Symbolverzeichnis.tex 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116
  1. %!TEX root = GeoTopo.tex
  2. \markboth{Symbolverzeichnis}{Symbolverzeichnis}
  3. \twocolumn
  4. \chapter*{Symbolverzeichnis}
  5. \addcontentsline{toc}{chapter}{Symbolverzeichnis}
  6. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  7. % Mengenoperationen %
  8. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9. \section*{Mengenoperationen}
  10. $A^C\;\;\;$ Komplement der Menge $A$\\
  11. $\mathcal{P}(M)\;\;\;$ Potenzmenge von $M$\\
  12. $\overline{M}\;\;\;$ Abschluss der Menge $M$\\
  13. $\partial M\;\;\;$ Rand der Menge $M$\\
  14. $M^\circ\;\;\;$ Inneres der Menge $M$\\
  15. $A \times B\;\;\;$ Kreuzprodukt zweier Mengen\\
  16. $A \subseteq B\;\;\;$ Teilmengenbeziehung\\
  17. $A \subsetneq B\;\;\;$ echte Teilmengenbeziehung\\
  18. $A \setminus B\;\;\;$ $A$ ohne $B$\\
  19. $A \cup B\;\;\;$ Vereinigung\\
  20. $A \dcup B\;\;\;$ Disjunkte Vereinigung\\
  21. $A \cap B\;\;\;$ Schnitt\\
  22. \section*{Geometrie}
  23. $AB\;\;\;$ Gerade durch die Punkte $A$ und $B$\\
  24. $\overline{AB}\;\;\;$ Strecke mit Endpunkten $A$ und $B$\\
  25. $\triangle ABC\;\;\;$ Dreieck mit Eckpunkten $A, B, C$\\
  26. $|K|\;\;\;$ Geometrische Realisierung des Simplizialkomplexes $K$\\
  27. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  28. % Gruppen %
  29. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  30. \section*{Gruppen}
  31. $\Homoo(X)\;\;\;$ Homöomorphismengruppe\\
  32. $\Iso(X)\;\;\;$ Isometriengruppe\\
  33. $\GL_n(K)\;\;\;$ Allgemeine lineare Gruppe\footnote{von \textit{\textbf{G}eneral \textbf{L}inear Group}}\\
  34. $\SL_n(K)\;\;\;$ Spezielle lineare Gruppe\\
  35. $\PSL_n(K)\;\;\;$ Projektive lineare Gruppe\\
  36. $\Perm(X)\;\;\;$ Permutationsgruppe\\
  37. $\Sym(X)\;\;\;$ Symmetrische Gruppe
  38. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  39. % Wege %
  40. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  41. \section*{Wege}
  42. $[\gamma]\;\;\;$ Homotopieklasse eines Weges $\gamma$\\
  43. $\gamma_1 * \gamma_2\;\;\;$ Zusammenhängen von Wegen\\
  44. $\gamma_1 \sim \gamma_2\;\;\;$ Homotopie von Wegen\\
  45. $\overline{\gamma}(x) = \gamma(1-x)\;\;\;$ Inverser Weg\\
  46. $C := \gamma([0,1])\;\;\;$ Bild eines Weges $\gamma$
  47. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  48. % Weiteres %
  49. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  50. \section*{Weiteres}
  51. $\fB\;\;\;$ Basis einer Topologie\\
  52. $\calS\;\;\;$ Subbasis einer Topologie\\
  53. $\fB_\delta(x)\;\;\;$ $\delta$-Kugel um $x$\\
  54. $\fT\;\;\;$ Topologie\\
  55. $\atlas\;\;\;$ Atlas\\
  56. $\praum\;\;\;$ Projektiver Raum\\
  57. $\langle \cdot , \cdot \rangle\;\;\;$ Skalarprodukt\\
