123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 |
- import argparse
- import os
- import time
- import cv2
- def detectFaceOpenCVHaar(faceCascade, frame, inHeight=300, inWidth=0):
- frameOpenCVHaar = frame.copy()
- frameHeight = frameOpenCVHaar.shape[0]
- frameWidth = frameOpenCVHaar.shape[1]
- if not inWidth:
- inWidth = int((frameWidth / frameHeight) * inHeight)
- scaleHeight = frameHeight / inHeight
- scaleWidth = frameWidth / inWidth
- frameOpenCVHaarSmall = cv2.resize(frameOpenCVHaar, (inWidth, inHeight))
- frameGray = cv2.cvtColor(frameOpenCVHaarSmall, cv2.COLOR_BGR2GRAY)
- faces = faceCascade.detectMultiScale(frameGray)
- bboxes = []
- for (x, y, w, h) in faces:
- x1 = x
- y1 = y
- x2 = x + w
- y2 = y + h
- cvRect = [
- int(x1 * scaleWidth),
- int(y1 * scaleHeight),
- int(x2 * scaleWidth),
- int(y2 * scaleHeight),
- ]
- bboxes.append(cvRect)
- cv2.rectangle(
- frameOpenCVHaar,
- (cvRect[0], cvRect[1]),
- (cvRect[2], cvRect[3]),
- (0, 255, 0),
- int(round(frameHeight / 150)),
- 4,
- )
- return frameOpenCVHaar, bboxes
- if __name__ == "__main__":
- parser = argparse.ArgumentParser(description="Face detection")
- parser.add_argument("--video", type=str, default="", help="Path to video file")
- args = parser.parse_args()
- source = args.video
- faceCascade = cv2.CascadeClassifier("models/haarcascade_frontalface_default.xml")
- outputFolder = "output-haar-videos"
- if not os.path.exists(outputFolder):
- os.makedirs(outputFolder)
- if source:
- cap = cv2.VideoCapture(source)
- outputFile = os.path.basename(source)[:-4] + ".avi"
- else:
- cap = cv2.VideoCapture(0, cv2.CAP_V4L)
- outputFile = "grabbed_from_camera.avi"
- hasFrame, frame = cap.read()
- vid_writer = cv2.VideoWriter(
- os.path.join(outputFolder, outputFile),
- cv2.VideoWriter_fourcc("M", "J", "P", "G"),
- 25,
- (frame.shape[1], frame.shape[0]),
- )
- frame_count = 0
- tt_opencvHaar = 0
- while True:
- hasFrame, frame = cap.read()
- if not hasFrame:
- break
- frame_count += 1
- t = time.time()
- outOpencvHaar, bboxes = detectFaceOpenCVHaar(faceCascade, frame)
- tt_opencvHaar += time.time() - t
- fpsOpencvHaar = frame_count / tt_opencvHaar
- label = "OpenCV Haar; FPS : {:.2f}".format(fpsOpencvHaar)
- cv2.putText(
- outOpencvHaar,
- label,
- (10, 50),
- cv2.FONT_HERSHEY_SIMPLEX,
- 1.3,
- (0, 0, 255),
- 3,
- cv2.LINE_AA,
- )
- cv2.imshow("Face Detection Comparison", outOpencvHaar)
- vid_writer.write(outOpencvHaar)
- if frame_count == 1:
- tt_opencvHaar = 0
- key = cv2.waitKey(5)
- if key == 27:
- break
- cv2.destroyAllWindows()
- vid_writer.release()
|