang.org/style/naming-conventions.html

11 X10

X10 ist eine objektorientierte Programmiersprache, die 2004 bei
IBM entwickelt wurde.

Wie in Scala sind auch in X10 Funktionen First-Class Citizens.

X10 nutzt das PGAS-Modell:

Definition 50 (PGAS?)
PGAS (partitioned global address space) ist ein Program-
miermodell fiir Mehrprozessorsysteme und massiv parallele
Rechner. Dabei wird der globale Adressbereich des Arbeitsspei-
chers logisch unterteilt. Jeder Prozessor bekommt jeweils einen
dieser Adressbereiche als lokalen Speicher zugeteilt. Trotz-
dem konnen alle Prozessoren auf jede Speicherzelle zugreifen,
wobei auf den lokalen Speicher mit wesentlich héherer Ge-
schwindigkeit zugegriffen werden kann als auf den von anderen
Prozessoren.

Im PGAS-Modell gibt es places. Diese sind Platzhalter fiir Ak-
tivitdten und Objekte.

e Place.FIRST_PLACE ist der place 0.

e here ist der Prozess-eigene place und here.next () ist
der darauf folgende Place.

e main wird in place 0 ausgefiihrt.

e Place.places () liefert einen Iterator fiir alle verfiigha-
ren places. Ein spezifischer Place kann durch Place (n)
ausgewahlt werden.

"https://de.wikipedia.org/wiki/PGAS

https://de.wikipedia.org/wiki/PGAS

11.1. ERSTE SCHRITTE 98

11.1 Erste Schritte

Als erstes sollte man x10 von http://x10-lang.org/x10-development /
building-x10-from—-source.html?id=248 herunterladen.

Dann kann man die bin/x10c zum erstellen von ausfithrbaren
Dateien nutzen. Der Befehl x10c HelloWorld.x10 erstellt eine
ausfiihrbare Dateil namens a.out.

HelloWorld.x10
// file HelloWorld.x10

public class HelloWorld {
public static def main(args:Rail[String]) {
x10.i0.Console.OUT.println ("Hello, world");

11.2 Syntax

Genau wie Scala nutzt X10 val und var, wobei val fiir ,yvalue®
steht und ein unverénderbarer Wert ist. var hingegen steht fiir
,variable* und ist verédnderbar.

Eine Besonderheit sind sog. Constrianed types:

Int{self > 0}
def dotProduct (x:Vec, y:Vec) {x.len == y.len}

11.2.1 Logische Operatoren

11.2.2 Closures

Closres werden unterstiitzt:

http://x10-lang.org/x10-development/building-x10-from-source.html?id=248
http://x10-lang.org/x10-development/building-x10-from-source.html?id=248

99 11. X10

UND ODER Wahr Falsch
&& I true false

GLEICH UNGLEICH NICHT
—— = !

Tabelle 11.1: Logische Operatoren in X10

val r = new Random() ;
val rand = () => r.nextDouble();
11.2.3 async

Durch async S kann das Statement S asynchron ausgefiihrt
werden. Das bedeutet, dass ein neuer Kindprozess (eine Kind-
Aktivitét) erstellt wird, die S ausfithrt. Dabei wird nicht auf das

Beenden von S gewartet. Will man das, so muss £inish vor das
Statement gestellt werden.

11.2.4 atomic

Durch atomic S wird das Statement S atomar ausgefiihrt. Auch
Methoden kénnen atomar gemacht werden.

// push data on concurrent
// list-stack
val node = new Node (data);

atomic {
node.next = head;
head = node;

11.2. SYNTAX 100

// target defined in
// enclosing scope
atomic def CAS(old:Object, n:0Object) {
if (target.equals(old)) {
target = n;
return true;

}

return false;

11.2.5 Bedingtes Warten?

Durch when (E) S kann eine Aktivitdt warten, bis die Bedingung
E wahr ist um dann das Statement S auszufiihren.

An E werden einige Forderungen gestellt:
e E muss ein boolescher Ausdruck sein.
e E darf nicht blockieren.

e E darf keine nebenléufigen Aktivitédten erstellen, muss also
sequenziell laufen.

e E darf nicht auf remote data zugreifen, muss also lokal arbei-
ten.

e E muss frei von Seiteneffekten sein.

class OneBuffer {
var datum:0Object = null;
var filled:Boolean = false;
def send(v:Object)
when (!filled)
datum = v;

—~ o~

WS 2013/2014, Kapitel 43, Folie 22

101 11. X10

filled = true;

}
def receive () :Object {
when (filled) {
val v = datum;
datum = null;
filled = false;
return v;

11.2.6 Lokalisierung

3Durch at (p) S wird sichergestellt, dass das Statement S auf
dem place p ausgefiihrt wird. Dabei ist zu beachten, dass die
Eltern-Aktivitdt so lange blockiert, bis S beendet.

Es wird eine Deep-Copy des lokalen Objektgraphen auf den place
p erstellt.

at (Place(l)) { ... }
val a:Int = 42;
at (here.next ()) {

Console.OUT.println (here);
Console.OUT.println(a);

3WS 2013/2014, Kapitel 43, Folie 23

11.3. DATENTYPEN 102

11.3 Datentypen

Byte, UByte, Short, UShort, Char, Int, Ulnt, Long, ULong, Float,
Double, Boolean, Complex, String, Point, Region, Dist, Array

11.3.1 Arrays

Arrays werden in X10 wie folgt definiert:

val doubleIt = (i:Int) => 1 x 2
new Array[Int] (5, doublelt)

Das ergibt den Array [0, 2, 4, 6, 8 1.

11.3.2 struct

In X10 gibt es, wie auch in C, den Typ struct. Dieser erlaubt
im Gegensatz zu Objekten keine Vererbung, kann jedoch auch
interfaces implementieren.

Alle Felder eines X10-Structs sind val.

Structs werden verwendet, da sie effizienter als Objekte sind.

