goturn.prototxt 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588
  1. name: "GOTURN"
  2. input: "data1"
  3. input_dim: 1
  4. input_dim: 3
  5. input_dim: 227
  6. input_dim: 227
  7. input: "data2"
  8. input_dim: 1
  9. input_dim: 3
  10. input_dim: 227
  11. input_dim: 227
  12. layer {
  13. name: "conv11"
  14. type: "Convolution"
  15. bottom: "data1"
  16. top: "conv11"
  17. param {
  18. lr_mult: 1
  19. decay_mult: 1
  20. }
  21. param {
  22. lr_mult: 2
  23. decay_mult: 0
  24. }
  25. convolution_param {
  26. num_output: 96
  27. kernel_size: 11
  28. stride: 4
  29. weight_filler {
  30. type: "gaussian"
  31. std: 0.01
  32. }
  33. bias_filler {
  34. type: "constant"
  35. value: 0
  36. }
  37. }
  38. }
  39. layer {
  40. name: "relu11"
  41. type: "ReLU"
  42. bottom: "conv11"
  43. top: "conv11"
  44. }
  45. layer {
  46. name: "pool11"
  47. type: "Pooling"
  48. bottom: "conv11"
  49. top: "pool11"
  50. pooling_param {
  51. pool: MAX
  52. kernel_size: 3
  53. stride: 2
  54. }
  55. }
  56. layer {
  57. name: "norm11"
  58. type: "LRN"
  59. bottom: "pool11"
  60. top: "norm11"
  61. lrn_param {
  62. local_size: 5
  63. alpha: 0.0001
  64. beta: 0.75
  65. }
  66. }
  67. layer {
  68. name: "conv12"
  69. type: "Convolution"
  70. bottom: "norm11"
  71. top: "conv12"
  72. param {
  73. lr_mult: 1
  74. decay_mult: 1
  75. }
  76. param {
  77. lr_mult: 2
  78. decay_mult: 0
  79. }
  80. convolution_param {
  81. num_output: 256
  82. pad: 2
  83. kernel_size: 5
  84. group: 2
  85. weight_filler {
  86. type: "gaussian"
  87. std: 0.01
  88. }
  89. bias_filler {
  90. type: "constant"
  91. value: 1
  92. }
  93. }
  94. }
  95. layer {
  96. name: "relu12"
  97. type: "ReLU"
  98. bottom: "conv12"
  99. top: "conv12"
  100. }
  101. layer {
  102. name: "pool12"
  103. type: "Pooling"
  104. bottom: "conv12"
  105. top: "pool12"
  106. pooling_param {
  107. pool: MAX
  108. kernel_size: 3
  109. stride: 2
  110. }
  111. }
  112. layer {
  113. name: "norm12"
  114. type: "LRN"
  115. bottom: "pool12"
  116. top: "norm12"
  117. lrn_param {
  118. local_size: 5
  119. alpha: 0.0001
  120. beta: 0.75
  121. }
  122. }
  123. layer {
  124. name: "conv13"
  125. type: "Convolution"
  126. bottom: "norm12"
  127. top: "conv13"
  128. param {
  129. lr_mult: 1
  130. decay_mult: 1
  131. }
  132. param {
  133. lr_mult: 2
  134. decay_mult: 0
  135. }
  136. convolution_param {
  137. num_output: 384
  138. pad: 1
  139. kernel_size: 3
  140. weight_filler {
  141. type: "gaussian"
  142. std: 0.01
  143. }
  144. bias_filler {
  145. type: "constant"
  146. value: 0
  147. }
  148. }
  149. }
  150. layer {
  151. name: "relu13"
  152. type: "ReLU"
  153. bottom: "conv13"
  154. top: "conv13"
  155. }
  156. layer {
  157. name: "conv14"
  158. type: "Convolution"
  159. bottom: "conv13"
  160. top: "conv14"
  161. param {
  162. lr_mult: 1
  163. decay_mult: 1
  164. }
  165. param {
  166. lr_mult: 2
  167. decay_mult: 0
  168. }
  169. convolution_param {
  170. num_output: 384
  171. pad: 1
  172. kernel_size: 3
  173. group: 2
  174. weight_filler {
  175. type: "gaussian"
  176. std: 0.01
  177. }
  178. bias_filler {
  179. type: "constant"
  180. value: 1
  181. }
  182. }
  183. }
  184. layer {
  185. name: "relu14"
  186. type: "ReLU"
  187. bottom: "conv14"
  188. top: "conv14"
  189. }
  190. layer {
  191. name: "conv15"
  192. type: "Convolution"
