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Vorwort

Dieses Skript wird/wurde im Wintersemester 2013/2014 geschrieben. Es beinhaltet Vorlesungs-
notizen von Studenten zur Vorlesung von Prof. Dr. Herrlich.

Es darf jeder gerne Verbesserungen einbringen!
Die Kurz-URL des Projekts lautet tinyurl.com/GeoTopo.

An dieser Stelle méchte ich noch Herrn Prof. Dr. Herrlich fiir einige Korrekturvorschlage und
einen gut strukturierten Tafelanschrieb danken, der als Vorlage fiir dieses Skript diente. Vielen
Dank auch an Frau Lenz, die es mir erlaubt hat, ihre Ubungsaufgaben und Lésungen zu benutzen.

Was ist Topologie?

Die Kugeloberfliche S? lisst sich durch strecken, stauchen und umformen zur Wiirfeloberfliche
oder der Oberfliche einer Pyramide verformen, aber nicht zum R? oder zu einem Torus T2. Fiir
den R? miisste man die Oberfliche unendlich ausdehnen und fiir einen Torus miisste man ein

Loch machen.
(a) S

(b) Wiirfel (c) Pyramide

Y

(d) R?

Abbildung 0.1: Beispiele fiir verschiedene Formen
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1 Topologische Grundbegriffe

1.1 Topologische Raume

Definition 1
Ein topologischer Raum ist ein Paar (X, ¥) bestehend aus einer Menge X und ¥ C P(X)
mit folgenden Eigenschaften

i) 0, Xe%
(ii) Sind Uy,Us € €, s0ist Uy NU; € X

(iii) Ist I eine Menge und U; € ¥ fiir jedes i € I, so ist U U, e%
i€l
Die Elemente von ¥ heiften offene Teilmengen von X.

A C X heifit abgeschlossen, wenn X \ A offen ist.

Es gibt auch Mengen, die weder abgeschlossen, noch offen sind wie z. B. [0,1). Auch gibt es
Mengen, die sowohl abgeschlossen als auch offen sind.

Korollar 1.1 (Mengen, die offen und abgeschlossen sind, existieren)
Betrachte ) und X mit der ,trivialen Topologie* Ty, = {0, X }.

Es gilt: X € Tund § € T, d. h. X und () sind offen. Auferdem X¢ = X\ X =) € T und
X\0=Xe% d h X und 0 sind als Komplement offener Mengen abgeschlossen. [ ]

Beispiel 1
1) X = R"™ mit der euklidischen Metrik.

U C R" offen < fiir jedes z € U gibt es r > 0,
sodass B,(z) ={y e R" | d(z,y) <r} CU
Also: T ={ M C X | M ist offene Kugel }
2) Allgemeiner: (X, d) metrischer Raum

3) X Menge, ¥ = P(X) heikt ,diskrete Topologie“

4) X =R, Tz :={U CR|R\U endlich } U{ 0} heifit ,Zariski-Topologie*
Beobachtungen:

o Uec%Ty < df e R[X],sodass R\U=V(f)={zeR| f(x)=0}
e Es gibt keine disjunkten offenen Mengen in Tz

5) X :=R", Tz ={U C R"|Es gibt Polynome fi,..., f, € R[X1,...,X,] sodass
R*A\NU =V(f1,..., fr)}
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6) X :={0,1},T={0,{0,1},{0}} heit ,Sierpinskiraum*.
0,{0,1},{1} sind dort alle abgeschlossenen Mengen.

Definition 2
Sei (X, T) ein topologischer Raum, = € X.

Eine Teilmenge U C X heifst Umgebung von x, wenn es ein Uy € ¥ gibt mit z € Uy und
Uy CU.

Definition 3
Sei (X, %) ein topologischer Raum, M C X eine Teilmenge.

a) M° := {x € M| M ist Ungebung von x } = U U heifit Inneres oder offener

UCM
Ue%
Kern von M.
b) M := ﬂ A heift abgeschlossene Hiille oder Abschluss von M.

