This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors. To propose a model for inclusion, please submit a pull request.

Ivan Bogatyy 7eb16d1f35 Update docs & tutorial (#1178) 9 gadi atpakaļ
.github dc7791d01c Create ISSUE_TEMPLATE.md (#124) 9 gadi atpakaļ
autoencoder 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 gadi atpakaļ
compression 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 gadi atpakaļ
differential_privacy 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master 9 gadi atpakaļ
im2txt 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master 9 gadi atpakaļ
inception 7698f07af7 Merge pull request #676 from postmasters/patch-1 9 gadi atpakaļ
learning_to_remember_rare_events 3f74c7b419 Convert tf.op_scope to tf.name_scope, plus a few other 1.0 upgrade changes 9 gadi atpakaļ
lm_1b fdc4ce37a4 Fix README 9 gadi atpakaļ
namignizer 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master 9 gadi atpakaļ
neural_gpu ee017e0dbf Fix two typos 9 gadi atpakaļ
neural_programmer 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master 9 gadi atpakaļ
next_frame_prediction 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 gadi atpakaļ
real_nvp 5c53534305 Manually fixed many occurrences of tf.split 9 gadi atpakaļ
resnet 64254ad355 Modify the README to reflect changes 9 gadi atpakaļ
slim e67056ed7c Merge pull request #852 from tae-jun/patch-3 9 gadi atpakaļ
street b41ff7f1bf Remove name arguments from tf.summary.scalar 9 gadi atpakaļ
swivel 3f74c7b419 Convert tf.op_scope to tf.name_scope, plus a few other 1.0 upgrade changes 9 gadi atpakaļ
syntaxnet 7eb16d1f35 Update docs & tutorial (#1178) 9 gadi atpakaļ
textsum 3f74c7b419 Convert tf.op_scope to tf.name_scope, plus a few other 1.0 upgrade changes 9 gadi atpakaļ
transformer 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 gadi atpakaļ
tutorials c774cc95e5 Merge pull request #1131 from tongda/master 9 gadi atpakaļ
video_prediction 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 gadi atpakaļ
.gitignore 3e6caf5ff0 Add a .gitignore file. (#164) 9 gadi atpakaļ
.gitmodules 32ab5a58dd Adding SyntaxNet to tensorflow/models (#63) 9 gadi atpakaļ
AUTHORS 41c52d60fe Spatial Transformer model 10 gadi atpakaļ
CONTRIBUTING.md d84df16bc3 fixed contribution guidelines 10 gadi atpakaļ
LICENSE 7c41e653dc Update LICENSE 10 gadi atpakaļ
README.md 727418e4ae One more tiny change 9 gadi atpakaļ
WORKSPACE ac0829fa2b Consolidate privacy/ and differential_privacy/. 9 gadi atpakaļ

README.md

TensorFlow Models

This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors.

To propose a model for inclusion please submit a pull request.

Models

  • autoencoder: various autoencoders.
  • compression: compressing and decompressing images using a pre-trained Residual GRU network.
  • differential_privacy: privacy-preserving student models from multiple teachers.
  • im2txt: image-to-text neural network for image captioning.
  • inception: deep convolutional networks for computer vision.
  • learning_to_remember_rare_events: a large-scale life-long memory module for use in deep learning.
  • lm_1b: language modeling on the one billion word benchmark.
  • namignizer: recognize and generate names.
  • neural_gpu: highly parallel neural computer.
  • neural_programmer: neural network augmented with logic and mathematic operations.
  • next_frame_prediction: probabilistic future frame synthesis via cross convolutional networks.
  • real_nvp: density estimation using real-valued non-volume preserving (real NVP) transformations.
  • resnet: deep and wide residual networks.
  • slim: image classification models in TF-Slim.
  • street: identify the name of a street (in France) from an image using a Deep RNN.
  • swivel: the Swivel algorithm for generating word embeddings.
  • syntaxnet: neural models of natural language syntax.
  • textsum: sequence-to-sequence with attention model for text summarization.
  • transformer: spatial transformer network, which allows the spatial manipulation of data within the network.
  • tutorials: models described in the TensorFlow tutorials.
  • video_prediction: predicting future video frames with neural advection.