from collections import defaultdict from datetime import datetime, timedelta import sys import numpy import tqdm from labours.objects import DevDay from labours.plotting import apply_plot_style, deploy_plot, get_plot_path, import_pyplot from labours.utils import _format_number def show_devs(args, name, start_date, end_date, people, days, max_people=50): from scipy.signal import convolve, slepian if len(people) > max_people: print("Picking top %s developers by commit count" % max_people) # pick top N developers by commit count commits = defaultdict(int) for devs in days.values(): for dev, stats in devs.items(): commits[dev] += stats.Commits commits = sorted(((v, k) for k, v in commits.items()), reverse=True) chosen_people = {people[k] for _, k in commits[:max_people]} else: chosen_people = set(people) dists, devseries, devstats, route = order_commits(chosen_people, days, people) route_map = {v: i for i, v in enumerate(route)} # determine clusters clusters = hdbscan_cluster_routed_series(dists, route) keys = list(devseries.keys()) route = [keys[node] for node in route] print("Plotting") # smooth time series start_date = datetime.fromtimestamp(start_date) start_date = datetime(start_date.year, start_date.month, start_date.day) end_date = datetime.fromtimestamp(end_date) end_date = datetime(end_date.year, end_date.month, end_date.day) size = (end_date - start_date).days + 1 plot_x = [start_date + timedelta(days=i) for i in range(size)] resolution = 64 window = slepian(size // resolution, 0.5) final = numpy.zeros((len(devseries), size), dtype=numpy.float32) for i, s in enumerate(devseries.values()): arr = numpy.array(s).transpose() full_history = numpy.zeros(size, dtype=numpy.float32) mask = arr[0] < size full_history[arr[0][mask]] = arr[1][mask] final[route_map[i]] = convolve(full_history, window, "same") matplotlib, pyplot = import_pyplot(args.backend, args.style) pyplot.rcParams["figure.figsize"] = (32, 16) pyplot.rcParams["font.size"] = args.font_size prop_cycle = pyplot.rcParams["axes.prop_cycle"] colors = prop_cycle.by_key()["color"] fig, axes = pyplot.subplots(final.shape[0], 1) backgrounds = ("#C4FFDB", "#FFD0CD") if args.background == "white" else ("#05401C", "#40110E") max_cluster = numpy.max(clusters) for ax, series, cluster, dev_i in zip(axes, final, clusters, route): if cluster >= 0: color = colors[cluster % len(colors)] i = 1 while color == "#777777": color = colors[(max_cluster + i) % len(colors)] i += 1 else: # outlier color = "#777777" ax.fill_between(plot_x, series, color=color) ax.set_axis_off() author = people[dev_i] ax.text(0.03, 0.5, author[:36] + (author[36:] and "..."), horizontalalignment="right", verticalalignment="center", transform=ax.transAxes, fontsize=args.font_size, color="black" if args.background == "white" else "white") ds = devstats[dev_i] stats = "%5d %8s %8s" % (ds[0], _format_number(ds[1] - ds[2]), _format_number(ds[3])) ax.text(0.97, 0.5, stats, horizontalalignment="left", verticalalignment="center", transform=ax.transAxes, fontsize=args.font_size, family="monospace", backgroundcolor=backgrounds[ds[1] <= ds[2]], color="black" if args.background == "white" else "white") axes[0].text(0.97, 1.75, " cmts delta changed", horizontalalignment="left", verticalalignment="center", transform=axes[0].transAxes, fontsize=args.font_size, family="monospace", color="black" if args.background == "white" else "white") axes[-1].set_axis_on() target_num_labels = 12 num_months = (end_date.year - start_date.year) * 12 + end_date.month - start_date.month interval = int(numpy.ceil(num_months / target_num_labels)) if interval >= 8: interval = int(numpy.ceil(num_months / (12 * target_num_labels))) axes[-1].xaxis.set_major_locator(matplotlib.dates.YearLocator(base=max(1, interval // 12))) axes[-1].xaxis.set_major_formatter(matplotlib.dates.DateFormatter("%Y")) else: axes[-1].xaxis.set_major_locator(matplotlib.dates.MonthLocator(interval=interval)) axes[-1].xaxis.set_major_formatter(matplotlib.dates.DateFormatter("%Y-%m")) for tick in axes[-1].xaxis.get_major_ticks(): tick.label.set_fontsize(args.font_size) axes[-1].spines["left"].set_visible(False) axes[-1].spines["right"].set_visible(False) axes[-1].spines["top"].set_visible(False) axes[-1].get_yaxis().set_visible(False) axes[-1].set_facecolor((1.0,) * 3 + (0.0,)) title = ("%s commits" % name) if not args.output else "" if args.mode == "all" and args.output: output = get_plot_path(args.output, "time_series") else: output = args.output deploy_plot(title, output, args.background) def order_commits(chosen_people, days, people): from seriate import seriate try: from fastdtw import fastdtw except ImportError as e: print("Cannot import fastdtw: %s\nInstall it from https://github.com/slaypni/fastdtw" % e) sys.exit(1) # FIXME(vmarkovtsev): remove once https://github.com/slaypni/fastdtw/pull/28 is merged&released try: sys.modules["fastdtw.fastdtw"].