MCA
A abgeschlossen

c) OM := M \ M° heikt Rand von M.

d) M heift dicht in X, wenn M = X ist.
Beispiel 2
1) X = R mit euklidischer Topologie
M=Q=M=R, M°=0

2) X =R, M = (a,b) = M = [a,b]
3) X=RT=%,
M = (a,b) = M =R
Definition 4
Sei (X, %) ein topologischer Raum.

a) B C T heiftt Basis der Topologie T, wenn jedes U € T Vereinigung von Elementen
aus ‘B ist.

b) B C T heift Subbasis, wenn jedes U € ¥ Vereinigung von endlich vielen Durchschnit-
ten von Elementen aus ‘B ist.
Beispiel 3
Gegeben sei X = R" mit euklidischer Topologie ¥. Dann ist

B={B(z)|recQs,zcQ"}

ist eine abzahlbare Basis von <.

Bemerkung 1
Sei X eine Menge und B C P(X). Dann gibt es genau eine Topologie ¥ auf X, fir die B
Subbasis ist.
Definition 5
Sei (X, T) ein topologischer Raum, Y C X.
Ty ={UNY |U € T} ist eine Topologie auf Y.

Ty heift Spurtopologie und (Y, ¥y ) heiflt ein Teilraum von (X, ¥)



1.1. TOPOLOGISCHE RAUME 4

Definition 6
Seien X7, Xa topologische Rdume.
U C X; X Xo sei offen, wenn es zu jedem z = (z1,22) € U Umgebungen U; um x; mit
1= 1,2 gibt, sodass Uy x Uy C U gilt.

T ={U C X1 x Xa | U offen } ist eine Topologie auf X; x Xs. Sie heift Produkttopologie.
B ={U; xUy| U, offen in X;,i = 1,2} ist eine Basis von ¥.

Xo

U2 T )

X1

Abbildung 1.1: Zu x = (1, z2) gibt es Umgebungen Uy, Uy mit Uy x Us C U

Beispiel 4
1) X7 = X9 = R mit euklidischer Topologie.
= Die Produkttopologie auf R x R = R? stimmt mit der euklidischen Topologie auf
R? iiberein.

2) X1 = X2 = R mit Zariski-Topologie. T Produkttopologie auf R2: U; x Uy
(Siehe Abb. 1.2)

N\ =2

Uy =R\N
Abbildung 1.2: Zariski-Topologie auf R?

Definition 7
Sei X topologischer Raum, ~ eine Aquivalenzrelation auf X, X = X/ sei die Menge der
Aquivalenzklassen, 7 : x — T, x> []~.

TY::{UQY‘W_I(U)ES)(}
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X, T+) heikt Quotiententopologie.
X

Beispiel 5
X=Ra~b:sa—-beZ
a(w)y----- ~<a
f X : T
10 1 2 3,4 »5R
oo
[T
0

0~1,d h.[0]=[1]
Beispiel 6

X =R% (z1,y1) ~ (22,50) a1 — 22 € Z
Y1 —Yy2 €Z

X/~ ist ein Torus.

Beispiel 7

X=R" N {0}, 2~y INcR" mit y= Az
< a und y liegen auf der gleichen Ursprungsgerade

X =P"(R)
Also fir n = 1:
4 |
2 |
4 -2 2 4 6 8
[ o]
4

1.2 Metrische Raume

Definition 8
Sei X eine Menge. Eine Abbildung d : X x X — RJ heikt Metrik, wenn gilt:
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(i) Definitheit: dlz,y) =0=z=y
(ii) Symmetrie: d(z,y) = d(y,x)
(iii) Dreiecksungleichung: d(z,z) < d(x,y) + d(z + z)
Das Paar (X, d) heifst ein metrischer Raum.

Bemerkung 2
Sei (X, d) ein metrischer Raum und

B, (r):={yeX|dxy) <r} firzeX,reR"

B ist Basis einer Topologie auf X.

Beispiel 8
Sei V' ein euklidischer oder hermiteischer Vektorraum mit Skalarprodukt (-,-). Dann wird V'
durch d(z,y) := \/{x — y,x — y) zum metrischen Raum.

Beispiel 9 (diskrete Metrik)
Sei X eine Menge. Dann heift

d(z,y) 0 fallsx=y
T,Y) =
Y 1 fallsz #y

die diskrete Metrik. Die Metrik d induziert die diskrete Topologie.

Beispiel 10
X =R? und d((z1,41), (22, 92)) 1= max(||z1 — 2|, [ly1 — yol) ist Metrik.

Beobachtung: d erzeugt die eukldische Topologie.