Beispiel 43 (struct)
struct Complex ({
val real:Double;
val img :Double;

def this (r:Double, i:Double) {
real = r; img = 1i;

def operator + (that:Complex) ({
return
Complex (real + that.real,
img + that.img);

103

11. X10

val x = new Array[Complex] (1..10);

11.4 Beispiele

Fibonacci.x10

1 // file Fibonacci.x10
2 public class Fibonacci {

10

11

12

13

14

15

16

17

18

19

20

21

22

public static def fib(n:Long): Long {
if (n<){
return n;

}

val fl:Long;
val f2:Long;

finish {
async fl = fib(n-1);
async f2 = fib(n-2);

}
return fl1 + £f2;

public static def main(args:Rail[String]) {
x10.1i0.Console.OUT.println("This is fibonacci 1
for (var i:Long=0; i < 10; ++i) {
x10.1i0.Console.OUT.println(i + ": " + fib (i

11.5. WEITERE INFORMATIONEN 104

11.5 Weitere Informationen

e http://x10-lang.org/

http://x10-lang.org/

12 C

C ist eine imperative Programmiersprache. Sie wurde in vielen
Standards definiert. Die wichtigsten davon sind:

e (C89 wird auch ANSI C genannt.

e (C90 wurde unter ISO 9899:1990 veroffentlicht. Es gibt keine
bedeutenden Unterschiede zwischen C89 und C90, nur ist das
eine ein ANSI-Standard und das andere ein I[ISO-Standard.

e C99 wurde unter ISO 9899:1999 veroffentlicht.
e (C11 wurde unter ISO 9899:2011 veroffentlicht.

12.1 Datentypen

Die grundlegenden C-Datentypen sind

’Typ ‘Grﬁf&e
char |1 Byte
int 4 Bytes
float |4 Bytes
double |8 Bytes
void |0 Bytes

zuséatzlich kann man char und int nochin signed und unsigned

unterscheiden. Diese werden Modifier genannt.

In C gibt es keinen direkten Support fiir Booleans.

12.2. ASCII-TABELLE 106

12.2 ASCII-Tabelle

12.3 Syntax

12.3.1 Logische Operatoren

12.4 Prazedenzregeln

A | [name| is a...*
B.1 prenthesis ()
B.2 postfix operators:

B.2.1 () ,,...function returning. ..
B.2.2 [] ,...array of...
*

B.3 prefix operator: * ... pointer to...“

B.4 prefix operator * and const / volatile modifier:
»- - - |modifier| pointer to...*

B.5 const / volatile modifier next to type specifier:
»- - - |modifier| [specifier|*

B.6 type specifier: ,,. .. [specifier|*

static unsigned int* const * (xnext) ();

12.5 Beispiele

12.5.1 Hello World

Speichere den folgenden Text als hello-world.c:

hello-world.c
1 #include <stdio.h>

2
3 int main (void)

107 12.C

printf ("Hello, World\n");
return 0O;

}

Compiliere ihn mit gcc hello-world.c. Es wird eine ausfiihr-
bare Datei namens a.out erzeugt.

12.5.2 Pointer
#include <stdio.h>
int arr([] = {0,1,2,3,4,5};

int main () {
printf ("%1 %i", arr[0], (&arr([3])I[0]);
return 0O;

}
Die Ausgabe hier ist 0 3.

108

12.5. BEISPIELE

h

m

n

W

DEL

96
97
98
99

100
101
102
103

104
105
106

107
108

110
111
112
113

114
115
116

117
118

120
121
122
123

124
125
126

127

C

E

M || 109

Wl119

64

65

66

68
69
70
71

72

73

74

75

76
7
78

79
80
81

82

83
84

85

86

87
88
89
90
91

92

93
94

95

||67

%

32

33
34

35

36
37
38
39
40
41

42

43
44
45

46

47
48
49
50
51

52

53
54
55

56

57
58

99
60
61

62

63

|Dez.|Z.[|Dez.| Z.||Dez. | Z.|Dez. | Z.

10
11
12
13
14

16

17
18
19
20
21

22

23
24
25
26

27
28
29
30
31

109 12.C

UND ODER Wahr Falsch
&& [l 1 0

GLEICH UNGLEICH NICHT
— = !

Tabelle 12.1: Logische Operatoren in C

A next next is a

B3 ... pointer to...

B.1 () .

B.2.1 () ... a function returning. ..
B3 « ... pointer to...

B4 xconst ...a read-only pointer to...

B.6 static unsigned int ...static unsigned int.

13 MPI

Message Passing Interface (kurz: MPI) ist ein Standard, der den
Nachrichtenaustausch bei parallelen Berechnungen auf verteilten
Computersystemen beschreibt.

Prozesse kommunizieren in MPI {iber sog. Kommunikatoren. Ein

Kommunikator (MPI_Comm) definiert eine Menge an Prozessen,
die miteinander kommunizieren kénnen. In dieser Prozessgruppe

hat jeder Prozess einen eindeutigen rank iiber den die Prozesse
sich identifizieren koénnen.

13.1 Erste Schritte

hello-world.c
#include <stdio.h>

#include <mpi.h>
int main (int argc, charxx args) {
int size;
int myrank;
MPI_Init (&argc, &args);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, é&myrank);
printf ("Hello world, I have rank %d out of %d.\n",
myrank, size);
MPI_Finalize ();
return 0;

13.2. MPI DATATYPES

112

Das wird mpicc hello-world.c kompiliert.
Mit mpirun -np 14 scripts/mpi/a.out werden 14 Kopien
des Programms gestartet.

Hierbei ist MPI_COMM_WORLD der Standard-Kommunikator, der
von MPI_Init erstellt wird.

13.2 MPI Datatypes

_ CHAR

MPI datatype |C datatype| MPI datatype C datatype
MPI INT signed int MPI FLOAT float
MPI_UNSIGNED |unsigned int || MPI_DOUBLE double

MPI CHAR signed char ||MPI UNSIGNED |unsigned char

13.3 Funktionen

int MPI_Comm_size(MPI_Comm comm,

int *size)

Liefert die Grofe des angegebenen Kommunikators; dh. die Anzahl
der Prozesse in der Gruppe.

Parameter

e comm: Kommunikator (handle)

e size: Anzahl der Prozesse in der Gruppe von comm

Beispiel

#include "mpi.h"

int size;

113 13. MPI

MPI_Comm comm;

MPI_Comm_size (comm, &size);

int MPI_Comm_rank (MPI_Comm comm, int *rank)

Bestimmt den Rang des rufenden Prozesses innerhalb des Kom-
munikators.

