1234567891011121314151617181920212223242526272829303132333435363738 |
- import cv2
- import numpy as np
- import argparse
- # create object to pass argument
- arg_parse = argparse.ArgumentParser()
- arg_parse.add_argument("-i", "--ipimage", required=True,
- help="input image path")
- args = vars(arg_parse.parse_args())
- # read image through command line
- img = cv2.imread(args["ipimage"])
- # convert the image to grayscale
- gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
- # convert the grayscale image to binary image
- ret,thresh = cv2.threshold(gray_image,127,255,0)
- # find contour in the binary image
- im2, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
- for c in contours:
- # calculate moments for each contour
- M = cv2.moments(c)
- cX = int(M["m10"] / M["m00"])
- cY = int(M["m01"] / M["m00"])
-
-
- # calculate x,y coordinate of center
- cv2.circle(img, (cX, cY), 5, (255, 255, 255), -1)
- cv2.putText(img, "centroid", (cX - 25, cY - 25),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
- # display the image
- cv2.imshow("Image", img)
- cv2.waitKey(0)
- # 3.4.1 im2, contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
- # 3.2.0 im2, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|