(a) B,(0) (b) Euklidische Topologie

Abbildung 1.3: Veranschaulichungen zur Metrik d

Beispiel 11 (SNCF-Metrik!)
X =R?
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Definition 9
Ein topologischer Raum X heifst hausdorffsch, wenn es fiir je zwei Punkte x # y in X
Umgebungen U, um z und Uy um y gibt, sodass U, N U, = 0.

Bemerkung 3 (Trennungseigenschaft)
Metrische Rdume sind hausdorffsch, da

dz,y) >0=3e: B (x)NB(y) =10

Ein Beispiel fiir einen topologischen Raum, der nicht hausdorfsch ist, ist (R, % 7).

Bemerkung 4
Seien X, X1, X9 Hausdorff-Rdume.

a) Jeder Teilraum um X ist Hausdorffsch.

b) X; x X3 ist Hausdorffsch.

»
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1
Ui x X5 Us x Xo

8

Abbildung 1.4: Wenn X1, X5 hausdorffsch sind, dann auch X; x Xo

Definition 10
Sei X ein topologischer Raum und (z),en eine Folge in X. z € X heifit Grenzwert oder
Limes von (x,), wenn es fiir jede Umgebung U von z ein ng gibt, sodass xz,, € U fiir alle
n > ng.
Korollar 1.2
Ist X hausdorffsch, so hat jede Folge in X hdochstens einen Grenzwert.
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Beweis: Annahme: z und y mit « # y sind Grenzwerte der Folge (x,).

Nach Voraussetzung gibt es Umgebungen U, von z und U, von y mit U, N U, = (. Nach
Annahme gibt es ng mit x,, € U, N U, fiir alle n > ng = Widerspruch |

1.3 Stetigkeit

Definition 11
Seien X, Y topologische Rdume und f: X — Y eine Abbildung.

a) f heit stetig, wenn fiir jedes offene U C Y auch f~1(U) C X offen ist.

b) f heift Homéomorphismus, wenn es eine stetige Abbildung g : Y — X gibt, sodass
go f=1idx und fog =idy.
Korollar 1.3
Seien X, Y metrische Rdume und f : X — Y eine Abbildung.

Dann gilt: f ist stetig < zu jedem x € X und jedem & > 0 gibt es §(z, &) > 0, sodass fiir
alle y € X mit d(x,y) < 0 gilt dy (f(x), f(y)) <e.

Beweis: ,,=“ Sei z € X,e > 0 gegeben und U := B.(f(x)).
Dann ist U offen in Y.
BRI f~H(U) ist offen in X. Dann ist x € f~1(U).
= 3§ > 0, sodass Bs(z) C f~1(U)
= f(Bs(x)) CU
={ye X |dx(z,y) <J}= Beh.

,<“ Sei U C Y offen, X € f~1(U).

Dann gibt es € > 0, sodass B.(f(x)) CU
YOI s gibt § > 0, sodass f(%(;( ) € B(f(2)))
= Bs(x) C fH(B(f(x))) € f~H(U) u

Bemerkung 5
Eine Ableitung f : X — Y von topologischen Rdumen ist genau dann stetig, wenn fiir jede
abgeschlossene Teilmenge A C Y gilt: f~(A) C X ist abgeschlossen.

Beispiel 12
1) Fiir jeden topologischen Raum X gilt: Idx : X — X ist Homéomorphismus.

2) Ist Y trivialer topologischer Raum, d.h. ¥ = T4y, so ist jede Abbildung f: X — Y
stetig.

3) Ist X diskreter topologischer Raum, so ist f: X — Y stetig fiir jeden topologischen
Raum Y und jede Abbildung f.
4) Sei X =[0,1),Y =St ={z€C||z]| =1} und f(t) = e*™ Die Umkehrabbildung g
ist nicht stetig, da ¢g=!(U) nicht offen ist (vgl. Abb. 1.5)
Korollar 1.4
Seien X, Y, Z topologische Rdume, f: X — Y und g : Y — Z stetige Abbildungen.
Dann ist go f : X — Z stetig.
X !

N

Z

Y
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f
T
—t—F 0
0 1R

Abbildung 1.5: Beispiel einer stetigen Funktion f, deren Umkehrabbildung g nicht steitg ist.

