123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158 |
- # Copyright 2016 The TensorFlow Authors All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- # pylint: disable=line-too-long
- r"""Evaluation for Domain Separation Networks (DSNs).
- To build locally for CPU:
- blaze build -c opt --copt=-mavx \
- third_party/tensorflow_models/domain_adaptation/domain_separation:dsn_eval
- To build locally for GPU:
- blaze build -c opt --copt=-mavx --config=cuda_clang \
- third_party/tensorflow_models/domain_adaptation/domain_separation:dsn_eval
- To run locally:
- $
- ./blaze-bin/third_party/tensorflow_models/domain_adaptation/domain_separation/dsn_eval
- \
- --alsologtostderr
- """
- # pylint: enable=line-too-long
- import math
- import google3
- import numpy as np
- import tensorflow as tf
- from google3.robotics.cad_learning.domain_adaptation.fnist import data_provider
- from google3.third_party.tensorflow_models.domain_adaptation.domain_separation import models
- slim = tf.contrib.slim
- FLAGS = tf.app.flags.FLAGS
- tf.app.flags.DEFINE_integer('batch_size', 50,
- 'The number of images in each batch.')
- tf.app.flags.DEFINE_string('master', 'local',
- 'BNS name of the TensorFlow master to use.')
- tf.app.flags.DEFINE_string('checkpoint_dir', '/tmp/da/',
- 'Directory where the model was written to.')
- tf.app.flags.DEFINE_string(
- 'eval_dir', '/tmp/da/',
- 'Directory where we should write the tf summaries to.')
- tf.app.flags.DEFINE_string(
- 'dataset', 'pose_real',
- 'Which dataset to test on: "pose_real", "pose_synthetic".')
- tf.app.flags.DEFINE_string('portion', 'valid',
- 'Which portion to test on: "valid", "test".')
- tf.app.flags.DEFINE_integer('num_examples', 1000, 'Number of test examples.')
- tf.app.flags.DEFINE_string('basic_tower', 'pose_mini',
- 'The basic tower building block.')
- tf.app.flags.DEFINE_bool('use_logging', False, 'Debugging messages.')
- def quaternion_metric(predictions, labels):
- product = tf.multiply(predictions, labels)
- internal_dot_products = tf.reduce_sum(product, [1])
- logcost = tf.log(1e-4 + 1 - tf.abs(internal_dot_products))
- return tf.contrib.metrics.streaming_mean(logcost)
- def to_degrees(predictions, labels):
- """Converts a log quaternion distance to an angle.
- Args:
- log_quaternion_loss: The log quaternion distance between two
- unit quaternions (or a batch of pairs of quaternions).
- Returns:
- The angle in degrees of the implied angle-axis representation.
- """
- product = tf.multiply(predictions, labels)
- internal_dot_products = tf.reduce_sum(product, [1])
- log_quaternion_loss = tf.log(1e-4 + 1 - tf.abs(internal_dot_products))
- angle_loss = tf.acos(-(tf.exp(log_quaternion_loss) - 1)) * 2 * 180 / math.pi
- return tf.contrib.metrics.streaming_mean(angle_loss)
- def main(_):
- g = tf.Graph()
- with g.as_default():
- images, labels = data_provider.provide(FLAGS.dataset, FLAGS.portion,
- FLAGS.batch_size)
- num_classes = labels['classes'].shape[1]
- # Define the model:
- with tf.variable_scope('towers'):
- basic_tower = models.provide(FLAGS.basic_tower)
- predictions, endpoints = basic_tower(
- images, is_training=False, num_classes=num_classes)
- names_to_values = {}
- names_to_updates = {}
- # Define the metrics:
- if 'quaternions' in labels: # Also have to evaluate pose estimation!
- quaternion_loss = quaternion_metric(labels['quaternions'],
- endpoints['quaternion_pred'])
- metric_name = 'Angle Mean Error'
- names_to_values[metric_name], names_to_updates[metric_name] = to_degrees(
- labels['quaternions'], endpoints['quaternion_pred'])
- metric_name = 'Log Quaternion Error'
- names_to_values[metric_name], names_to_updates[
- metric_name] = quaternion_metric(labels['quaternions'],
- endpoints['quaternion_pred'])
- metric_name = 'Accuracy'
- names_to_values[metric_name], names_to_updates[
- metric_name] = tf.contrib.metrics.streaming_accuracy(
- tf.argmax(predictions, 1), tf.argmax(labels['classes'], 1))
- metric_name = 'Accuracy'
- names_to_values[metric_name], names_to_updates[
- metric_name] = tf.contrib.metrics.streaming_accuracy(
- tf.argmax(predictions, 1), tf.argmax(labels['classes'], 1))
- # Create the summary ops such that they also print out to std output:
- summary_ops = []
- for metric_name, metric_value in names_to_values.iteritems():
- op = tf.contrib.deprecated.scalar_summary(metric_name, metric_value)
- op = tf.Print(op, [metric_value], metric_name)
- summary_ops.append(op)
- # This ensures that we make a single pass over all of the data.
- num_batches = math.ceil(FLAGS.num_examples / float(FLAGS.batch_size))
- # Setup the global step.
- slim.get_or_create_global_step()
- slim.evaluation.evaluation_loop(
- FLAGS.master,
- checkpoint_dir=FLAGS.checkpoint_dir,
- logdir=FLAGS.eval_dir,
- num_evals=num_batches,
- eval_op=names_to_updates.values(),
- summary_op=tf.contrib.deprecated.merge_summary(summary_ops))
- if __name__ == '__main__':
- tf.app.run()
|