| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 |
- \subsection{Aufgabe 3}
- \begin{frame}{Aufgabe 3}
- Zeigen Sie: Ein Kreis ist genau dann bipartit, wenn er gerade Länge hat.
- \end{frame}
- \pgfdeclarelayer{background}
- \pgfsetlayers{background,main}
- \begin{frame}{Aufgabe 3 - Lösung}
- Idee: Knoten abwechselnd färben
- \tikzstyle{selected edge} = [draw,line width=5pt,-,black!50]
- \begin{center}
- \adjustbox{max size={\textwidth}{0.8\textheight}}{
- \begin{tikzpicture}
- \node[vertex] (a) at (0,0) {};
- \node[vertex] (b) at (2,0) {};
- \node[vertex] (c) at (2,2) {};
- \node[vertex] (d) at (0,2) {};
- \node[vertex] (e) at (1,4) {};
- \draw (a) -- (b) -- (c) -- (e) -- (d) -- (a);
- \node<2->[vertex, red] (a) at (0,0) {};
- \node<3->[vertex, blue] (b) at (2,0) {};
- \node<4->[vertex, red] (c) at (2,2) {};
- \node<5->[vertex, blue] (e) at (1,4) {};
- \node<6->[vertex, red] (d) at (0,2) {};
- \begin{pgfonlayer}{background}
- \path<3->[selected edge] (a.center) edge node {} (b.center);
- \path<4->[selected edge] (b.center) edge node {} (c.center);
- \path<5->[selected edge] (c.center) edge node {} (e.center);
- \path<6->[selected edge] (e.center) edge node {} (d.center);
- \path<7->[selected edge,lime] (d.center) edge node {} (a.center);
- \end{pgfonlayer}
- \end{tikzpicture}
- }
- \end{center}
- \end{frame}
- \subsection{Aufgabe 4}
- \begin{frame}{Aufgabe 4}
- Zeigen Sie: Ein Graph $G$ ist genau dann bipartit, wenn er nur Kreise
- gerade Länge hat.
- \end{frame}
- \begin{frame}{Aufgabe 4: Lösung, Teil 1}
- \underline{Vor.:} Sei $G = (E, K)$ ein zus. Graph. \pause
- \underline{Beh.:} $G$ ist bipartit $\Rightarrow G$ hat keine Kreis ungerader Länge \pause
- \underline{Bew.:} durch Widerspruch \pause
- \underline{Annahme:} $G$ hat Kreis ungerader Länge \pause
- $\xRightarrow[]{A.4}$ Ein Subgraph von $G$ ist nicht bipartit \pause
- $\Rightarrow$ Widerspruch zu \enquote{$G$ ist bipartit} \pause
- $\Rightarrow$ $G$ hat keinen Kreis ungerader Länge $\blacksquare$
- \end{frame}
- \begin{frame}{Aufgabe 4: Lösung, Teil 2}
- \underline{Vor.:} Sei $G = (E, K)$ ein zus. Graph. \pause
- \underline{Beh.:} $G$ hat keinen Kreis ungerader Länge $\Rightarrow G$ ist bipartit \pause
- \underline{Bew.:} Konstruktiv \pause
- Färbe Graphen mit Breitensuche $\blacksquare$
- \end{frame}
- \pgfdeclarelayer{background}
- \pgfsetlayers{background,main}
- \begin{frame}{Aufgabe 4 - Beispiel}
- \tikzstyle{selected edge} = [draw,line width=5pt,-,black!50]
- \begin{center}
- \adjustbox{max size={\textwidth}{0.8\textheight}}{
- \begin{tikzpicture}
- \node[vertex] (a) at (1,1) {};
- \node[vertex] (b) at (2,0) {};
- \node[vertex] (c) at (4,0) {};
- \node[vertex] (d) at (1,2) {};
- \node[vertex] (e) at (2,2) {};
- \node[vertex] (f) at (3,2) {};
- \node[vertex] (g) at (2,4) {};
- \node[vertex] (h) at (3,3) {};
- \node[vertex] (i) at (4,2) {};
- \node[vertex] (j) at (1,3) {};
- \draw (a) -- (b);
- \draw (a) -- (d);