Der Rang wird von MPI zum Identifizieren eines Prozesses verwen-
det. Die Rangnummer ist innerhalb eines Kommunikators eindeutig.
Dabei wird stets von Null beginnend durchnumeriert. Sender und
Empfanger bei Sendeoperationen oder die Wurzel bei kollektiven
Operationen werden immer mittels Rang angegeben.

Parameter

e comm: Kommunikator (handle)

e rank: Rang des rufenden Prozesses innerhalb von comm
Beispiel
#include "mpi.h"

int rank;
MPI_Comm comm;

MPI_Comm_rank (comm, &rank);
if (rank==0) {
Code fur Prozess 0
}
else {
Code fur die anderen Prozesse

13.3. FUNKTIONEN 114

int MPI_Send(void xbuf, int count,
MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

Senden einer Nachricht an einen anderen Prozefl innerhalb eines
Kommunikators. (Standard-Send)

Parameter
e buf: Anfangsadresse des Sendepuffers
e count: Anzahl der Elemente des Sendepuffers (nichtnegativ)
e datatype: Typ der Elemente des Sendepuffers (handle)
e dest: Rang des Empféngerprozesses in comm (integer)

e tag: message tag zur Unterscheidung verschiedener Nach-
richten; Ein Kommunikationsvorgang wird durch ein Tripel
(Sender, Empfianger, tag) eindeutig beschrieben.

e comm: Kommunikator (handle)
Beispiel
#include "mpi.h"
int signal, i, numprogs, me;
MPI_Status stat;
MPI_Comm_rank (MPI_COMM_WORLD, &me);
MPI_Comm_size (MPI_COMM_WORLD,

&numprocs) ;
if (me==RO0OT) {

for (i=1; i<numprocs; i++) {

MPI_Send(&signal, 1, MPI_INT, i, 0O, MPI_COMM_WORLD) ;

115

13. MPI

else {

MPI_Recv(&sig, 1, MPI_INT, ROOT, MPI_ANY_TAG,

MPI_COMM_WORLD, &stat);

int MPI_Recv (void xbuf, int count,

MPI_Datatype datatype, int source,
int tag, MPI_Comm comm,
MPI Status =*xstatus)

Empfangen einer Nachricht (blockierend)

Parameter

buf: Anfangsadresse des Empfangspuffers

count: Anzahl (d. h. > 0) der Elemente im Empfangspuffer
datatype: Typ der zu empfangenden Elemente (handle)

source: Rang des Senderprozesses in comm oder MPI_ANY_ SOURCE

tag: message tag zur Unterscheidung verschiedener Nach-
richten Ein Kommunikationsvorgang wird durch ein Tripel
(Sender, Empfénger, tag) eindeutig beschrieben. Um Nach-
richten mit beliebigen tags zu empfangen, benutzt man die
Konstante MPI_ANY_TAG.

comm: Kommunikator (handle)

status: Status, welcher source und tag angibt (MPI_Status).

Soll dieser Status ignoriert werden, kann MPI__STATUS_IGNORE
angegeben werden.

Beispiel

#include "mpi.h"

13.3. FUNKTIONEN 116

int msglen, again=1l;
void *buf;
MPI_Datatype datatype
MPI_Comm comm;

MPI_Status status;

while (again) {
MPI_Probe (ROOT, MPI_ANY_TAG, comm, &status);
MPI_Get_count (&status, datatype, &msglen);
buf=malloc (msglenxsizeof (int)) ;
MPI_Recv (buf, msglen, datatype, status.MPI_SOURCE,
status.MPI_TAG, comm, &status);

int MPI_Reduce (const void xsendbuf, woid xrecvbuf,
int count, MPI_Datatype datatype,
MPI_Op op, int root, MPI_Comm comm)

Fiihrt eine globale Operation op aus; der Prozef ,root” erhélt das
Resultat.

Parameter
e sendbuf: Startadresse des Sendepuffers
e count: Anzahl der Elemente im Sendepuffer
e datatype: Datentyp der Elemente von sendbuf
e op: auszufiihrende Operation (handle)

e root: Rang des Root-Prozesses in comm, der das Ergebnis
haben soll

117 13. MPI

e comm: Kommunikator (handle)

int MPI_Alltoall (const wvoid xsendbuf, int sendcount,
MPI_Datatype sendtype,
void xrecvbuf, int recvcount,
MPI_Datatype recvtype,
MPI_Comm comm)

Teilt Daten von jedem Prozefs einer Gruppe an alle anderen auf.
Parameter

e sendbuf: Startadresse des Sendepuffers

e sendcount: Anzahl der Elemente im Sendepuffer

e sendtype: Datentyp der Elemente des Sendepuffers (handle)

e recvcount: Anzahl der Elemente, die von jedem einzelnen
Prozefs empfangen werden

e recvtype: Datentyp der Elemente im Empfangspuffer (hand-
le)

e comm: Kommunikator (handle)
Beispiel

#include "mpi.h"

int sendcount, recvcount;
void *sendbuf, =*recvbuf;
MPI_Datatype sendtype, recvtype;
MPI_Comm comm;

MPI_Alltoall (sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, comm);

13.3. FUNKTIONEN 118

MPI_Bcast (buffer, count, datatype, root, comm)

Sendet eine Nachricht vom Prozess root an alle anderen Prozesse
des angegebenen Kommunikators.

Parameter
e buffer: Startadresse des Datenpuffers

e count: Anzahl der Elemente im Puffer

datatype: Datentyp der Pufferelemente (handle)
e root: Wurzelprozel; der, welcher sendet

e comm: Kommunikator (handle)

MPI_Scatter (sendbuf, sendcount, sendtype, recvbuf,
recvcount, recvtype, root, comm)

Verteilt Daten vom Prozess root unter alle anderen Prozesse in
der Gruppe, so dafs, soweit moglich, alle Prozesse gleich grofie
Anteile erhalten.

Parameter

e sendbuf: Anfangsadresse des Sendepuffers (Wert ist ledig-
lich fiir 'root’ signifikant)

e sendcount: Anzahl der Elemente, die jeder Prozef geschickt
bekommen soll (integer)

e sendtype: Datentyp der Elemente in sendbuf (handle)

e recvcount: Anzahl der Elemente im Empfangspuffer. Meist
ist es giinstig, recvcount = sendcount zu wéhlen.

