123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285 |
- import argparse
- import csv
- import os
- import pprint
- from collections import OrderedDict
- import cv2
- import numpy as np
- import torch
- import lib.models as models
- from lib.config import (
- config,
- update_config,
- )
- from lib.core.evaluation import decode_preds
- from lib.utils import utils
- from lib.utils.transforms import crop
- def parse_args():
- parser = argparse.ArgumentParser(description="Face Mask Overlay")
- parser.add_argument(
- "--cfg", help="experiment configuration filename", required=True, type=str,
- )
- parser.add_argument(
- "--landmark_model",
- help="path to model for landmarks exctraction",
- required=True,
- type=str,
- )
- parser.add_argument(
- "--detector_model",
- help="path to detector model",
- type=str,
- default="detection/face_detector.prototxt",
- )
- parser.add_argument(
- "--detector_weights",
- help="path to detector weights",
- type=str,
- default="detection/face_detector.caffemodel",
- )
- parser.add_argument(
- "--mask_image", help="path to a .png file with a mask", required=True, type=str,
- )
- parser.add_argument("--device", default="cpu", help="Device to inference on")
- args = parser.parse_args()
- update_config(config, args)
- return args
- def main():
- # parsing script arguments
- args = parse_args()
- device = torch.device(args.device)
- # initialize logger
- logger, final_output_dir, tb_log_dir = utils.create_logger(config, args.cfg, "demo")
- # log arguments and config values
- logger.info(pprint.pformat(args))
- logger.info(pprint.pformat(config))
- # init landmark model
- model = models.get_face_alignment_net(config)
- # get input size from the config
- input_size = config.MODEL.IMAGE_SIZE
- # load model
- state_dict = torch.load(args.landmark_model, map_location=device)
- # remove `module.` prefix from the pre-trained weights
- new_state_dict = OrderedDict()
- for key, value in state_dict.items():
- name = key[7:]
- new_state_dict[name] = value
- # load weights without the prefix
- model.load_state_dict(new_state_dict)
- # run model on device
- model = model.to(device)
- # init mean and std values for the landmark model's input
- mean = config.MODEL.MEAN
- mean = np.array(mean, dtype=np.float32)
- std = config.MODEL.STD
- std = np.array(std, dtype=np.float32)
- # defining prototxt and caffemodel paths
- detector_model = args.detector_model
- detector_weights = args.detector_weights
- # load model
- detector = cv2.dnn.readNetFromCaffe(detector_model, detector_weights)
- capture = cv2.VideoCapture(0)
- frame_num = 0
- while True:
- # capture frame-by-frame
- success, frame = capture.read()
- # break if no frame
- if not success:
- break
- frame_num += 1
- print("frame_num: ", frame_num)
- landmarks_img = frame.copy()
- result = frame.copy()
- result = result.astype(np.float32) / 255.0
- # get frame's height and width
- height, width = frame.shape[:2] # 640x480
- # resize and subtract BGR mean values, since Caffe uses BGR images for input
- blob = cv2.dnn.blobFromImage(
- frame, scalefactor=1.0, size=(300, 300), mean=(104.0, 177.0, 123.0),
- )
- # passing blob through the network to detect faces
- detector.setInput(blob)
- # detector output format:
- # [image_id, class, confidence, left, bottom, right, top]
- face_detections = detector.forward()
- # loop over the detections
- for i in range(0, face_detections.shape[2]):
- # extract confidence
- confidence = face_detections[0, 0, i, 2]
- # filter detections by confidence greater than the minimum threshold
- if confidence > 0.5:
- # get coordinates of the bounding box