- \draw (b) -- (e);
- \draw (b) -- (c);
- \draw (c) -- (f);
- \draw (d) -- (e);
- \draw (d) -- (j);
- \draw (e) -- (f);
- \draw (f) -- (i);
- \draw (g) -- (j);
- \draw (g) -- (h);
- \node<2->[vertex, red] (a) at (1,1) {};
- \node<3->[vertex, blue] (b) at (2,0) {};
- \node<3->[vertex, blue] (d) at (1,2) {};
- \node<4->[vertex, red] (c) at (4,0) {};
- \node<4->[vertex, red] (e) at (2,2) {};
- \node<4->[vertex, red] (j) at (1,3) {};
- \node<5->[vertex, blue] (f) at (3,2) {};
- \node<5->[vertex, blue] (g) at (2,4) {};
- \node<6->[vertex, red] (h) at (3,3) {};
- \node<6->[vertex, red] (i) at (4,2) {};
- \begin{pgfonlayer}{background}
- \path<3->[selected edge] (a.center) edge node {} (b.center);
- \path<3->[selected edge] (a.center) edge node {} (d.center);
- \path<4->[selected edge] (b.center) edge node {} (c.center);
- \path<4->[selected edge] (b.center) edge node {} (e.center);
- \path<4->[selected edge] (d.center) edge node {} (j.center);
- \path<4->[selected edge] (d.center) edge node {} (e.center);
- \path<5->[selected edge] (j.center) edge node {} (g.center);
- \path<5->[selected edge] (e.center) edge node {} (f.center);
- \path<5->[selected edge] (c.center) edge node {} (f.center);
- \path<6->[selected edge] (g.center) edge node {} (h.center);
- \path<6->[selected edge] (f.center) edge node {} (i.center);
- \end{pgfonlayer}
- \end{tikzpicture}
- }
- \end{center}
- \end{frame}
- \subsection{Aufgabe 9}
- \begin{frame}{Aufgabe 9, Teil 1}
- Im folgenden sind die ersten drei Graphen $G_1, G_2, G_3$ einer
- Folge $(G_n)$ aus Graphen abgebildet. Wie sieht $G_4$ aus?
- \begin{gallery}
- \galleryimage{graphs/triangular-1}
- \galleryimage{graphs/triangular-2}
- \galleryimage{graphs/triangular-3}
- \end{gallery}
- \end{frame}
- \begin{frame}{Aufgabe 9, Teil 2}
- Wieviele Ecken / Kanten hat $G_n = (E_n, K_n)$?
- \end{frame}
- \begin{frame}{Aufgabe 9, Teil 2: Antwort}
- Ecken:
- \[|E_n| = |E_{n-1}| + (n+1) = \sum_{i=1}^{n+1} = \frac{n^2 + 2n+2}{2}\]
- Kanten:
- \begin{align}
- |K_n| &= |K_{n-1}| + \underbrace{((n+1)-1)+2}_{\text{außen}} + (n-1) \cdot 2\\
- &= |K_{n-1}| + n+2+2n-2\\
- &= |K_{n-1}| + 3n\\
- &= \sum_{i=1}^{n} 3i = 3 \sum_{i=1}^{n} i \\
- &= 3 \frac{n^2 + n}{2}
- \end{align}
- \end{frame}
- \subsection{Bildquelle}
- \begin{frame}{Bildquelle}
- \begin{itemize}
- \item \href{http://commons.wikimedia.org/wiki/File:Konigsberg\_bridges.png}{http://commons.wikimedia.org/wiki/File:Konigsberg\_bridges.png}
- \item \href{http://commons.wikimedia.org/wiki/File:Unit\_disk\_graph.svg}{http://commons.wikimedia.org/wiki/File:Unit\_disk\_graph.svg}
- \item \href{http://goo.gl/maps/WnXRh}{Google Maps} (Grafiken \TCop 2013 Cnes/Spot Image, DigitalGlobe)
- \end{itemize}
- \end{frame}
- \subsection{Literatur}
- \begin{frame}{Literatur}
- \begin{itemize}
- \item A. Beutelspacher: \textit{Diskrete Mathematik für Einsteiger}, 4. Auflage, ISBN 978-3-8348-1248-3
- \end{itemize}
- \end{frame}
|