Beweis: Sei U C Z offen = (go f)~Y(U) = f~Y(g71(U)). g1 (U) ist offen in Y weil g stetig
ist, f~1(g71(U)) ist offen in X, weil f stetig ist. |

Bemerkung 6
a) Fiir jeden topologischen Raum ist Homéo(X) := { f : X — X | f ist Hom6omorphismus }
eine Gruppe.

b) Jede Isometrie f : X — Y zwischen metrischen Raumen ist ein Homéomorphismus.

c) Isom(X):={f:X — X | f ist Isometrie } ist Untergruppe von Homé&o(X) fiir jeden
metrischen Raum X.

Korollar 1.5
Seien X, Y topologische Rdume. 7x : X XY — X und 7y : X x Y — Y die Projektionen

(@, y) =z (z,y) =y
Wird X x Y mit der Produkttopologie versehen, so sind mx und 7y stetig.

Beweis: Sei U C X offen = 7, 1(U) = U x Y ist offen in X x Y. |

Korollar 1.6
Sei X ein topologischer Raum, ~ eine Aquivalenzrelation auf X, X = X /~ der Bahnenraum
versehen mit der Quotiententopologie, m: X — X, x — [x]~.

Dann ist 7 stetig.

Beweis: Nach Definition ist U C X offen < 77 1(U) C X offen. ]

Beobachtung: Die Quotiententopologie ist die feinste Topologie, sodass 7 stetig wird.

Beispiel 13 (Stereographische Projektion)
R™ und S™ \ { N } sind homéomorph fiir beliebiges N € S"

S"={zeR"™ ||z =1}

n+1
_ +1 2
= { xr € R" E x5 }
i=1

Esei N =

f:S"\{N}—>R"
genau ein Punkt

——
P— LpNH
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x1
wobei R" = H = : cR"! | 2,,1 =0 % und Lp die Gerade in R"*! durch N

Tn+1

und P ist.

Abbildung 1.6: Visualisierung der sphérischen Projektion
Bildquelle: texample.net/tikz/examples/map-projections

x1
Sei P = : , S0 ist xp11 < 1, also ist Lp nicht parallel zu H. Also schneiden sich Lp

Tn+1
und H in genau einem Punkt P.

Es gilt: f ist bijektiv und die Umkehrabbildung ist ebenfalls stetig.

1.4 Zusammenhang

Definition 12
Ein Raum X heifst zusammenhingend, wenn es keine offenen nichtleeren Teilmengen

Uy, Us von X gibt mit Uy NUs = () und U; UU; = X.

Bemerkung 7
X ist zusammenhéngend < Es gibt keine nichtleeren abgeschlossenen Teilmengen A, As
mit A1 N Ay =0 und A1 U Ay = X.

Bemerkung 8
Eine Teilmenge Y C X heifst zusammenhéngend, wenn Y als topologischer Raum mit der
Teilraumtopologie zusammenhéngend ist.
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Beispiel 14 (Zusammenhang von Riumen)
1. R™ ist mit der euklidischen Topologie zusammenhéngend, denn:

Angenommen, R" = U; U Uy mit U; offen, U; # () und Uy N Us = () existiert.

Sei z € U,y € Uy und [z,y] die Strecke zwischen x und y. Dann ist Uy N [z, y] die
Vereinigung von offenen Intervallen. Dann gibt es z € [z, y] mit z € 9(Uy N[z, y]), aber
z ¢ Uy = z € Us. In jeder Umgebung von z liegt ein Punkt von U; = Widerspruch
zu Uy offen.

[\

. R\ {0} ist nicht zusammenhéngend, denn R\ {0} = Rcg UR>g

w

. R2\ {0} ist zusammenhingend.

W

. Q € R ist nicht zusammenhéngend, da

(QNR_z5)U@NR, 5)=Q

5. { « } ist zusammenhéngedn fiir jedes x € X, wobei X ein topologischer Raum ist.

6. R mit Zariski-Topologie ist zusammenh&ngend

Korollar 1.7
Sei X ein topologischer Raum, A C X zusammenhingend. Dann ist auch A zusammenhén-
gend.

Beweis: Angenommen A = A; U Ay, A; abgeschlossen, # (), A1 N Ay = ()
= A= (AﬂAl) U (AQAQ)

—_——
abgeschlossen  abgeschlossen

disjunkt

Wire ANA; =0

= A =10 = Widerspruch

Korollar 1.8
Sei X topologischer Raum, A, B C X zusammenhéngend.

