1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- import cv2
- import numpy as np
- # Load yolo
- def load_yolo():
- net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
- classes = []
- with open("coco.names", "r") as f:
- classes = [line.strip() for line in f.readlines()]
- output_layers = [layer_name for layer_name in net.getUnconnectedOutLayersNames()]
- colors = np.random.uniform(0, 255, size=(len(classes), 3))
- return net, classes, colors, output_layers
- def load_image(img_path):
- # image loading
- img = cv2.imread(img_path)
- img = cv2.resize(img, None, fx=0.4, fy=0.4)
- height, width, channels = img.shape
- return img, height, width, channels
- def start_webcam():
- cap = cv2.VideoCapture(0)
- return cap
- def display_blob(blob):
- """
- Three images each for RED, GREEN, BLUE channel
- """
- for b in blob:
- for n, imgb in enumerate(b):
- cv2.imshow(str(n), imgb)
- def detect_objects_yolo(img, net, outputLayers):
- blob = cv2.dnn.blobFromImage(img, scalefactor=0.00392, size=(320, 320), mean=(0, 0, 0), swapRB=True, crop=False)
- net.setInput(blob)
- outputs = net.forward(outputLayers)
- # print(outputs)
- # for i, out in enumerate(outputs):
- # print(i, np.array(out).shape)
- return blob, outputs
- def get_box_dimensions_yolo(outputs, height, width):
- boxes = []
- confs = []
- class_ids = []
- for output in outputs:
- for detect in output:
- scores = detect[5:]
- # print('detect', scores)
- class_id = np.argmax(scores)
- conf = scores[class_id]
- if conf > 0.3:
- center_x = int(detect[0] * width)
- center_y = int(detect[1] * height)
- w = int(detect[2] * width)
- h = int(detect[3] * height)
- x = int(center_x - w / 2)
- y = int(center_y - h / 2)
- boxes.append([x, y, w, h])
- # print(boxes)
- confs.append(float(conf))
- class_ids.append(class_id)
- return boxes, confs, class_ids
- def draw_labels_yolo(boxes, confs, colors, class_ids, classes, img):
- indexes = cv2.dnn.NMSBoxes(boxes, confs, 0.5, 0.4)
- font = cv2.FONT_HERSHEY_PLAIN
- for i in range(len(boxes)):
- if i in indexes:
- x, y, w, h = boxes[i]
- label = str(classes[class_ids[i]])
- color = colors[i]
- cv2.rectangle(img, (x, y), (x + w, y + h), color, 5)
- cv2.putText(img, label, (x, y - 5), font, 5, color, 5)
- return img
- def image_detect_yolo(img_path):
- model, classes, colors, output_layers = load_yolo()
- image, height, width, channels = load_image(img_path)
- blob, outputs = detect_objects_yolo(image, model, output_layers)
- # print(outputs)
- boxes, confs, class_ids = get_box_dimensions_yolo(outputs, height, width)
- image = draw_labels_yolo(boxes, confs, colors, class_ids, classes, image)
- return image
- cv2.destroyAllWindows()
|