This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors. To propose a model for inclusion, please submit a pull request.

Neal Wu 5bbf30af0e Cleaning up for the main README 9 gadi atpakaļ
.github dc7791d01c Create ISSUE_TEMPLATE.md (#124) 9 gadi atpakaļ
autoencoder 31f1af580a Changed deprecated tf.initialize_all_variables() to tf.global_variables_initializer() 9 gadi atpakaļ
compression 5d981d57c5 Fix division changing dtype to float in python3 9 gadi atpakaļ
differential_privacy 31f1af580a Changed deprecated tf.initialize_all_variables() to tf.global_variables_initializer() 9 gadi atpakaļ
im2txt dad7dcbda1 Updated concat_v2 to concat for 1.0 compatibility 9 gadi atpakaļ
inception 31f1af580a Changed deprecated tf.initialize_all_variables() to tf.global_variables_initializer() 9 gadi atpakaļ
lm_1b fdc4ce37a4 Fix README 9 gadi atpakaļ
namignizer 31f1af580a Changed deprecated tf.initialize_all_variables() to tf.global_variables_initializer() 9 gadi atpakaļ
neural_gpu 31f1af580a Changed deprecated tf.initialize_all_variables() to tf.global_variables_initializer() 9 gadi atpakaļ
neural_programmer 31f1af580a Changed deprecated tf.initialize_all_variables() to tf.global_variables_initializer() 9 gadi atpakaļ
next_frame_prediction ba986cfcb0 Add cross conv model for next frame prediction. 9 gadi atpakaļ
real_nvp e871d29598 Real NVP code 9 gadi atpakaļ
resnet 64254ad355 Modify the README to reflect changes 9 gadi atpakaļ
slim 9baf6eac0b Merge pull request #1040 from aselle/inception_v2 9 gadi atpakaļ
street 31f1af580a Changed deprecated tf.initialize_all_variables() to tf.global_variables_initializer() 9 gadi atpakaļ
swivel 66900a72d5 Update swivel to TFr1.0 9 gadi atpakaļ
syntaxnet 87a8abd4d3 Sync SyntaxNet with TensorFlow r1.0 (#1062) 9 gadi atpakaļ
textsum f1e8ff7c0f Update data.py 9 gadi atpakaļ
transformer 31f1af580a Changed deprecated tf.initialize_all_variables() to tf.global_variables_initializer() 9 gadi atpakaļ
tutorials 6344793996 Update concat_v2 to be concat to match 1.0 final 9 gadi atpakaļ
video_prediction 31f1af580a Changed deprecated tf.initialize_all_variables() to tf.global_variables_initializer() 9 gadi atpakaļ
.gitignore 3e6caf5ff0 Add a .gitignore file. (#164) 9 gadi atpakaļ
.gitmodules 32ab5a58dd Adding SyntaxNet to tensorflow/models (#63) 9 gadi atpakaļ
AUTHORS 41c52d60fe Spatial Transformer model 10 gadi atpakaļ
CONTRIBUTING.md d84df16bc3 fixed contribution guidelines 10 gadi atpakaļ
LICENSE 7c41e653dc Update LICENSE 10 gadi atpakaļ
README.md 5bbf30af0e Cleaning up for the main README 9 gadi atpakaļ
WORKSPACE ac0829fa2b Consolidate privacy/ and differential_privacy/. 9 gadi atpakaļ

README.md

TensorFlow Models

This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors.

To propose a model for inclusion please submit a pull request.

Models

  • autoencoder: various autoencoders.
  • compression: compressing and decompressing images using pre-trained Residual GRU network.
  • differential_privacy: privacy-preserving student models from multiple teachers.
  • im2txt: image-to-text neural network for image captioning.
  • inception: deep convolutional networks for computer vision.
  • learning_to_remember_rare_events: a large-scale life-long memory module for use in deep learning.
  • lm_1b: language modeling on the one billion word benchmark.
  • namignizer: recognize and generate names.
  • neural_gpu: highly parallel neural computer.
  • neural_programmer: neural network augmented with logic and mathematic operations.
  • next_frame_prediction: probabilistic future frame synthesis via cross convolutional networks.
  • real_nvp: density estimation using real-valued non-volume preserving (real NVP) transformations.
  • resnet: deep and wide residual networks.
  • slim: image classification models in TF-Slim.
  • street: identify the name of a street (in France) from an image using a Deep RNN.
  • swivel: the Swivel algorithm for generating word embeddings.
  • syntaxnet: neural models of natural language syntax.
  • textsum: sequence-to-sequence with attention model for text summarization.
  • transformer: spatial transformer network, which allows the spatial manipulation of data within the network.
  • tutorials: models described in the TensorFlow tutorials.
  • video_prediction: predicting future video frames with neural advection.