Ist AN B # (), dann ist A U B zusammenhéngend.
Beweis: Sei AU B = U, UUs, U; # 0 offen, disjunkt

& 4= (ANU;) U (ANUs) offen, disjunkt

A zhgd. AﬂUlz(b

ANB#) U, CB

B = (BNU)U(BNU,) ist unerlaubte Zerlegung
~———

——
=U1 =0
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Definition 13
Sei X ein topologischer Raum.

Fir x € X sei

Z(z) = U A
AC Xzhgd.
XeA

Z(x) heifst Zusammenhangskomponente.

Korollar 1.9
Sei X ein topologischer Raum. Dann gilt:

a) Z(X) ist die grofte zusammehéngede Teilmenge von X, die x enthilt.

b) Z(X) ist abgeschlossen.

¢) X ist disjunkte Vereinigung von Zusammenhangskomponenten.
Beweis: a) Sei Z(z) = A; U Ay mit A; # () abgeschlossen, disjunkt.

(E sei x € A1 und y € As. y liegt in einer zusammehéngenden Teilmenge A, die auch
x enthélt. = A= (AN A1) U(AN Ay) ist unerlaubte Zerlegung.
—_— Y

ST =X

b) Nach Korollar 1.7 ist Z(x) zusammenhingend = Z(z) C Z(z) = Z(z) = Z(x

c) Ist Z(y)NZ(x) #0 28 Z(y) U Z(z) ist zusammenhéangend.

= Z(z)U Z(y)

N 1N

VA
A

Korollar 1.10
Sei f: X =Y stetig. Ist A C X zusammenhéngend, so ist f(A) C y zusammenhéngend.

Beweis: Sei f(A) = Uy UUs, U; # 0, offen, disjunkt.
= [H(f(A) = 1) U fH (V)
= A= (AnfTHU)) VAN fH(U)) u
£0 20

1.5 Kompaktheit

Definition 14
Ein topologischer Raum X heifit kompakt, wenn jede offene Uberdeckung von X eine
endliche Teiliiberdeckung besitzt.

U={U;};c;, Ui offenin X, UUZ» =X
i€l
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Definition 15
Sei X eine Menge und 7' C P(X).

T heift eine Uberdeckung von X, wenn gilt:

VeeX:AMeT :ze M

Korollar 1.11
I =10, 1] ist kompakt beziiglich der euklidischen Topologie.

Beweis: Sei (U;);c eine offene Uberdeckung von I.

z. 7.: Es gibt ein 6 > 0, sodass jedes Teilintervall der Lange § von I in einem der U; enthalten
ist.
Angenommen, es gibt kein solches . Dann gibt es fiir jedes n € N ein Intervall I,, C [0, 1]

der Lange 1/n sodass I, € U; fur alle 7 € I.

Sei x,, der Mittelpunkt von I,,. Die Folge (z,,) hat einen Haufungspunkt x € [0, 1]. Dann
gibt es i € I mit x € U;. Da U; offen ist, gibt es ein € > 0, sodass (x — e,z + ¢) C U;. Dann
gibt es n mit 1/n < ¢/2 und |z — 2| < ¢/2, also I, C (v —e,x +¢) CUj;

= Widerspruch

Dann iiberdecke [0, 1] mit endlich vielen Intervallen Iy, ..., I3 der Lange §. Jedes I; ist in
U;j enthalten.
= Uj,,...,Uj, ist endliche Teiliiberdeckung von U |
Beispiel 15
1) R ist nicht kompakt.

2) (0,1) ist nicht kompakt.
Upn = (l/nv 1- 1/") = UneNU = (07 1)

3) R mit der Zariski-Topologie ist kompakt und jede Teilmenge von R ist es auch.

Korollar 1.12
Sei X kompakter Raum, A C X abgeschlossen. Dann ist A kompakt.

Beweis: Sei (V;);es offene Uberdeckung von A.
Dann gibt es fiir jedes i € I eine offene Teilmenge U; C X mit V; = U; N A.

i€l
=U={U;|ieclT}uU{X\ A} ist offene Uberdeckung von X

n
X Iompall o5 gibt i1, . .., in € I, sodass UUijU(X\A):X

=1

= (JU,ux\4)|na=4
j=1

= O(Ui.mA)u((X\A)mA)zA

=Vi;

= Vi,,...,V;, iliberdecken A
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Korollar 1.13

Seien X,Y kompakte topologische Raume. Dann ist X x Y mit der Produkttopologie
kompakt.

