123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 |
- # Copyright (C) 2018-2019, BigVision LLC (LearnOpenCV.com), All Rights Reserved.
- # Author : Sunita Nayak
- # Article : https://www.learnopencv.com/deep-learning-based-object-detection-and-instance-segmentation-using-mask-r-cnn-in-opencv-python-c/
- # License: BSD-3-Clause-Attribution (Please read the license file.)
- # This work is based on OpenCV samples code (https://opencv.org/license.html)
- import cv2 as cv
- import argparse
- import numpy as np
- import os.path
- import sys
- import random
- # Initialize the parameters
- confThreshold = 0.5 # Confidence threshold
- maskThreshold = 0.3 # Mask threshold
- parser = argparse.ArgumentParser(description='Use this script to run Mask-RCNN object detection and segmentation')
- parser.add_argument('--image', help='Path to image file')
- parser.add_argument('--video', help='Path to video file.')
- parser.add_argument("--device", default="cpu", help="Device to inference on")
- args = parser.parse_args()
- # Draw the predicted bounding box, colorize and show the mask on the image
- def drawBox(frame, classId, conf, left, top, right, bottom, classMask):
- # Draw a bounding box.
- cv.rectangle(frame, (left, top), (right, bottom), (255, 178, 50), 3)
-
- # Print a label of class.
- label = '%.2f' % conf
- if classes:
- assert(classId < len(classes))
- label = '%s:%s' % (classes[classId], label)
-
- # Display the label at the top of the bounding box
- labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
- top = max(top, labelSize[1])
- cv.rectangle(frame, (left, top - round(1.5*labelSize[1])), (left + round(1.5*labelSize[0]), top + baseLine), (255, 255, 255), cv.FILLED)
- cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.75, (0,0,0), 1)
- # Resize the mask, threshold, color and apply it on the image
- classMask = cv.resize(classMask, (right - left + 1, bottom - top + 1))
- mask = (classMask > maskThreshold)
- roi = frame[top:bottom+1, left:right+1][mask]
- # color = colors[classId%len(colors)]
- # Comment the above line and uncomment the two lines below to generate different instance colors
- colorIndex = random.randint(0, len(colors)-1)
- color = colors[colorIndex]
- frame[top:bottom+1, left:right+1][mask] = ([0.3*color[0], 0.3*color[1], 0.3*color[2]] + 0.7 * roi).astype(np.uint8)
- # Draw the contours on the image
- mask = mask.astype(np.uint8)
- contours, hierarchy = cv.findContours(mask,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)
- cv.drawContours(frame[top:bottom+1, left:right+1], contours, -1, color, 3, cv.LINE_8, hierarchy, 100)
- # For each frame, extract the bounding box and mask for each detected object
- def postprocess(boxes, masks):
- # Output size of masks is NxCxHxW where
- # N - number of detected boxes
- # C - number of classes (excluding background)
- # HxW - segmentation shape
- numClasses = masks.shape[1]
- numDetections = boxes.shape[2]
- frameH = frame.shape[0]
- frameW = frame.shape[1]
- for i in range(numDetections):
- box = boxes[0, 0, i]
- mask = masks[i]
- score = box[2]
- if score > confThreshold:
- classId = int(box[1])
-
- # Extract the bounding box
- left = int(frameW * box[3])
- top = int(frameH * box[4])
- right = int(frameW * box[5])
- bottom = int(frameH * box[6])
-
- left = max(0, min(left, frameW - 1))
- top = max(0, min(top, frameH - 1))
- right = max(0, min(right, frameW - 1))
- bottom = max(0, min(bottom, frameH - 1))
-
- # Extract the mask for the object
- classMask = mask[classId]
- # Draw bounding box, colorize and show the mask on the image
- drawBox(frame, classId, score, left, top, right, bottom, classMask)
- # Load names of classes
- classesFile = "mscoco_labels.names";
- classes = None
- with open(classesFile, 'rt') as f:
- classes = f.read().rstrip('\n').split('\n')
- # Give the textGraph and weight files for the model
- textGraph = "./mask_rcnn_inception_v2_coco_2018_01_28.pbtxt";
- modelWeights = "./mask_rcnn_inception_v2_coco_2018_01_28/frozen_inference_graph.pb";
- # Load the network
- net = cv.dnn.readNetFromTensorflow(modelWeights, textGraph);
- if args.device == "cpu":
- net.setPreferableBackend(cv.dnn.DNN_TARGET_CPU)
- print("Using CPU device")
- elif args.device == "gpu":
- net.setPreferableBackend(cv.dnn.DNN_BACKEND_CUDA)
- net.setPreferableTarget(cv.dnn.DNN_TARGET_CUDA)
- print("Using GPU device")
- # Load the classes
- colorsFile = "colors.txt";
- with open(colorsFile, 'rt') as f:
- colorsStr = f.read().rstrip('\n').split('\n')
- colors = [] #[0,0,0]
- for i in range(len(colorsStr)):
- rgb = colorsStr[i].split(' ')
- color = np.array([float(rgb[0]), float(rgb[1]), float(rgb[2])])
- colors.append(color)
- winName = 'Mask-RCNN Object detection and Segmentation in OpenCV'
- cv.namedWindow(winName, cv.WINDOW_NORMAL)
- outputFile = "mask_rcnn_out_py.avi"
- if (args.image):
- # Open the image file
- if not os.path.isfile(args.image):
- print("Input image file ", args.image, " doesn't exist")
- sys.exit(1)
- cap = cv.VideoCapture(args.image)
- outputFile = args.image[:-4]+'_mask_rcnn_out_py.jpg'
- elif (args.video):
- # Open the video file
- if not os.path.isfile(args.video):
- print("Input video file ", args.video, " doesn't exist")
- sys.exit(1)
- cap = cv.VideoCapture(args.video)
- outputFile = args.video[:-4]+'_mask_rcnn_out_py.avi'
- else:
- # Webcam input
- cap = cv.VideoCapture(0)
- # Get the video writer initialized to save the output video
- if (not args.image):
- vid_writer = cv.VideoWriter(outputFile, cv.VideoWriter_fourcc('M','J','P','G'), 28, (round(cap.get(cv.CAP_PROP_FRAME_WIDTH)),round(cap.get(cv.CAP_PROP_FRAME_HEIGHT))))
- while cv.waitKey(1) < 0:
-
- # Get frame from the video
- hasFrame, frame = cap.read()
-
- # Stop the program if reached end of video
- if not hasFrame:
- print("Done processing !!!")
- print("Output file is stored as ", outputFile)
- cv.waitKey(3000)
- break
- # Create a 4D blob from a frame.
- blob = cv.dnn.blobFromImage(frame, swapRB=True, crop=False)
- # Set the input to the network
- net.setInput(blob)
- # Run the forward pass to get output from the output layers
- boxes, masks = net.forward(['detection_out_final', 'detection_masks'])
- # Extract the bounding box and mask for each of the detected objects
- postprocess(boxes, masks)
- # Put efficiency information.
- t, _ = net.getPerfProfile()
- label = 'Mask-RCNN on 2.5 GHz Intel Core i7 CPU, Inference time for a frame : %0.0f ms' % abs(t * 1000.0 / cv.getTickFrequency())
- cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
- # Write the frame with the detection boxes
- if (args.image):
- cv.imwrite(outputFile, frame.astype(np.uint8));
- else:
- vid_writer.write(frame.astype(np.uint8))
- cv.imshow(winName, frame)
|