123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- # Import required modules
- import cv2 as cv
- import math
- import time
- import argparse
- def getFaceBox(net, frame, conf_threshold=0.7):
- frameOpencvDnn = frame.copy()
- frameHeight = frameOpencvDnn.shape[0]
- frameWidth = frameOpencvDnn.shape[1]
- blob = cv.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)
- net.setInput(blob)
- detections = net.forward()
- bboxes = []
- for i in range(detections.shape[2]):
- confidence = detections[0, 0, i, 2]
- if confidence > conf_threshold:
- x1 = int(detections[0, 0, i, 3] * frameWidth)
- y1 = int(detections[0, 0, i, 4] * frameHeight)
- x2 = int(detections[0, 0, i, 5] * frameWidth)
- y2 = int(detections[0, 0, i, 6] * frameHeight)
- bboxes.append([x1, y1, x2, y2])
- cv.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (0, 255, 0), int(round(frameHeight/150)), 8)
- return frameOpencvDnn, bboxes
- parser = argparse.ArgumentParser(description='Use this script to run age and gender recognition using OpenCV.')
- parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
- parser.add_argument("--device", default="cpu", help="Device to inference on")
- args = parser.parse_args()
- args = parser.parse_args()
- faceProto = "opencv_face_detector.pbtxt"
- faceModel = "opencv_face_detector_uint8.pb"
- ageProto = "age_deploy.prototxt"
- ageModel = "age_net.caffemodel"
- genderProto = "gender_deploy.prototxt"
- genderModel = "gender_net.caffemodel"
- MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)
- ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
- genderList = ['Male', 'Female']
- # Load network
- ageNet = cv.dnn.readNet(ageModel, ageProto)
- genderNet = cv.dnn.readNet(genderModel, genderProto)
- faceNet = cv.dnn.readNet(faceModel, faceProto)
- if args.device == "cpu":
- ageNet.setPreferableBackend(cv.dnn.DNN_TARGET_CPU)
- genderNet.setPreferableBackend(cv.dnn.DNN_TARGET_CPU)
-
- faceNet.setPreferableBackend(cv.dnn.DNN_TARGET_CPU)
- print("Using CPU device")
- elif args.device == "gpu":
- ageNet.setPreferableBackend(cv.dnn.DNN_BACKEND_CUDA)
- ageNet.setPreferableTarget(cv.dnn.DNN_TARGET_CUDA)
- genderNet.setPreferableBackend(cv.dnn.DNN_BACKEND_CUDA)
- genderNet.setPreferableTarget(cv.dnn.DNN_TARGET_CUDA)
- genderNet.setPreferableBackend(cv.dnn.DNN_BACKEND_CUDA)
- genderNet.setPreferableTarget(cv.dnn.DNN_TARGET_CUDA)
- print("Using GPU device")
- # Open a video file or an image file or a camera stream
- cap = cv.VideoCapture(args.input if args.input else 0)
- padding = 20
- while cv.waitKey(1) < 0:
- # Read frame
- t = time.time()
- hasFrame, frame = cap.read()
- if not hasFrame:
- cv.waitKey()
- break
- frameFace, bboxes = getFaceBox(faceNet, frame)
- if not bboxes:
- print("No face Detected, Checking next frame")
- continue
- for bbox in bboxes:
- # print(bbox)
- face = frame[max(0,bbox[1]-padding):min(bbox[3]+padding,frame.shape[0]-1),max(0,bbox[0]-padding):min(bbox[2]+padding, frame.shape[1]-1)]
- blob = cv.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False)
- genderNet.setInput(blob)
- genderPreds = genderNet.forward()
- gender = genderList[genderPreds[0].argmax()]
- # print("Gender Output : {}".format(genderPreds))
- print("Gender : {}, conf = {:.3f}".format(gender, genderPreds[0].max()))
- ageNet.setInput(blob)
- agePreds = ageNet.forward()
- age = ageList[agePreds[0].argmax()]
- print("Age Output : {}".format(agePreds))
- print("Age : {}, conf = {:.3f}".format(age, agePreds[0].max()))
- label = "{},{}".format(gender, age)
- cv.putText(frameFace, label, (bbox[0], bbox[1]-10), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv.LINE_AA)
- cv.imshow("Age Gender Demo", frameFace)
- # cv.imwrite("age-gender-out-{}".format(args.input),frameFace)
- print("time : {:.3f}".format(time.time() - t))
-
- # cmake -DCMAKE_BUILD_TYPE=RELEASE -DCMAKE_INSTALL_PREFIX=~/opencv_gpu -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DOPENCV_ENABLE_NONFREE=ON -DOPENCV_EXTRA_MODULES_PATH=~/cv2_gpu/opencv_contrib/modules -DPYTHON_EXECUTABLE=~/env/bin/python3 -DBUILD_EXAMPLES=ON -DWITH_CUDA=ON -DWITH_CUDNN=ON -DOPENCV_DNN_CUDA=ON -DENABLE_FAST_MATH=ON -DCUDA_FAST_MATH=ON -DWITH_CUBLAS=ON -DCUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda-10.2 -DOpenCL_LIBRARY=/usr/local/cuda-10.2/lib64/libOpenCL.so -DOpenCL_INCLUDE_DIR=/usr/local/cuda-10.2/include/ ..
|