  58. $X /_\sim\;\;\;$ $X$ modulo $\sim$\\
  59. $[x]_\sim\;\;\;$ Äquivalenzklassen von $x$ bzgl. $\sim$\\
  60. $\| x \|\;\;\;$ Norm von $x$\\
  61. $| x |\;\;\;$ Betrag von $x$\\
  62. $\langle a \rangle\;\;\;$ Erzeugnis von $a$\\
  63. $S^n\;\;\;$ Sphäre\\
  64. $T^n\;\;\;$ Torus\\
  65. $f \circ g\;\;\;$ Verkettung von $f$ und $g$\\
  66. $\pi_X\;\;\;$ Projektion auf $X$\\
  67. $f|_U\;\;\;$ $f$ eingeschränkt auf $U$\\
  68. $f^{-1}(M)\;\;\;$ Urbild von $M$\\
  69. $\rang(M)\;\;\;$ Rang von $M$\\
  70. $\chi(K)\;\;\;$ Euler-Charakteristik von $K$\\
  71. $\Delta^k\;\;\;$ Standard-Simplex\\
  72. $X \# Y\;\;\;$ Verklebung von $X$ und $Y$\\
  73. $d_n\;\;\;$ Lineare Abbildung aus \cref{kor:9.11}\\
  74. $A \cong B\;\;\;$ $A$ ist isometrisch zu $B$
  75. \onecolumn
  76. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  77. % Zahlenmengen %
  78. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  79. \section*{Zahlenmengen}
  80. $\mdn = \Set{1, 2, 3, \dots} \;\;\;$ Natürliche Zahlen\\
  81. $\mdz = \mdn \cup \Set{0, -1, -2, \dots} \;\;\;$ Ganze Zahlen\\
  82. $\mdq = \mdz \cup \Set{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}} = \Set{\frac{z}{n} \text{ mit } z \in \mdz \text{ und } n \in \mdz \setminus \Set{0}} \;\;\;$ Rationale Zahlen\\
  83. $\mdr = \mdq \cup \Set{\sqrt{2}, -\sqrt[3]{3}, \dots}\;\;\;$ Reele Zahlen\\
  84. $\mdr_+\;$ Echt positive reele Zahlen\\
  85. $\mdr_{+,0}^n := \Set{(x_1, \dots, x_n) \in \mdr^n | x_n \geq 0}\;\;\;$ Halbraum\\
  86. $\mdr^\times = \mdr \setminus \Set{0} \;$ Einheitengruppe von $\mdr$\\
  87. $\mdc = \Set{a+ib|a,b \in \mdr}\;\;\;$ Komplexe Zahlen\\
  88. $\mdp = \Set{2, 3, 5, 7, \dots}\;\;\;$ Primzahlen\\
  89. $\mdh = \Set{z \in \mdc | \Im{z} > 0}\;\;\;$ obere Halbebene\\
  90. $I = [0,1] \subsetneq \mdr\;\;\;$ Einheitsintervall\\
  91. $f:S^1 \hookrightarrow \mdr^2\;\;\;$ Einbettung der Kreislinie in die Ebene\\
  92. $\pi_1(X,x)\;\;\;$ Fundamentalgruppe im topologischen Raum $X$ um $x \in X$\\
  93. $\Fix(f)\;\;\;$ Menge der Fixpunkte der Abbildung $f$\\
  94. $\|\cdot\|_2\;\;\;$ 2-Norm; Euklidische Norm\\
  95. $\kappa\;\;\;$ Krümmung\\
  96. $\kappa_{\ts{Nor}}$
  97. $V(f)\;\;\;$ Nullstellenmenge von $f$\footnote{von \textit{\textbf{V}anishing Set}}
  98. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  99. % Krümmung %
  100. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  101. \section*{Krümmung}
  102. $D_P F: \mdr^2 \rightarrow \mdr^3\;\;\;$ Lineare Abbildung mit Jaccobi-Matrix (siehe \cpageref{def:Tangentialebene})
  103. $T_s S\;\;\;$ Tangentialebene an $S \subseteq \mdr^3$ durch $s \in S$\\
  104. \index{Faser|see{Urbild}}
  105. \index{kongruent|see{isometrisch}}
  106. \index{Kongruenz|see{Isometrie}}