This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors. To propose a model for inclusion, please submit a pull request.

Neal Wu 6c9d2eba3f Merge pull request #751 from stef716/resnet_training преди 9 години
.github dc7791d01c Create ISSUE_TEMPLATE.md (#124) преди 9 години
autoencoder 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script преди 9 години
compression 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script преди 9 години
differential_privacy 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master преди 9 години
im2txt 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master преди 9 години
inception 7698f07af7 Merge pull request #676 from postmasters/patch-1 преди 9 години
learning_to_remember_rare_events 3f74c7b419 Convert tf.op_scope to tf.name_scope, plus a few other 1.0 upgrade changes преди 9 години
lm_1b fdc4ce37a4 Fix README преди 9 години
namignizer 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master преди 9 години
neural_gpu ee017e0dbf Fix two typos преди 9 години
neural_programmer 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master преди 9 години
next_frame_prediction 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script преди 9 години
real_nvp 5c53534305 Manually fixed many occurrences of tf.split преди 9 години
resnet 64254ad355 Modify the README to reflect changes преди 9 години
slim cb1e61113f Fix typo преди 9 години
street b41ff7f1bf Remove name arguments from tf.summary.scalar преди 9 години
swivel 3f74c7b419 Convert tf.op_scope to tf.name_scope, plus a few other 1.0 upgrade changes преди 9 години
syntaxnet 7eb16d1f35 Update docs & tutorial (#1178) преди 9 години
textsum 3f74c7b419 Convert tf.op_scope to tf.name_scope, plus a few other 1.0 upgrade changes преди 9 години
transformer 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script преди 9 години
tutorials e6d4e082e9 Merge pull request #891 from DorianKodelja/patch-1 преди 9 години
video_prediction 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script преди 9 години
.gitignore 3e6caf5ff0 Add a .gitignore file. (#164) преди 9 години
.gitmodules 32ab5a58dd Adding SyntaxNet to tensorflow/models (#63) преди 9 години
AUTHORS 41c52d60fe Spatial Transformer model преди 10 години
CONTRIBUTING.md d84df16bc3 fixed contribution guidelines преди 10 години
LICENSE 7c41e653dc Update LICENSE преди 10 години
README.md 727418e4ae One more tiny change преди 9 години
WORKSPACE ac0829fa2b Consolidate privacy/ and differential_privacy/. преди 9 години

README.md

TensorFlow Models

This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors.

To propose a model for inclusion please submit a pull request.

Models

  • autoencoder: various autoencoders.
  • compression: compressing and decompressing images using a pre-trained Residual GRU network.
  • differential_privacy: privacy-preserving student models from multiple teachers.
  • im2txt: image-to-text neural network for image captioning.
  • inception: deep convolutional networks for computer vision.
  • learning_to_remember_rare_events: a large-scale life-long memory module for use in deep learning.
  • lm_1b: language modeling on the one billion word benchmark.
  • namignizer: recognize and generate names.
  • neural_gpu: highly parallel neural computer.
  • neural_programmer: neural network augmented with logic and mathematic operations.
  • next_frame_prediction: probabilistic future frame synthesis via cross convolutional networks.
  • real_nvp: density estimation using real-valued non-volume preserving (real NVP) transformations.
  • resnet: deep and wide residual networks.
  • slim: image classification models in TF-Slim.
  • street: identify the name of a street (in France) from an image using a Deep RNN.
  • swivel: the Swivel algorithm for generating word embeddings.
  • syntaxnet: neural models of natural language syntax.
  • textsum: sequence-to-sequence with attention model for text summarization.
  • transformer: spatial transformer network, which allows the spatial manipulation of data within the network.
  • tutorials: models described in the TensorFlow tutorials.
  • video_prediction: predicting future video frames with neural advection.