Beweis: Sei (W;);es eine offene Uberdeckung von X x Y. Fiir jedes (z,y) € X x Y gibt es
offene Teilmengen U, , von X und V, , von Y sowie ein i € I, sodass U,y x Vi, C W;.

X
W;

Abbildung 1.7: Die blaue Umgebung ist Schnitt vieler Umgebungen

Die offenen Mengen Uy, , x V4 fiir festes g und alle y € Y iiberdecken { ¢ } x y. Da Y

kompakt ist, ist auch { zg } X Y kompakt. Also gibt es y1,. .., Yy () mit U:-i(lzo) Usoy; X
on,yi D) {1’0 } xY.

Sei Uy, := ﬂ;i(lx) Uso,y;- Da X kompakt ist, gibt es z1,...,2, € X mit Jj_, Uy, = X
= UL UMY (Uayy x Vi) 2X xY

-~
Ein griin-oranges Kéastchen

:>Uj UZWZ(J/‘],yZ) =XxY |

Korollar 1.14
Sei X ein Hausdorffraum und K C X kompakt. Dann ist K abgeschlossen.

Beweis: z. Z.: Komplement ist offen

Ist X = K, so ist K abgeschlossen in X. Andernfalls sei y € X \ K. Fiir jedes x € K seien
U, bzw. V,, Umgebungen von = bzw. von y, sodass U, NV, = 0.

Da K kompakt ist, gibt es endlich viele z1,...,z, € K, sodass |J;" | U, 2 K.
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Sei V := ﬁ Ve,
i=1

=VnN (U U%.) =0
i=1

=VNK=1

= V ist Uberdeckung von v, die ganz in X \ K enthalten ist.

= X \ K ist offen

= K ist abgeschlossenll

Korollar 1.15
Seien X,Y topologische Raume, f: X — Y stetig. Ist K C X kompakt, so ist f(K) CY
kompakt.

Beweis: Sei (V;)icr offene Uberdeckung von f(K) = (f~1(V;))ier ist offene Uberdeckung von

K k . . . - .
P s gibt i1, ... 4, sodass f~1(V4),..., f~1(Vi,) Uberdeckung von K ist.

= f(f1(Vi), ..., f(f~5(V;,)) iiberdecken f(K).
Es gilt: f(f~Y(V)) =V N f(X) [ |

Satz 1.16 (Heine-Borel)
FEine Teilmenge von R™ oder C" ist genau dann kompakt, wenn sie beschriankt und
abgeschlossen ist.

Beweis: ,,=“ Sei K C R” (oder C") kompakt.

Da R™ und C™ hausdorffsch sind, ist K nach Korollar 1.14 abgeschlossen. Nach Vorausset-
zung kann K mit endlich vielen offenen Kugeln von Radien 1 iiberdeckt werden = K ist
beschrankt.

»<="Sei A CR" (oder C") beschrénkt und abgeschlossen.

Dann gibt es einen Wiirfel W = [N, N] x --- X [N, N] mit A C W bzw. ,Polyzylinder*

n mal

Z={(z1,...,2n) €C" |z <Nfiri=1,...,n}

Nach Korollar 1.13 und Korollar 1.11 ist W kompakt, also ist A nach Korollar 1.12 auch
kompakt. Genauso ist Z kompakt, weil

{zeCl 2z <1}

homdéomorph zu
{@y eR[|(@yll<1}
ist. ]
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1.6 Wege und Knoten

Definition 16
Sei X ein topologischer Raum.

a) Ein Weg in X ist eine stetige Abbildung v : [0,1] — X.
b) v heift geschlossen, wenn v(1) = v(0) gilt.
c) 7 heilt einfach, wenn 7|o ] injektiv ist.
Beispiel 16
Ist X diskret, so ist jeder Weg konstant, d. h. von der Form
Ve e [0,1] :y(x)=¢, c€X

Denn ([0, 1]) ist zusammenhéngend fiir jeden Weg ~.

Definition 17
Ein topologischer Raum X heifst wegzusammenhingend, wenn es zu je zwei Punkten
z,y € X einen Weg 7 : [0,1] — X gibt mit v(0) = z und (1) = y.

Korollar 1.17
Sei X ein topologischer Raum.