  193. bottom: "conv14"
  194. top: "conv15"
  195. param {
  196. lr_mult: 1
  197. decay_mult: 1
  198. }
  199. param {
  200. lr_mult: 2
  201. decay_mult: 0
  202. }
  203. convolution_param {
  204. num_output: 256
  205. pad: 1
  206. kernel_size: 3
  207. group: 2
  208. weight_filler {
  209. type: "gaussian"
  210. std: 0.01
  211. }
  212. bias_filler {
  213. type: "constant"
  214. value: 1
  215. }
  216. }
  217. }
  218. layer {
  219. name: "relu15"
  220. type: "ReLU"
  221. bottom: "conv15"
  222. top: "conv15"
  223. }
  224. layer {
  225. name: "pool15"
  226. type: "Pooling"
  227. bottom: "conv15"
  228. top: "pool15"
  229. pooling_param {
  230. pool: MAX
  231. kernel_size: 3
  232. stride: 2
  233. }
  234. }
  235. layer {
  236. name: "conv21"
  237. type: "Convolution"
  238. bottom: "data2"
  239. top: "conv21"
  240. param {
  241. lr_mult: 1
  242. decay_mult: 1
  243. }
  244. param {
  245. lr_mult: 2
  246. decay_mult: 0
  247. }
  248. convolution_param {
  249. num_output: 96
  250. kernel_size: 11
  251. stride: 4
  252. weight_filler {
  253. type: "gaussian"
  254. std: 0.01
  255. }
  256. bias_filler {
  257. type: "constant"
  258. value: 0
  259. }
  260. }
  261. }
  262. layer {
  263. name: "relu21"
  264. type: "ReLU"
  265. bottom: "conv21"
  266. top: "conv21"
  267. }
  268. layer {
  269. name: "pool21"
  270. type: "Pooling"
  271. bottom: "conv21"
  272. top: "pool21"
  273. pooling_param {
  274. pool: MAX
  275. kernel_size: 3
  276. stride: 2
  277. }
  278. }
  279. layer {
  280. name: "norm21"
  281. type: "LRN"
  282. bottom: "pool21"
  283. top: "norm21"
  284. lrn_param {
  285. local_size: 5
  286. alpha: 0.0001
  287. beta: 0.75
  288. }
  289. }
  290. layer {
  291. name: "conv22"
  292. type: "Convolution"
  293. bottom: "norm21"
  294. top: "conv22"
  295. param {
  296. lr_mult: 1
  297. decay_mult: 1
  298. }
  299. param {
  300. lr_mult: 2
  301. decay_mult: 0
  302. }
  303. convolution_param {
  304. num_output: 256
  305. pad: 2
  306. kernel_size: 5
  307. group: 2
  308. weight_filler {
  309. type: "gaussian"
  310. std: 0.01
  311. }
  312. bias_filler {
  313. type: "constant"
  314. value: 1
  315. }
  316. }
  317. }
  318. layer {
  319. name: "relu22"
  320. type: "ReLU"
  321. bottom: "conv22"
  322. top: "conv22"
  323. }
  324. layer {
  325. name: "pool22"
  326. type: "Pooling"
  327. bottom: "conv22"
  328. top: "pool22"
  329. pooling_param {
  330. pool: MAX
  331. kernel_size: 3
  332. stride: 2
  333. }
  334. }
  335. layer {
  336. name: "norm22"
  337. type: "LRN"
  338. bottom: "pool22"
  339. top: "norm22"
  340. lrn_param {
  341. local_size: 5
  342. alpha: 0.0001
  343. beta: 0.75
  344. }
  345. }
  346. layer {
  347. name: "conv23"
  348. type: "Convolution"
  349. bottom: "norm22"
  350. top: "conv23"
  351. param {
  352. lr_mult: 1
  353. decay_mult: 1
  354. }
  355. param {
  356. lr_mult: 2
  357. decay_mult: 0
  358. }
  359. convolution_param {
  360. num_output: 384
  361. pad: 1
  362. kernel_size: 3
  363. weight_filler {
  364. type: "gaussian"
  365. std: 0.01
  366. }
  367. bias_filler {
  368. type: "constant"
  369. value: 0
  370. }
  371. }
  372. }
  373. layer {
  374. name: "relu23"
  375. type: "ReLU"
  376. bottom: "conv23"
  377. top: "conv23"
  378. }
  379. layer {
  380. name: "conv24"
  381. type: "Convolution"
  382. bottom: "conv23"
  383. top: "conv24"
  384. param {
  385. lr_mult: 1
