This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors. To propose a model for inclusion, please submit a pull request.

Chris Shallue 8a22c8ae3d Merge pull request #1185 from cshallue/master 9 yıl önce
.github dc7791d01c Create ISSUE_TEMPLATE.md (#124) 9 yıl önce
autoencoder 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 yıl önce
compression 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 yıl önce
differential_privacy 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master 9 yıl önce
im2txt c22611891d Small clarification to documentation 9 yıl önce
inception 2e165569de Fix up the inception float comment 9 yıl önce
learning_to_remember_rare_events 3f74c7b419 Convert tf.op_scope to tf.name_scope, plus a few other 1.0 upgrade changes 9 yıl önce
lm_1b fdc4ce37a4 Fix README 9 yıl önce
namignizer 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master 9 yıl önce
neural_gpu ee017e0dbf Fix two typos 9 yıl önce
neural_programmer 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master 9 yıl önce
next_frame_prediction 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 yıl önce
real_nvp 5c53534305 Manually fixed many occurrences of tf.split 9 yıl önce
resnet 64254ad355 Modify the README to reflect changes 9 yıl önce
slim fbad6589dd Merge pull request #632 from plediii/fix.readme 9 yıl önce
street b41ff7f1bf Remove name arguments from tf.summary.scalar 9 yıl önce
swivel 3f74c7b419 Convert tf.op_scope to tf.name_scope, plus a few other 1.0 upgrade changes 9 yıl önce
syntaxnet 7eb16d1f35 Update docs & tutorial (#1178) 9 yıl önce
textsum 3f74c7b419 Convert tf.op_scope to tf.name_scope, plus a few other 1.0 upgrade changes 9 yıl önce
transformer 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 yıl önce
tutorials e6d4e082e9 Merge pull request #891 from DorianKodelja/patch-1 9 yıl önce
video_prediction 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 yıl önce
.gitignore 3e6caf5ff0 Add a .gitignore file. (#164) 9 yıl önce
.gitmodules 32ab5a58dd Adding SyntaxNet to tensorflow/models (#63) 9 yıl önce
AUTHORS 41c52d60fe Spatial Transformer model 10 yıl önce
CONTRIBUTING.md d84df16bc3 fixed contribution guidelines 10 yıl önce
LICENSE 7c41e653dc Update LICENSE 10 yıl önce
README.md 727418e4ae One more tiny change 9 yıl önce
WORKSPACE ac0829fa2b Consolidate privacy/ and differential_privacy/. 9 yıl önce

README.md

TensorFlow Models

This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors.

To propose a model for inclusion please submit a pull request.

Models

  • autoencoder: various autoencoders.
  • compression: compressing and decompressing images using a pre-trained Residual GRU network.
  • differential_privacy: privacy-preserving student models from multiple teachers.
  • im2txt: image-to-text neural network for image captioning.
  • inception: deep convolutional networks for computer vision.
  • learning_to_remember_rare_events: a large-scale life-long memory module for use in deep learning.
  • lm_1b: language modeling on the one billion word benchmark.
  • namignizer: recognize and generate names.
  • neural_gpu: highly parallel neural computer.
  • neural_programmer: neural network augmented with logic and mathematic operations.
  • next_frame_prediction: probabilistic future frame synthesis via cross convolutional networks.
  • real_nvp: density estimation using real-valued non-volume preserving (real NVP) transformations.
  • resnet: deep and wide residual networks.
  • slim: image classification models in TF-Slim.
  • street: identify the name of a street (in France) from an image using a Deep RNN.
  • swivel: the Swivel algorithm for generating word embeddings.
  • syntaxnet: neural models of natural language syntax.
  • textsum: sequence-to-sequence with attention model for text summarization.
  • transformer: spatial transformer network, which allows the spatial manipulation of data within the network.
  • tutorials: models described in the TensorFlow tutorials.
  • video_prediction: predicting future video frames with neural advection.