119 13. MPI

e recvtype: Datentyp der Elemente des Empfangspuffers (hand-
le)

e root: Rang des Prozesses in comm, der die Daten versendet
e comm: Kommunikator (handle)
Beispiel

#include "mpi.h"

int myid;
int recvbuf [DATASIZE], sendbuf[DATA_SIZE];

/* Minimum bilden */
MPI_Reduce (sendbuf, recvbuf, DATA_SIZE, MPI_INT,
0, MPI_COMM_WORLD) ;

13.4 Beispiele

// Quelle: Klausur vom SS 2013 am KIT bei
// Prof. Dr.-Ing. Gregor Snelting
void my_int_sum_reduce (int *sendbuf,

int *recvbuf, int count,

int root, MPI_Comm comm)

int size, rank;
MPI_Comm_size (comm, &size);
MPI_Comm_rank (comm, &rank);
if (rank == root) {

MPI_MI

/* Initialize recvbuf with our own values. */

for (int i = 0; i < count; ++i) {
i]

recvbuf [= sendbuf[i];

13.5. WEITERE INFORMATIONEN 120

/* Receive values from every other node
and accumulate. */

for (int i = 0; 1 < size; ++i) {
if (i == root)
continue;

int other[count];
MPI_Recv (other, count, MPI_INT,
i, 0, comm, MPI_STATUS_IGNORE) ;

for (int j =
recvbuf [

0; Jj < count; ++3) {
j] += other[j];

}
} else {
/* Send our values to root. #*/
MPI_Send (sendbuf, count, MPI_INT,
root, 0, comm);

13.5 Weitere Informationen

e http://mpitutorial.com/
e http://www.open-mpi.org/

e http://www.tu-chemnitz.de/informatik/RA/projects/
mpihelp/

http://mpitutorial.com/
http://www.open-mpi.org/
http://www.tu-chemnitz.de/informatik/RA/projects/mpihelp/
http://www.tu-chemnitz.de/informatik/RA/projects/mpihelp/

14 Compilerbau

Wenn man iiber Compiler redet, meint man iiblicherweise ,yoll-
stdndige Ubersetzer:

Definition 51
FEin Compiler ist ein Programm C, das den Quelltext eines
Programms A in eine ausfithrbare Form tibersetzen kann.

Jedoch gibt es verschiedene Ebenen der Interpretation bzw. Uber-
setzung:

1. Reiner Interpretierer: TCL, Unix-Shell

2. Voriibersetzung: Java-Bytecode, Pascal P-Code, Python',
Smalltalk-Bytecode

3. Laufzeitiibersetzung: JavaScript?
4. Vollstindige Ubersetzung: C, C++, Fortran

Zu sagen, dass Python eine interpretierte Sprache ist, ist in etwa
so korrekt wie zu sagen, dass die Bibel ein Hardcover-Buch ist.?

Reine Interpretierer lesen den Quelltext Anweisung fiir Anweisung
und fithren diese direkt aus.

!Python hat auch .pyc-Dateien, die Python-Bytecode enthalten.

2 JavaScript wird nicht immer zur Laufzeit {ibersetzt. Frither war es iiblich,
dass JavaScript nur interpretiert wurde.

3Quelle: stackoverflow.com/a,/2998544, danke Alex Martelli fiir diesen Ver-
gleich.

122

Bei der Interpretation nach Voribersetzung wird der Quelltext ana-
lysiert und in eine fiir den Interpretierer giinstigere Form tibersetzt.
Das kann z. B. durch

e Zuordnung Bezeichnergebrauch - Vereinbarung

e Transformation in Postfixbaum
e Typcheck, wo statisch moglich

geschehen. Diese Voriibersetzung ist nicht unbedingt maschinen-
nah.

Die Just-in-time-Compiler (kurz: JIT-Compiler) betreiben Lauf-
zeitiibersetzung. Folgendes sind Vor- bzw. Nachteile von Just-in-
time Compilern:

e schneller als reine Interpretierer

Speichergewinn: Quelle kompakter als Zielprogramm

Schnellerer Start des Programms

e Langsamer (pro Funktion) als vollstindige Ubersetzung

kann dynamisch ermittelte Laufzeiteigenschaften beriicksich-
tigen (dynamische Optimierung)

Moderne virtuelle Maschinen fir Java und fiir NET nutzen JIT-
Compiler.

Bei der vollstindigen Ubersetzung wird der Quelltext vor der ers-
ten Ausfithrung des Programms A in Maschinencode (z. B. x86,
SPARC) iibersetzt.

123 14. COMPILERBAU

14.1 Funktionsweise

Ublicherweise fiihrt ein Compiler folgende Schritte aus:
1. Lexikalische Analyse

Syntaktische Analyse

Semantische Analyse

Zwischencodeoptimierung

Codegenerierung

A T

Assemblieren und Binden

14.2 Lexikalische Analyse

In der lexikalischen Analyse wird der Quelltext als Sequenz von
Zeichen betrachtet. Sie soll bedeutungstragende Zeichengruppen,

sog. Tokens, erkennen und unwichtige Zeichen, wie z. B. Kommen-
tare tiberspringen. Aufterdem sollen Bezeichner identifiziert und in

einer Stringtabelle zusammengefasst werden.
Pldidentelen]

14.2.1 Reguldre Ausdriicke

Beispiel 45 (Regulirere Ausdriicke)
Folgender reguldrer Ausdruck erkennt Float-Konstanten in C
nach ISO/TEC 9899:1999 §6.4.4.2:

((0]...19)*.(0] ...19)M)|((0] ...]9)T.)

14.2. LEXIKALISCHE ANALYSE 124

Satz 14.1
Jede regulére Sprache wird von einem (deterministischen)
endlichen Automaten akzeptiert.

TODO: Bild einfiigen

Zu jedem reguldren Ausdruck im Sinne der theoretischen Infor-
matik kann ein nichtdeterministischer Automat generiert werden.
Dieser kann mittels Potenzmengenkonstruktion? in einen deter-
ministischen Automaten iiberfiihren. Dieser kann dann mittels
Aquivalenzklassen minimiert werden.

14.2.2 Lex

Lex ist ein Programm, das beim Ubersetzerbau benutzt wird um
Tokenizer fiir die lexikalische Analyse zu erstellen. Flex ist eine
Open-Source Variante davon.