- box = face_detections[0, 0, i, 3:7] * np.array(
- [width, height, width, height],
- )
- (x1, y1, x2, y2) = box.astype("int")
- # show original image
- cv2.imshow("original image", frame)
- # crop to detection and resize
- resized = crop(
- frame,
- torch.Tensor([x1 + (x2 - x1) / 2, y1 + (y2 - y1) / 2]),
- 1.5,
- tuple(input_size),
- )
- # convert from BGR to RGB since HRNet expects RGB format
- resized = cv2.cvtColor(resized, cv2.COLOR_BGR2RGB)
- img = resized.astype(np.float32) / 255.0
- # normalize landmark net input
- normalized_img = (img - mean) / std
- # predict face landmarks
- model = model.eval()
- with torch.no_grad():
- input = torch.Tensor(normalized_img.transpose([2, 0, 1]))
- input = input.to(device)
- output = model(input.unsqueeze(0))
- score_map = output.data.cpu()
- preds = decode_preds(
- score_map,
- [torch.Tensor([x1 + (x2 - x1) / 2, y1 + (y2 - y1) / 2])],
- [1.5],
- score_map.shape[2:4],
- )
- preds = preds.squeeze(0)
- landmarks = preds.data.cpu().detach().numpy()
- # draw landmarks
- for k, landmark in enumerate(landmarks, 1):
- landmarks_img = cv2.circle(
- landmarks_img,
- center=(landmark[0], landmark[1]),
- radius=3,
- color=(0, 0, 255),
- thickness=-1,
- )
- # draw landmarks' labels
- landmarks_img = cv2.putText(
- img=landmarks_img,
- text=str(k),
- org=(int(landmark[0]) + 5, int(landmark[1]) + 5),
- fontFace=cv2.FONT_HERSHEY_SIMPLEX,
- fontScale=0.5,
- color=(0, 0, 255),
- )
- # show results by drawing predicted landmarks and their labels
- cv2.imshow("image with landmarks", landmarks_img)
- # get chosen landmarks 2-16, 30 as destination points
- # note that landmarks numbering starts from 0
- dst_pts = np.array(
- [
- landmarks[1],
- landmarks[2],
- landmarks[3],
- landmarks[4],
- landmarks[5],
- landmarks[6],
- landmarks[7],
- landmarks[8],
- landmarks[9],
- landmarks[10],
- landmarks[11],
- landmarks[12],
- landmarks[13],
- landmarks[14],
- landmarks[15],
- landmarks[29],
- ],
- dtype="float32",
- )
- # load mask annotations from csv file to source points
- mask_annotation = os.path.splitext(os.path.basename(args.mask_image))[0]
- mask_annotation = os.path.join(
- os.path.dirname(args.mask_image), mask_annotation + ".csv",
- )
- with open(mask_annotation) as csv_file:
- csv_reader = csv.reader(csv_file, delimiter=",")
- src_pts = []
- for i, row in enumerate(csv_reader):
- # skip head or empty line if it's there
- try:
- src_pts.append(np.array([float(row[1]), float(row[2])]))
- except ValueError:
- continue
- src_pts = np.array(src_pts, dtype="float32")
- # overlay with a mask only if all landmarks have positive coordinates:
- if (landmarks > 0).all():
- # load mask image
- mask_img = cv2.imread(args.mask_image, cv2.IMREAD_UNCHANGED)
- mask_img = mask_img.astype(np.float32)
- mask_img = mask_img / 255.0
- # get the perspective transformation matrix
- M, _ = cv2.findHomography(src_pts, dst_pts)
- # transformed masked image
- transformed_mask = cv2.warpPerspective(
- mask_img,
- M,
- (result.shape[1], result.shape[0]),
- None,
- cv2.INTER_LINEAR,
- cv2.BORDER_CONSTANT,
- )
- # mask overlay
- alpha_mask = transformed_mask[:, :, 3]
- alpha_image = 1.0 - alpha_mask
- for c in range(0, 3):
- result[:, :, c] = (
- alpha_mask * transformed_mask[:, :, c]
- + alpha_image * result[:, :, c]
- )
- # display the resulting frame
- cv2.imshow("image with mask overlay", result)
- # waiting for the escape button to exit
- k = cv2.waitKey(1)
- if k == 27:
- break
- # when everything done, release the capture
- capture.release()
- cv2.destroyAllWindows()
- if __name__ == "__main__":
- main()
|