|
2 năm trước cách đây | |
---|---|---|
.. | ||
README.md | 2 năm trước cách đây | |
object_detection_demo_coco.py | 3 năm trước cách đây | |
pycocoEvalDemo.ipynb | 3 năm trước cách đây | |
yolo_to_ssd_classes.py | 3 năm trước cách đây |
This repository contains code for Introduction-to-OpenVino-Deep-Learning Workbench blogpost.
And the following as well,
To get the results JSON file for COCO validation set:
Execute object_detection_demo_coco.py
by providing the correct path to the MS COCO validation dataset by editing the Python file.
Execute using the following commands:
python object_detection_demo_coco.py --model frozen_darknet_yolov4_model.xml -at yolo -i mscoco/val2017 --loop -t 0.2 --no_show -r -nireq 4
.xml
file is for the INT8 model.Put the pycocoEvalDemo.ipynb
in the cocoapi/PythonAPI
.
Run the pycocoEvalDemo.ipynb
Notebook by providing the correct path the results.json
The correct path to the MS COCO evaluation JSON file also needs to be provided. Please check the path according to your directory structure of the MS COCO dataset.
Want to become an expert in AI? AI Courses by OpenCV is a great place to start.