123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 |
- import cv2
- import gradio as gr
- import numpy as np
- import matplotlib.pyplot as plt
- # input_video = 'car.mp4'
- # video Inference
- def vid_inf(vid_path):
- # Create a VideoCapture object
- cap = cv2.VideoCapture(vid_path)
- # get the video frames' width and height for proper saving of videos
- frame_width = int(cap.get(3))
- frame_height = int(cap.get(4))
- fps = int(cap.get(cv2.CAP_PROP_FPS))
- frame_size = (frame_width, frame_height)
- fourcc = cv2.VideoWriter_fourcc(*'mp4v')
- output_video = "output_recorded.mp4"
- # create the `VideoWriter()` object
- out = cv2.VideoWriter(output_video, fourcc, fps, frame_size)
- # Create Background Subtractor MOG2 object
- backSub = cv2.createBackgroundSubtractorMOG2()
- # Check if camera opened successfully
- if not cap.isOpened():
- print("Error opening video file")
- count = 0
- # Read until video is completed
- while cap.isOpened():
- # Capture frame-by-frame
- ret, frame = cap.read()
- # print(frame.shape)
- if ret:
- # Apply background subtraction
- fg_mask = backSub.apply(frame)
- # print(fg_mask.shape)
- # cv2.imshow('Frame_bg', fg_mask)
- # apply global threshol to remove shadows
- retval, mask_thresh = cv2.threshold(
- fg_mask, 180, 255, cv2.THRESH_BINARY)
- # cv2.imshow('frame_thresh', mask_thresh)
- # set the kernal
- kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
- # Apply erosion
- mask_eroded = cv2.morphologyEx(mask_thresh, cv2.MORPH_OPEN, kernel)
- # cv2.imshow('frame_erode', mask_eroded)
- # Find contours
- contours, hierarchy = cv2.findContours(
- mask_eroded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
- # print(contours)
- min_contour_area = 2000 # Define your minimum area threshold
- large_contours = [
- cnt for cnt in contours if cv2.contourArea(cnt) > min_contour_area]
- # frame_ct = cv2.drawContours(frame, large_contours, -1, (0, 255, 0), 2)
- frame_out = frame.copy()
- for cnt in large_contours:
- # print(cnt.shape)
- x, y, w, h = cv2.boundingRect(cnt)
- frame_out = cv2.rectangle(
- frame, (x, y), (x+w, y+h), (0, 0, 200), 3)
- frame_out_display = cv2.cvtColor(frame_out, cv2.COLOR_BGR2RGB)
- vid = out.write(frame_out)
- # Display the resulting frame
- # cv2.imshow('Frame_final', frame_out)
- # update the count every frame and display every 12th frame
- if not count % 12:
- yield frame_out_display, None
- count += 1
- # Press Q on keyboard to exit
- if cv2.waitKey(25) & 0xFF == ord('q'):
- break
- else:
- break
- # When everything done, release the video capture and writer object
- cap.release()
- out.release()
- # Closes all the frames
- cv2.destroyAllWindows()
- yield None, output_video
- # vid_inf(input_video)
- # gradio interface
- input_video = gr.Video(label="Input Video")
- output_frames = gr.Image(label="Output Frames")
- output_video_file = gr.Video(label="Output video")
- # sample_video=r'sample/car.mp4'
- app = gr.Interface(
- fn=vid_inf,
- inputs=[input_video],
- outputs=[output_frames, output_video_file],
- title=f"MotionScope",
- description=f'A gradio app for dynamic video analysis tool that leverages advanced background subtraction and contour detection techniques to identify and track moving objects in real-time.',
- allow_flagging="never",
- examples=[["sample/car.mp4"]],
- )
- app.queue().launch()
|