Eine Flex-Datei besteht aus 3 Teilen, die durch $% getrennt werden:

Definitionen: Definiere Namen
Regeln: Definiere reguldre Ausdriicke und
zugehdrige Aktionen (= Code)

o\
o\

Code: zusatzlicher Code

125 14. COMPILERBAU

X Zeichen ’x’ erkennen

"xy" Zeichenkette 'xy’ erkennen

\ Zeichen 'x’ erkennen (TODO)

[zyz] Zeichen z, y oder z erkennen

[a — 2] Alle Kleinbuchstaben erkennen

[— 2] Alle Zeichen aufser Kleinbuchstaben erkennen
x|y x oder y erkennen

(x) x erkennen

x* 0, 1 oder mehrere Vorkommen von x erkennen
x+ 1 oder mehrere Vorkommen von x erkennen
x7? 0 oder 1 Vorkommen von x erkennen

{Name} Expansion der Definition Name
\t, \n, \rq Tabulator, Zeilenumbruch, Wagenriicklauf erkennen

Reguldre Ausdriicke in Flex

14.3 Syntaktische Analyse

In der syntaktischen Analyse wird tiberpriift, ob die Tokenfolge
zur kontextfreien Sprachegehort. Aufserdem soll die hierarchische
Struktur der Eingabe erkannt werden.

Ausgegeben wird ein abstrakter Syntaxbaum.

Beispiel 46 (Abstrakter Syntaxbaum)
TODO

14.4 Semantische Analyse

Die semantische Analyse arbeitet auf einem abstrakten Syntax-

baum und generiert einen attributierten Syntaxbaum.

Sie fiihrt eine kontextsensitive Analyse durch. Dazu gehéren:

“http://martin-thoma.com/potenzmengenkonstruktion/

http://martin-thoma.com/potenzmengenkonstruktion/

Beispie}?

14.5. ZWISCHENCODEOPTIMIERUNG 126

Namensanalyse: Bezichung zwischen Deklaration und Ver-
wendung

Typanalyse: Bestimme und priife Typen von Variablen,
Funktionen, ...

Konsistenzpriifung: Wurden alle Einschrénkungen der Pro-
grammiersprache eingehalten?

Beispiel 47 (Attributeriter Syntaxbaum)
TODO

14.5 Zwischencodeoptimierung

Hier wird der Code in eine sprach- und zielunabhéngige Zwischen-
sprache transformiert. Dabei sind viele Optimierungen vorstellbar.

Ein paar davon sind:

Konstantenfaltung: Ersetze z. B. 3+ 5 durch 8.

Kopienfortschaffung: Setze Werte von Variablen direkt
ein

Code verschieben: Fiihre Befehle vor der Schleife aus, statt
in der Schleife

Gemeinsame Teilausdriicke entfernen: Es sollen dop-
pelte Berechnungen vermieden werden

Inlining: Statt Methode aufzurufen, kann der Code der
Methode an der Aufrufstelle eingebaut werden.

14.6 Codegenerierung

Der letzte Schritt besteht darin, aus dem generiertem Zwischenco-
de den Maschinencode oder Assembler zu erstellen. Dabei muss
folgendes beachtet werden:

127 14. COMPILERBAU

e Konventionen: Wie werden z. B. im Laufzeitsystem Me-
thoden aufgerufen?

e Codeauswahl: Welche Befehle kennt das Zielsystem?

e Scheduling: In welcher Reihenfolge sollen die Befehle ange-
ordnet werden?

e Registerallokation: Welche Zwischenergebnisse sollen in
welchen Prozessorregistern gehalten werden?

e Nachoptimierung

14.7 Literatur

Ich kann das folgende Buch empfehlen:

Compiler - Prinzipien, Techniken und Werkzeuge. Alfred V. Aho,
Monica S. Lam, Ravi Sethi und Jeffry D. Ullman. Pearson Verlag,
2. Auflage, 2008. ISBN 978-3-8273-7097-6.

Es ist mit iiber 1200 Seiten zwar etwas dick, aber dafiir sehr einfach
geschrieben.

15 Java Bytecode

Definition 52 (Bytecode)

Der Bytecode ist eine Sammlung von Befehlen fiir eine virtuelle

Maschine.

Bytecode ist unabhéngig von realer Hardware.

Definition 53 (Heap)

Der dynamische Speicher, auch Heap genannt, ist ein Speicher-
bereich, aus dem zur Laufzeit eines Programms zusammen-
héngende Speicherabschnitte angefordert und in beliebiger
Reihenfolge wieder freigegeben werden kénnen.

Activation Record ist ein Stackframe.

15.1 Instruktionen

Beschreibung int float
Addition iadd fadd
Element aus Array auf Stack packen |iaload faload
Element aus Stack in Array speichern |iastore fastore
Konstante auf Stack legen iconst <i> fconst <f>
Divide second-from top by top idiv fdiv
Multipliziere die obersten beiden |imul fmul

Zahlen des Stacks

Weitere:

15.1. INSTRUKTIONEN 130

iload_0: Lad die lokale Variable 0 auf den Stack.
iload_1: Lad die lokale Variable 1 auf den Stack.
iload_2: L&ad die lokale Variable 2 auf den Stack.

iload_3: Lad die lokale Variable 3 auf den Stack.

15.1.1 if-Abfragen

Im Java-Bytecode gibt es einige verschiedene if-Abfragen. Diese
sind immer nach dem Schema <if> <label> aufgebaut. Wenn
also <if> wahr ist, wird zu <label> gesprungen.

Im Folgenden sei a tiefer im Stack als b. Die Operation push (a)
wurde also vor push (b) durchgefiihrt.

Eine Gruppe von if-Abfragen hat folgendes Schema:

if_icmp<comperator> <label>

Dabei steht das erste i fiir ,integer und cmp fiir ,,compare®.
<comperator> kann folgende Werte annehmen:

eq:equal —a==5»

ge: greater equal —a > b
gt: greater than —a > b
le:less equal —a <b
1t: less than —a < b

ne: not equal —a # b

Weitere if-Abfragen haben das Schema

if<comperator> — b<comperator>0

131 15. JAVA BYTECODE

15.1.2 Konstanten

e iconst_ml: Lade -1 auf den Stack

e iconst_<i>, wobei <i> die Werte 0, 1, 2, 3, 4, 5 annehmen
kann.