(i) X ist wegzusammenhéngend = X ist zusammenhéngend

(ii) X ist wegzusammenhéngend # X ist zusammenhéngend

Beweis:

(i) Sei X ein wegzusammenhéingender topologischer Raum, A;, A nichtleere, disjunkte,
abgeschlossene Teilmengen von X mit A; UAy = X. Sei z € Ay,y € A,y :[0,1] - X
ein Weg von x nach y.

Dann ist C' := ~([0,1]) € X zusammenhéngend, weil -y stetig ist.

C = (CﬂAl)U(CﬁAg)
o oY

ist Zerlegung in nichtleere, disjunkte, abgeschlossene Teilmengen = Widerspruch
(i) SeiX:{(a:,y) € R? ’x2+y2:1\/y:1+2‘67%“’” }
Abbildung 1.8a veranschaulicht diesen Raum.

Sei Uy UUy = X,U; # Uy = 0,U; offen. X = CUS. Dann ist C C Uy oder C C Uy,

weil C' und S zusammenhéngend sind.

Also ist C = U; und S = Uy (oder umgekehrt).

Sei v € C = Up,e > 0 und B.(y) C U; eine Umgebung von y, die in Uy enthalten ist.
Aber: B.(y) NS # 0 = Widerspruch |

Achtung: Es gibt stetige, surjektive Abbildungen [0, 1] — [0, 1] x [0, 1]. Ein Beispiel ist die in
Abbildung 1.9 dargestellte Hilbert-Kurve.
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1 — {(zsin(1)) € X x Y}
(-1,1)CY
- | [\«
0'\/ \/1
AT
(a) Spirale S mit Kreis C (b) Sinus

Abbildung 1.8: Beispiele fiir Rdume, die zusammenhéngend, aber nicht wegzusammenhéngend
sind.

Abbildung 1.9: Hilbert-Kurve

Definition 18
Sei X ein topologischer Raum. Eine (geschlossene) Jordankurve in X ist ein Homéomor-
phismus v : [0,1] = C C X (y: S - C C X)

Satz 1.18 (Jordanscher Kurvensatz)
Ist C = 7([0,1]) eine geschlossene Jordankurve in R?, so hat R? \ C' genau zwei
Zusammenhangskomponenten, von denen eine beschrankt ist und eine unbeschrénkt.

Jordankurve

Abbildung 1.10: Die unbeschrinkte Zusammenhangskomponente wird héufig inneres, die be-
schrankte dufseres genannt.

Beweis: ist technisch mithsam und wird daher hier nicht gefiihrt.

Idee: Ersetze Weg C' durch Polygonzug.

Definition 19
Eine geschlossene Jordankurve in R? heift Knoten.

(G
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Beispiel 17

C&HGY

) Trivialer Knoten ) Kleeblattknoten ) Achterknoten d) 62-Knoten

Abbildung 1.11: Beispiele fiir verschiedene Knoten

Definition 20
Zwei Knoten 1,72 : S! — R3 heiflen Hquivalent, wenn es eine stetige Abbildung H :

St x [0,1] = R3 gibt mit H(z,0) = v1(2), H(z,1) = y2(z) und fiir jedes feste t € [0,1] ist
H,:S' = R2? 2+ H(z,t) ein Knoten. Die Abbildung H heift Isotopie zwischen 7; und
Y2.

Definition 21
Ein Knotendiagramm eines Knotens ~ ist eine Projektion 7 : R? — E auf eine Ebene E,

sodass |(7|C) ()] < 2 fiir jedes x € D.
Ist (7|C)~Y(z) = {y1,v2 }, so liegt y; iiber yo, wenn (y; — x) = A(y2 — ) fiir ein A > 1 ist.

Satz 1.19 (Reidemeister)
Zwei endliche Knotendiagramme gehoren genau dann zu dquivalenten Knoten, wenn sie
durch endlich viele ,Reidemeister-Ziige* in einander {iberfithrt werden kénnen.

Beweis: Durch sorgfiltige Fallunterscheidung. r-u]

Definition 22
Ein Knotendiagramm heifst 3-farbbar, wenn jeder Bogen von D so mit einer Farbe gefarbt

werden kann, dass an jeder Kreuzung eine oder 3 Farben auftreten und alle 3 Farben

auftreten.
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(c) s

Abbildung 1.12: Reidemeister-Ziige
Urheber:YAMASHITA Makoto

Abbildung 1.13: Ein 3-gefarber Kleeblattknoten
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Ubungsaufgaben

Aufgabe 1 (Sierpinskiraum)

Essei X :={0,1}und Tx :={0,{0},X }. Dies ist der sogenannte Sierpinskiraum.
(a) Beweisen Sie, dass (X, Tx) ein topologischer Raum ist.
(b) Ist (X,%x) hausdorffsch?

