Analysis_Wichtige_Formeln.tex 2.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
  1. \documentclass[a4paper,10pt]{article}
  2. \usepackage{amssymb}
  3. \usepackage{amsmath}
  4. \DeclareMathOperator{\arctanh}{arctanh}
  5. \usepackage[utf8]{inputenc} % this is needed for umlauts
  6. \usepackage[ngerman]{babel} % this is needed for umlauts
  7. \usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
  8. %layout
  9. \usepackage[margin=2.5cm]{geometry}
  10. \usepackage{parskip}
  11. \pdfinfo{
  12. /Author (Peter Merkert, Martin Thoma)
  13. /Title (Wichtige Formeln der Analysis I)
  14. /CreationDate (D:20120221095400)
  15. /Subject (Analysis I)
  16. /Keywords (Analysis I; Formeln)
  17. }
  18. \everymath={\displaystyle}
  19. \begin{document}
  20. \title{Analysis Formelsammlung}
  21. \author{Peter Merkert, Martin Thoma}
  22. \date{21. Februar 2012}
  23. \section{Grenzwerte}
  24. \begin{table}[ht]
  25. \begin{minipage}[b]{0.5\linewidth}\centering
  26. \begin{align*}
  27. \lim_{x \to 0} \frac {\sin x}{x} &= 1 \\
  28. \lim_{x \to 0} \frac {e^x - 1}{x} &= 1 \\
  29. \lim_{h \to 0} \frac {e^{{x_0} + h} - e^{x_0}}{h} &= e^{x_0} \\
  30. \sum_{n = 0}^{\infty} (-1)^n \frac {(-1)^{n + 1}}{n} &= \log 2 \\
  31. \cos x &= \sum_{n = 0}^{\infty} (-1)^n \frac {x^{2n}}{(2n)!} \\
  32. \sin x &= \sum_{n = 0}^{\infty} (-1)^n \frac {x^{2n + 1}}{(2n + 1)!}
  33. \end{align*}
  34. \end{minipage}
  35. \hspace{0.5cm}
  36. \begin{minipage}[b]{0.5\linewidth}
  37. \centering
  38. \begin{align*}
  39. \cosh x = \frac {1}{2} (e^x + e^{-x}) &= \scriptstyle \sum_{n = 0}^{\infty} \frac {x^{2n}}{(2n)!} \\
  40. \sinh x = \frac {1}{2} (e^x - e^{-x}) &= \sum_{n = 0}^{\infty} \frac {x^{2n + 1}}{(2n + 1)!} \\
  41. e^x &= \sum_{n = 0}^{\infty} \frac {x^n}{n!} \\
  42. \sum_{n = 0}^{\infty} (-1)^n \frac {x^{n + 1}}{n + 1} &= \log (1+x) (x \in (-1,1)) \\
  43. \sum_{n = 0}^{\infty} x^n &= \frac {1}{1 - x} (x \in (-1,1)) \\
  44. 0,\bar{3} &= \sum_{n = 1}^{\infty} \frac {3}{(10)^n}
  45. \end{align*}
  46. \end{minipage}
  47. \end{table}
  48. \section{Zusammenhänge}
  49. \begin{align*}
  50. (\cos x)^2 + (\sin x)^2 &= 1 \\
  51. (\cosh x)^2 - (\sinh x)^2 &= 1 \\
  52. \tan x &= \frac {\sin x}{\cos x} \\
  53. \tanh x &= \frac {\sinh x}{\cosh x} \\
  54. (x + y)^n &= \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k
  55. \end{align*}
  56. \section{Ableitungen}
  57. \begin{align*}
  58. (\arctan x)' &= \frac {1}{1 + x^2} \\
  59. (\sin x)' &= \cos x \\
  60. (\cos x)' &= -\sin x \\
  61. (\arctanh x)' &= \frac {1}{1 + x^2}
  62. \end{align*}
  63. \section{Potenzreihen}
  64. Zuerst den Potenzradius r berechnen:
  65. \(
  66. r = \frac {1}{\lim \text{sup} \sqrt[n]{|a_n|}}
  67. \)
  68. \end{document}