15.2 Weiteres

e aload_<i> wobei <i> entweder 0, 1, 2 oder 3 ist: Lade
eine Referenz von einer lokalen Variable <i> auf den Stack.

e invokevirtual: Rufe die Methode auf, die auf dem Stack
liegt, wobei die Objektreferenz direkt darunter auf dem Stack
liegen muss.

15.3 Polnische Notation

Definition 54 (Schreibweise von Rechenoperationen)
Sei f: Ax B — C eine Funktion, a € A und b € B.

a) Die Schreibweise a f b heifst Infix-Notation.
b) Die Schreibweise f a b heiftt Prafixnotation

c¢) Die Schreibweise a b f heifst Postfixnotation.

Polnische Notation ist ein Synonym fiir die Prafixnotation.

Umgekehrte polnische Notation ist ein Synonym fiir die Postfixno-
tation.

15.4. WEITERE INFORMATIONEN 132

Beispiel 48 (Schreibweise von Rechenoperationen)
1) 1+ 2 nutzt die Infix-Notation.

2) f a b nutzt die polnische Notation.

3) Wir der Ausdruck 142-3 in Infix-Notation ohne Operatoren-
Préazedenz ausgewertet, so gilt:

1+2-3=9

Wird er mit Operatoren-Priazendenz ausgewertet, so gilt:

1+2-3=7
4) Der Ausdruck
1+2.-3=7
entspricht
+1-23

in der polnischen Notation und
123 - +

in der umgekehrten polnischen Notation.

Bemerkung 2 (Eigenschaften der Pra- und Postfixnotation)
a) Die Reihenfolge der Operanden kann beibehalten und
gleichzeitig auf Klammern verzichtet werden, ohne dass
sich das Ergebnis veréndert.

b) Die Infix-Notation kann in einer Worst-Case Laufzeit
von O(n), wobei n die Anzahl der Tokens ist mittels des

Shunting-yard-Algorithmus in die umgekehrte Polnische
Notation iiberfiihrt werden.

15.4 Weitere Informationen

e https://en.wikipedia.org/wiki/Java_bytecode_
instruction_listings

https://en.wikipedia.org/wiki/Java_bytecode_instruction_listings
https://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

133 15. JAVA BYTECODE

e http://cs.au.dk/~mis/dOvs/jvmspec/ref-Java.html

e scanftree.com: Infix +» Postfix Konverter

http://cs.au.dk/~mis/dOvs/jvmspec/ref-Java.html
http://scanftree.com/Data_Structure/prefix-postfix-infix-online-converter

Bildquellen

Abb. ?? S2: Tom Bombadil, tex.stackexchange.com /a/42865

http://tex.stackexchange.com/a/42865/5645

Abkiirzungsverzeichnis

AST Abstrakter Syntaxbaum (Abstract Syntax Tree)
Beh. Behauptung

Bew. Beweis

bzgl. beziiglich

bzw. bezichungsweise

ca. circa

d. h. das heift

DEA Deterministischer Endlicher Automat
etc. et cetera

ggf. gegebenenfalls

mgu most general unifier

S0g. sogenannte

Vor. Voraussetzung

vgl. vergleiche

z. B. zum Beispiel

Z. z. 7u zeigen

Erganzende Definitionen

Definition 55 (Quantoren)

a) Vx € X : p(x): Fir alle Elemente x aus der Menge X
gilt die Aussage p.

b) dx € X : p(x): Es gibt mindestens ein Element x aus
der Menge X, fiir das die Aussage p gilt.

c) 3z € X : p(x): Es gibt genau ein Element x in der
Menge X, sodass die Aussage p gilt.

Definition 56 (Pradikatenlogik)
Eine Pradikatenlogik ist ein formales System, das Variablen
und Quantoren nutzt um Aussagen zu formulieren.

Definition 57 (Aussagenlogik)
TODO

Definition 58 (Grammatik)
Eine (formale) Grammatik ist ein Tupel (3,V, P, S) wobei
gilt:

(i) X ist eine endliche Menge und heiftt Alphabet,

(ii) V ist eine endliche Menge mit V N'YX = () und heifst
Menge der Nichtterminale,

(iii) S € V heifst das Startsymbol

(iv) P={p: I —>r|le(VUuX),re(VUX)*} ist eine
endliche Menge aus Produktionsregeln

Ergéanzende Definitionen 140

Man schreibt:

e a = b: Die Anwendung einer Produktionsregel auf a ergibt
b.

e a =" b: Die Anwendung mehrerer (oder keiner) Produkti-
onsregeln auf a ergibt b.

e a =7 b: Die Anwendung mindestens einer Produktionsregel
auf a ergibt b.

Beispiel 49 (Formale Grammatik)
Folgende Grammatik G = (X, V, P, A) erzeugt alle korrekten

Klammerausdriicke:
e X={()}
e V={a}
e s=q

e P={a—()]aal()}

Definition 59 (Kontextfreie Grammatik)
Eine Grammatik (X, V, P, S) heift kontextfrei, wenn fiir jede
Produktion p: I — r gilt: T € V.

Definition 60 (Sprache)
Sei G = (3,V, P, S) eine Grammatik. Dann ist
LG) ={weX|S="w}
die Menge aller in der Grammatik ableitbaren Wortern. L(G)
heifst Sprache der Grammatik G.

Definition 61
Sei G = (X,V, P,S) eine Grammatik und a € (V UX)*.

a) =, heift Linksableitung, wenn die Produktion auf
das linkeste Nichtterminal angewendet wird.

b) =g heikt Rechtsableitung, wenn die Produktion auf
das rechteste Nichtterminal angewendet wird.

141 Ergéanzende Definitionen

Beispiel 50 (Links- und Rechtsableitung)
Sie G' wie zuvor die Grammatik der korrekten Klammeraus-
dricke:

a =y aa — a =g ax
=1 aao =R oo
=1 (oo =r aa()
=1 () =r a(a)()

=1 (0(0)a =r ()
=1 ((0)0 =r ((0)

Definition 62 (LL(k)-Grammatik)
Sei G = (X,V, P, S) eine kontextfreie Grammatik. G heifst
LL(k)-Grammatik fiir k& € N>1, wenn jeder Ableitungsschritt
durch die linkesten k£ Symbole der Eingabe bestimmt ist.