(c) Ist Tx von einer Metrik erzeugt?

Aufgabe 2
Es sei Z mit der von den Mengen U, j, := a+ bZ(a € Z,b € Z\ { 0 }) erzeugten Topologie
versehen.
Zeigen Sie:
(a) Jedes U,y und jede einelementige Teilmenge von Z ist abgeschlossen.
(b) Die U,y bilden eine Basis der Topologie.
(¢c) {—1,1} ist nicht offen.
(d) Es gibt unendlich viele Primzahlen.



Losungen der Ubungsaufgaben

Losung zu Aufgabe 1

Teilaufgabe a) Es gilt:
(i) 0, X € Tx.

(ii) T ist offensichtlich unter Durchschnitten abgeschlossen, d. h. es gilt fiir alle Uy, Us €
Tx :U1NU; € Tx.

(iii) Auch unter beliebigen Vereinigungen ist Tx abgeschlossen, d. h. es gilt fiir eine
beliebige Indexmenge I und alle U; € Tx fiir allei € I : (J;c; Ui € Tx

Also ist (X, Tx) ein topologischer Raum.

Teilaufgabe b) Wéhle x = 1,y = 0. Dann gilt  # y und die einzige Umgebung von x
ist X. Day =0 € X konnen also z und y nicht durch offene Mengen getrennt werden.
(X, Tx) ist also nicht hausdorffsch.

Teilaufgabe c) Nach Bemerkung 3 sind metrische Rdume hausdorffsch. Da (X, ¥ x) nach
(b) nicht hausdorffsch ist, liefert die Kontraposition der Trennungseigenschaft, dass (X, Tx)
kein metrischer Raum sein kann.

Losung zu Aufgabe 2

21



Symbolverzeichnis

B Basis einer Topologie.
Bs(z) I-Kugel um z.
¥ Topologie.

N Natiirliche Zahlen.
7Z. Ganze Zahlen.
Q Rationale Zahlen.
R Reele Zahlen.

R* Multiplikative Einheitengruppe von R.

R* Echt positive reele Zahlen.
C Komplexe Zahlen.
P Projektiver Raum.

M Abschluss der Menge M.
M?° Inneres der Menge M.
OM Rand der Menge M.

22

A x B Kreuzprodukt zweier Mengen.
P(M) Potenzmenge von M.

A\ B A ohne B.

A C B Teilmengenbeziehung.

A C B echte Teilmengenbeziehung.

[z]~ Aquivalenzklassen von x bzgl. ~.
X/~ X modulo ~.

||z|| Norm von x.

|z| Betrag von z.

(E Ohne Einschrankung.

wx Projektion auf X.

(-,-) Skalarprodukt.

S™ Sphare.

f~1(M) Urbild von M.
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abgeschlossen, 2
Abschluss, 3
Achterknoten, 18

Basis, 3

dicht, 3
Farbbarkeit, 18
Grenzwert, 7

Hilbert-Kurve, 17
Homoéomorphismus, 8

Inneres, 3
Isotopie, 18

Jordankurve, 17
geschlossene, 17

Rand, 3

Raum
hausdorffscher, 7
metrischer, 5
topologischer, 2

Sierpinskiraum, 3
Spurtopologie, 3
stetig, 8
Subbasis, 3

Teilraum, 3
Topologie
diskrete, 2, 6
euklidische, 2
triviale, 2
Zariski, 2, 11, 13
Torus, ii

Uberdeckung, 13

Kern Umgebung, 3
offener, 3
Kleeblattknoten, 18 Weg, 16
Knoten, 17 einfacher, 16
dquivalente, 18 geschlossener, 16
trivialer, 18 Wegzusammenhang, 16
Knotendiagramm, 18
kompakt, 12 zusammenhéngend, 10
Zusammenhang, 10-12
Limes, 7 Zusammenhangskomponente, 12
Metrik, 5
diskrete, 6
SNCF, 6
offen, 2

Polyzylinder, 15

Produkttopologie, 4

Projektion
stereographische, 9

Quotiententopologie, 4
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