__norm = lambda p: lambda a, b: numpy.linalg.norm( numpy.atleast_1d(a) - numpy.atleast_1d(b), p) except KeyError: # the native extension does not have this bug pass devseries = defaultdict(list) devstats = defaultdict(lambda: DevDay(0, 0, 0, 0, {})) for day, devs in sorted(days.items()): for dev, stats in devs.items(): if people[dev] in chosen_people: devseries[dev].append((day, stats.Commits)) devstats[dev] = devstats[dev].add(stats) print("Calculating the distance matrix") # max-normalize the time series using a sliding window series = list(devseries.values()) for i, s in enumerate(series): arr = numpy.array(s).transpose().astype(numpy.float32) arr[1] /= arr[1].sum() series[i] = arr.transpose() # calculate the distance matrix using dynamic time warping dists = numpy.full((len(series),) * 2, -100500, dtype=numpy.float32) # TODO: what's the total for this progress bar? with tqdm.tqdm() as pb: for x, serx in enumerate(series): dists[x, x] = 0 for y, sery in enumerate(series[x + 1:], start=x + 1): min_day = int(min(serx[0][0], sery[0][0])) max_day = int(max(serx[-1][0], sery[-1][0])) arrx = numpy.zeros(max_day - min_day + 1, dtype=numpy.float32) arry = numpy.zeros_like(arrx) arrx[serx[:, 0].astype(int) - min_day] = serx[:, 1] arry[sery[:, 0].astype(int) - min_day] = sery[:, 1] # L1 norm dist, _ = fastdtw(arrx, arry, radius=5, dist=1) dists[x, y] = dists[y, x] = dist pb.update() print("Ordering the series") route = seriate(dists) return dists, devseries, devstats, route def hdbscan_cluster_routed_series(dists, route): try: from hdbscan import HDBSCAN except ImportError as e: print("Cannot import hdbscan: %s" % e) sys.exit(1) opt_dist_chain = numpy.cumsum(numpy.array( [0] + [dists[route[i], route[i + 1]] for i in range(len(route) - 1)])) clusters = HDBSCAN(min_cluster_size=2).fit_predict(opt_dist_chain[:, numpy.newaxis]) return clusters def show_devs_efforts(args, name, start_date, end_date, people, days, max_people): from scipy.signal import convolve, slepian start_date = datetime.fromtimestamp(start_date) start_date = datetime(start_date.year, start_date.month, start_date.day) end_date = datetime.fromtimestamp(end_date) end_date = datetime(end_date.year, end_date.month, end_date.day) efforts_by_dev = defaultdict(int) for day, devs in days.items(): for dev, stats in devs.items(): efforts_by_dev[dev] += stats.Added + stats.Removed + stats.Changed if len(efforts_by_dev) > max_people: chosen = {v for k, v in sorted( ((v, k) for k, v in efforts_by_dev.items()), reverse=True)[:max_people]} print("Warning: truncated people to the most active %d" % max_people) else: chosen = set(efforts_by_dev) chosen_efforts = sorted(((efforts_by_dev[k], k) for k in chosen), reverse=True) chosen_order = {k: i for i, (_, k) in enumerate(chosen_efforts)} efforts = numpy.zeros((len(chosen) + 1, (end_date - start_date).days + 1), dtype=numpy.float32) for day, devs in days.items(): if day < efforts.shape[1]: for dev, stats in devs.items(): dev = chosen_order.get(dev, len(chosen_order)) efforts[dev][day] += stats.Added + stats.Removed + stats.Changed efforts_cum = numpy.cumsum(efforts, axis=1) window = slepian(10, 0.5) window /= window.sum() for e in (efforts, efforts_cum): for i in range(e.shape[0]): ending = e[i][-len(window) * 2:].copy() e[i] = convolve(e[i], window, "same") e[i][-len(ending):] = ending matplotlib, pyplot = import_pyplot(args.backend, args.style) plot_x = [start_date + timedelta(days=i) for i in range(efforts.shape[1])] people = [people[k] for _, k in chosen_efforts] + ["others"] for i, name in enumerate(people): if len(name) > 40: people[i] = name[:37] + "..." polys = pyplot.stackplot(plot_x, efforts_cum, labels=people) if len(polys) == max_people + 1: polys[-1].set_hatch("/") polys = pyplot.stackplot(plot_x, -efforts * efforts_cum.max() / efforts.max()) if len(polys) == max_people + 1: polys[-1].set_hatch("/") yticks = [] for tick in pyplot.gca().yaxis.iter_ticks(): if tick[1] >= 0: yticks.append(tick[1]) pyplot.gca().yaxis.set_ticks(yticks) legend = pyplot.legend(loc=2, ncol=2, fontsize=args.font_size) apply_plot_style(pyplot.gcf(), pyplot.gca(), legend, args.background, args.font_size, args.size or "16,10") if args.mode == "all" and args.output: output = get_plot_path(args.output, "efforts") else: output = args.output deploy_plot("Efforts through time (changed lines of code)", output, args.background)