0

)
)0

Ein LL-Parser ist ein Top-Down-Parser liest die Eingabe von
Links nach rechts und versucht eine Linksableitung der Eingabe zu
berechnen. Ein LL(k)-Parser kann k& Token vorausschauen, wobei

k als Lookahead bezeichnet wird.

Satz .1
Fiir linksrekursive, kontextfreie Grammatiken G gilt:

Vk € N: G ¢ SLL(k)

Symbolverzeichnis

Reguldre Ausdriicke

0 Leere Menge

€ Das leere Wort

a, Regulédre Ausdriicke

L(«) Die durch « beschriebene Sprache

Lalf) L) UL(H)

L Die leere Sprache, also { ¢ }

Lt Potenz einer Sprache. Diese ist definiert als

L™ o L firn € Ny
at = L(a)t Ujey L(a)"
o = L(a)" Uy, L(a)’

Logik

M = ¢ Semantische Herleitbarkeit
Im Modell M gilt das Pradikat ¢.

¥ ¢ Syntaktische Herleitbarkeit
Die Formel ¢ kann aus der Menge der Formeln v herge-
leitet werden.

Weiteres

Symbolverzeichnis 144

1 Bottom
5 TODO?

> Typschemainstanziierung

Stichwortverzeichnis

I (Haskell), 66

++ (Haskell), 69

. (Haskell), 69

: (Haskell), 66

$ (Haskell), 69

Aquivalenz
Alpha («), 28
Beta (5), 28
Eta (1), 29

Ableitungsbaum, 43
Ableitungsregel, siehe Produk-
tionsregel
Activation Record, siehe Stack-
frame
actor, siehe Aktor
Akkumulator, 66
Aktor, 94
aload_<i>, 131
Alphabet, 139
Analyse
lexikalische, 123
semantische, 125
syntaktische, 125
Assembler, 4
async, 99
at, 101

atomic, 99
Ausdriicke
regulare, 123
Aussagenlogik, 139
awaitAll, 95

Backtracking, 18
Befehlssatz, 3
Binomialkoeffizient, 15
Broadcast, 53
Bytecode, 129

C, 105-107
Call-By-Name, 29
Call-By-Value, 30
Callable, 56
char, 105
Church-Booleans, 32
closure, 98
Companion Object, 94
Compiler, 121
Just-in-time, 122
Compilerbau, 121-127
concat, 77
cons, 66
Constraints, 44

data, 73

Stichwortverzeichnis

146

Datentyp, 37
algebraischer, 73

Datentypen, 105

def, 93

delete, 87

Duck-Typing, 9

eq, 130
even, 85

fadd, 129
Fakultat, 15
faload, 129
fastore, 129
fconst_<f>, 129
fdiv, 129
fib, 85
Fibonacci, 74
Fibonacci-Funktion, 15
filter, 18
filter (Haskell), 74
finish, 99
Fixpunkt, 33
Fixpunkt-Kombinator, 33
Flex, siehe Lex
Flynn’sche Klassifikation, 49
foldl, 78
foldr, 75, 78
Folds, 78
Funktion
endrekursive, 17
linear rekursive, 17
rekursive, 15
Funktionskomposition, 69
Future, 57, 57

ge, 130

Grammatik, 139
Kontextfreie, 140

group, 77

gt, 130

Guard, 65

Haskell, 63-81
Heap, 129
Hirsch-Index, 76

iadd, 129

iaload, 129
iastore, 129
iconst_<i>, 129, 131
iconst_ml, 131
idiv, 129
if_icmp<comperator>, 130
iload_0, 129

ILP, 47

imul, 129, 129
Infix-Notation, 131
int, 105

Intersections, 77
invokevirtual, 131

Java, 55-61

Java Bytecode, 129-133

JIT, siehe Just-in-time Com-
piler

Kombinator, 25, 33
Kommunikator, 52
Kurzschlussauswertung, 29

Lauflangencodierung, 77
Lazy Evaluation, 73
le, 130

147

Stichwortverzeichnis

let, 68
let-Polymorphismus, 40
Lex, 124-125
Linksableitung, 140
List-Comprehension, 67, 77
LL(k)-Grammatik, 141
Logische Operatoren

C, 109

Haskell, 70

Scala, 94

X10, 99
Lookahead, 141
1t, 130

map, 18

tree, 79
Maschinensprache, 3
member, 85
message passing, 48
MIMD, 49
MISD, 49
Modifier, 105
Monitor, 51
MPI, 111-120
MPI datatypes, 112
MPI _Alltoall, 117
MPI Becast, 118
MPI Comm, 111
MPI Comm rank, 113
MPI Comm _size, 112
MPI COMM _ WORLD, 112
MPI Recv, 115
MPI Reduce, 116
MPI Scatter, 118
MPI _Send, 114
MPI STATUS IGNORE, 115

NC, siehe Nick’s Class
ne, 130
Nebeneffekt, siehe Seiteneffekt
Nichtterminal, 139
Nick’s Class, 49
Normalenreihenfolge, 29
Notation
polnische, siehe Prafixno-
tation
umgekehrte polnische, sie-
he Postfixnotation
Num, 76

Ord, 76

Parallelitét, 47-53

Paterson-Wegman-Unifikationsalgorithm

12
PGAS, 97
Pipelining, 47
Polymorphie, 7
Polynome, 75
Postfixnotation, 131
Pradikatenlogik, 139
Préfixnotation, 131
Prazedenzregeln, 106
PRAM-Modell, 48
Produktionsregel, 139
Programm, 3
Programmiersprache, 3
hohere, 4
Programmierung
funktionale, 5
imperative, 5
logische, 6
prozedurale, 5

Stichwortverzeichnis

148

Prolog, 83-89
Promise, siehe Future

Punkt-zu-Punkt-Kommunikation,

52
Quantor, 139

Race-Condition, siehe Wett-
laufsituation
Rang, 52
rank, 111
Rechtsableitung, 140
Redex, 28
reduce, 18
Reduktion, 28-29
Alpha (), 28
Beta (5), 28
Eta (n), 29
Rekursion, 15-17
remove, 87
Runnable, 55