  386. decay_mult: 1
  387. }
  388. param {
  389. lr_mult: 2
  390. decay_mult: 0
  391. }
  392. convolution_param {
  393. num_output: 384
  394. pad: 1
  395. kernel_size: 3
  396. group: 2
  397. weight_filler {
  398. type: "gaussian"
  399. std: 0.01
  400. }
  401. bias_filler {
  402. type: "constant"
  403. value: 1
  404. }
  405. }
  406. }
  407. layer {
  408. name: "relu24"
  409. type: "ReLU"
  410. bottom: "conv24"
  411. top: "conv24"
  412. }
  413. layer {
  414. name: "conv25"
  415. type: "Convolution"
  416. bottom: "conv24"
  417. top: "conv25"
  418. param {
  419. lr_mult: 1
  420. decay_mult: 1
  421. }
  422. param {
  423. lr_mult: 2
  424. decay_mult: 0
  425. }
  426. convolution_param {
  427. num_output: 256
  428. pad: 1
  429. kernel_size: 3
  430. group: 2
  431. weight_filler {
  432. type: "gaussian"
  433. std: 0.01
  434. }
  435. bias_filler {
  436. type: "constant"
  437. value: 1
  438. }
  439. }
  440. }
  441. layer {
  442. name: "relu25"
  443. type: "ReLU"
  444. bottom: "conv25"
  445. top: "conv25"
  446. }
  447. layer {
  448. name: "pool25"
  449. type: "Pooling"
  450. bottom: "conv25"
  451. top: "pool25"
  452. pooling_param {
  453. pool: MAX
  454. kernel_size: 3
  455. stride: 2
  456. }
  457. }
  458. layer {
  459. name: "concat1"
  460. type: "Concat"
  461. bottom: "pool15"
  462. bottom: "pool25"
  463. top: "poolConcat"
  464. }
  465. layer {
  466. name: "fc6"
  467. type: "InnerProduct"
  468. bottom: "poolConcat"
  469. top: "fc6"
  470. param {
  471. lr_mult: 1
  472. decay_mult: 1
  473. }
  474. param {
  475. lr_mult: 2
  476. decay_mult: 0
  477. }
  478. inner_product_param {
  479. num_output: 4096
  480. weight_filler {
  481. type: "gaussian"
  482. std: 0.005
  483. }
  484. bias_filler {
  485. type: "constant"
  486. value: 1
  487. }
  488. }
  489. }
  490. layer {
  491. name: "relu6"
  492. type: "ReLU"
  493. bottom: "fc6"
  494. top: "fc6"
  495. }
  496. layer {
  497. name: "drop6"
  498. type: "Dropout"
  499. bottom: "fc6"
  500. top: "fc6"
  501. dropout_param {
  502. dropout_ratio: 0.5
  503. }
  504. }
  505. layer {
  506. name: "fc7"
  507. type: "InnerProduct"
  508. bottom: "fc6"
  509. top: "fc7"
  510. param {
  511. lr_mult: 1
  512. decay_mult: 1
  513. }
  514. param {
  515. lr_mult: 2
  516. decay_mult: 0
  517. }
  518. inner_product_param {
  519. num_output: 4096
  520. weight_filler {
  521. type: "gaussian"
  522. std: 0.005
  523. }
  524. bias_filler {
  525. type: "constant"
  526. value: 1
  527. }
  528. }
  529. }
  530. layer {
  531. name: "relu7"
  532. type: "ReLU"
  533. bottom: "fc7"
  534. top: "fc7"
  535. }
  536. layer {
  537. name: "drop7"
  538. type: "Dropout"
  539. bottom: "fc7"
  540. top: "fc7"
  541. dropout_param {
  542. dropout_ratio: 0.5
  543. }
  544. }
  545. layer {
  546. name: "fc8"
  547. type: "InnerProduct"
  548. bottom: "fc7"
  549. top: "fc8"
  550. param {
  551. lr_mult: 1
  552. decay_mult: 1
  553. }
  554. param {
  555. lr_mult: 2
  556. decay_mult: 0
  557. }
  558. inner_product_param {
  559. num_output: 4
  560. weight_filler {
  561. type: "gaussian"
  562. std: 0.01
  563. }
  564. bias_filler {
  565. type: "constant"
  566. value: 0
  567. }
  568. }
  569. }
  570. layer {
  571. name: "scale"
  572. bottom: "fc8"
  573. top: "out"
  574. type: "Power"
  575. power_param {
  576. power: 1
  577. scale: 10
  578. shift: 0
  579. }
  580. }