Scala, 91-96
Schlussstrich, 39
Seiteneffekt, 10
Selbstapplikation, 44
Semaphore, 50
Short-circuit evaluation, 29
Shunting-yard-Algorithmus, 132
signed, 105
SIMI, 49
SISD, 49
SPARC, 4
Speicher

dynamischer, 129
split, 86
splitWhen, 77

Sprache, 140
doménenspezifische, 4

Startsymbol, 139

Stream, 75

Stringtabelle, 123

struct, 102

Syntaxbaum
abstrakter, 125
attributeriter, 125

tail, 75
tail recursive, 17
Thread, 55
ThreadPoolExecutor, 55
Token, 123
tree, 79
Turingkombinator, 34
Typ, siehe Datentyp
type, 73
types
constrained, 98
Typinferenz, 38, 71
Typisierung
dynamische, 7
explizite, 8
implizite, 8
statische, 7
strukturelle, 9
Typisierungsregel, 40
Typisierungsstarke, 7
Typkontext, 38
Typregel, 39
mit Typabstraktionen, 42
Typschema, 41
Typschemainstanziierung, 41
Typsubstituition, 39

149

Stichwortverzeichnis

Typsystem, 39
Typvariable, 38

Unifikation, 10
Unifikator

allgemeinster, 11
Union-Find-Algorithmus, 12
unsigned, 105
Unterversorgung, 74

val, 93, 98
var, 93, 98
Variable
freie, 25, 28
gebundene, 28
verzahnt, 48
Von-Neumann-Architektur, 48

Wettlaufsituation, 50
when, 100

where, 68

Wirkung, siehe Seiteneffekt

X10, 97-104
x86, 3

Y-Kombinator, 33

zip, 80
zipWith, 75, 75, 80

	1 Programmiersprachen
	1.1 Abstraktion
	1.2 Paradigmen
	1.3 Typisierung
	1.4 Kompilierte und interpretierte Sprachen
	1.5 Dies und das

	2 Programmiertechniken
	2.1 Rekursion
	2.2 Backtracking
	2.3 Funktionen höherer Ordnung

	3 Logik
	3.1 Prädikatenlogik erster Stufe
	3.1.1 Symbole
	3.1.2 Terme
	3.1.3 Ausdrücke
	3.1.4 1. Stufe
	3.1.5 Freie Variablen
	3.1.6 Metasprachliche Ausdrücke
	3.1.7 Substitutionen

	4 -Kalkül
	4.1 Reduktionen
	4.2 Auswertungsstrategien
	4.3 Church-Zahlen
	4.4 Church-Booleans
	4.5 Weiteres
	4.6 Fixpunktkombinator
	4.7 Literatur

	5 Typinferenz
	5.1 Typsystem
	5.2 Let-Polymorphismus
	5.3 Beispiele
	5.3.1 x. y. x y
	5.3.2 Selbstapplikation

	6 Parallelität
	6.1 Architekturen
	6.2 Prozesskommunikation
	6.3 Parallelität in Java
	6.4 Message Passing Modell

	7 Java
	7.1 Thread, ThreadPool, Runnable und ExecutorService
	7.2 Futures
	7.3 Beispiele
	7.4 Literatur

	8 Haskell
	8.1 Erste Schritte
	8.1.1 Hello World

	8.2 Syntax
	8.2.1 Klammern und Funktionsdeklaration
	8.2.2 if / else
	8.2.3 Rekursion
	8.2.4 Listen
	8.2.5 Strings
	8.2.6 Let und where
	8.2.7 Funktionskomposition
	8.2.8 $ (Dollar-Zeichen) und ++
	8.2.9 Logische Operatoren

	8.3 Typen
	8.3.1 Standard-Typen
	8.3.2 Typinferenz
	8.3.3 type
	8.3.4 data

	8.4 Lazy Evaluation
	8.5 Beispiele
	8.5.1 Quicksort
	8.5.2 Fibonacci
	8.5.3 Polynome
	8.5.4 Hirsch-Index
	8.5.5 Lauflängencodierung
	8.5.6 Intersections
	8.5.7 Funktionen höherer Ordnung
	8.5.8 Chruch-Zahlen
	8.5.9 Trees
	8.5.10 Standard Prelude

	8.6 Weitere Informationen

	9 Prolog
	9.1 Erste Schritte
	9.1.1 Hello World

	9.2 Syntax
	9.2.1 Arithmetik
	9.2.2 Listen

	9.3 Beispiele
	9.3.1 Humans
	9.3.2 Splits
	9.3.3 Delete
	9.3.4 Zebrarätsel

	9.4 Weitere Informationen

	10 Scala
	10.1 Erste Schritte
	10.1.1 Hello World

	10.2 Vergleich mit Java
	10.3 Syntax
	10.3.1 Logische Operatoren

	10.4 Companion Object
	10.5 actor
	10.5.1 Message Passing

	10.6 Weiteres
	10.7 Beispiele
	10.7.1 Wetter

	10.8 Weitere Informationen

	11 X10
	11.1 Erste Schritte
	11.2 Syntax
	11.2.1 Logische Operatoren
	11.2.2 Closures
	11.2.3 async
	11.2.4 atomic
	11.2.5 Bedingtes Warten
	11.2.6 Lokalisierung

	11.3 Datentypen
	11.3.1 Arrays
	11.3.2 struct

	11.4 Beispiele
	11.5 Weitere Informationen

	12 C
	12.1 Datentypen
	12.2 ASCII-Tabelle
	12.3 Syntax
	12.3.1 Logische Operatoren

	12.4 Präzedenzregeln
	12.5 Beispiele
	12.5.1 Hello World
	12.5.2 Pointer

	13 MPI
	13.1 Erste Schritte
	13.2 MPI Datatypes
	13.3 Funktionen
	13.4 Beispiele
	13.5 Weitere Informationen

	14 Compilerbau
	14.1 Funktionsweise
	14.2 Lexikalische Analyse
	14.2.1 Reguläre Ausdrücke
	14.2.2 Lex

	14.3 Syntaktische Analyse
	14.4 Semantische Analyse
	14.5 Zwischencodeoptimierung
	14.6 Codegenerierung
	14.7 Literatur

	15 Java Bytecode
	15.1 Instruktionen
	15.1.1 if-Abfragen
	15.1.2 Konstanten

	15.2 Weiteres
	15.3 Polnische Notation
	15.4 Weitere Informationen

	Bildquellen
	Abkürzungsverzeichnis
	Ergänzende Definitionen
	Symbolverzeichnis
	Stichwortverzeichnis

