123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235 |
- import cv2
- import time
- import numpy as np
- from random import randint
- import argparse
- parser = argparse.ArgumentParser(description='Run keypoint detection')
- parser.add_argument("--device", default="cpu", help="Device to inference on")
- parser.add_argument("--image_file", default="group.jpg", help="Input image")
- args = parser.parse_args()
- image1 = cv2.imread(args.image_file)
- protoFile = "pose/coco/pose_deploy_linevec.prototxt"
- weightsFile = "pose/coco/pose_iter_440000.caffemodel"
- nPoints = 18
- # COCO Output Format
- keypointsMapping = ['Nose', 'Neck', 'R-Sho', 'R-Elb', 'R-Wr', 'L-Sho', 'L-Elb', 'L-Wr', 'R-Hip', 'R-Knee', 'R-Ank', 'L-Hip', 'L-Knee', 'L-Ank', 'R-Eye', 'L-Eye', 'R-Ear', 'L-Ear']
- POSE_PAIRS = [[1,2], [1,5], [2,3], [3,4], [5,6], [6,7],
- [1,8], [8,9], [9,10], [1,11], [11,12], [12,13],
- [1,0], [0,14], [14,16], [0,15], [15,17],
- [2,17], [5,16] ]
- # index of pafs correspoding to the POSE_PAIRS
- # e.g for POSE_PAIR(1,2), the PAFs are located at indices (31,32) of output, Similarly, (1,5) -> (39,40) and so on.
- mapIdx = [[31,32], [39,40], [33,34], [35,36], [41,42], [43,44],
- [19,20], [21,22], [23,24], [25,26], [27,28], [29,30],
- [47,48], [49,50], [53,54], [51,52], [55,56],
- [37,38], [45,46]]
- colors = [ [0,100,255], [0,100,255], [0,255,255], [0,100,255], [0,255,255], [0,100,255],
- [0,255,0], [255,200,100], [255,0,255], [0,255,0], [255,200,100], [255,0,255],
- [0,0,255], [255,0,0], [200,200,0], [255,0,0], [200,200,0], [0,0,0]]
- def getKeypoints(probMap, threshold=0.1):
- mapSmooth = cv2.GaussianBlur(probMap,(3,3),0,0)
- mapMask = np.uint8(mapSmooth>threshold)
- keypoints = []
- #find the blobs
- contours, _ = cv2.findContours(mapMask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
- #for each blob find the maxima
- for cnt in contours:
- blobMask = np.zeros(mapMask.shape)
- blobMask = cv2.fillConvexPoly(blobMask, cnt, 1)
- maskedProbMap = mapSmooth * blobMask
- _, maxVal, _, maxLoc = cv2.minMaxLoc(maskedProbMap)
- keypoints.append(maxLoc + (probMap[maxLoc[1], maxLoc[0]],))
- return keypoints
- # Find valid connections between the different joints of a all persons present
- def getValidPairs(output):
- valid_pairs = []
- invalid_pairs = []
- n_interp_samples = 10
- paf_score_th = 0.1
- conf_th = 0.7
- # loop for every POSE_PAIR
- for k in range(len(mapIdx)):
- # A->B constitute a limb
- pafA = output[0, mapIdx[k][0], :, :]
- pafB = output[0, mapIdx[k][1], :, :]
- pafA = cv2.resize(pafA, (frameWidth, frameHeight))
- pafB = cv2.resize(pafB, (frameWidth, frameHeight))
- # Find the keypoints for the first and second limb
- candA = detected_keypoints[POSE_PAIRS[k][0]]
- candB = detected_keypoints[POSE_PAIRS[k][1]]
- nA = len(candA)
- nB = len(candB)
- # If keypoints for the joint-pair is detected
- # check every joint in candA with every joint in candB
- # Calculate the distance vector between the two joints
- # Find the PAF values at a set of interpolated points between the joints
- # Use the above formula to compute a score to mark the connection valid
- if( nA != 0 and nB != 0):
- valid_pair = np.zeros((0,3))
- for i in range(nA):
- max_j=-1
- maxScore = -1
- found = 0
- for j in range(nB):
- # Find d_ij
- d_ij = np.subtract(candB[j][:2], candA[i][:2])
- norm = np.linalg.norm(d_ij)
- if norm:
- d_ij = d_ij / norm
- else:
- continue
- # Find p(u)
- interp_coord = list(zip(np.linspace(candA[i][0], candB[j][0], num=n_interp_samples),
- np.linspace(candA[i][1], candB[j][1], num=n_interp_samples)))
- # Find L(p(u))
- paf_interp = []
- for k in range(len(interp_coord)):
- paf_interp.append([pafA[int(round(interp_coord[k][1])), int(round(interp_coord[k][0]))],
- pafB[int(round(interp_coord[k][1])), int(round(interp_coord[k][0]))] ])
- # Find E
- paf_scores = np.dot(paf_interp, d_ij)
- avg_paf_score = sum(paf_scores)/len(paf_scores)
- # Check if the connection is valid
- # If the fraction of interpolated vectors aligned with PAF is higher then threshold -> Valid Pair
- if ( len(np.where(paf_scores > paf_score_th)[0]) / n_interp_samples ) > conf_th :
- if avg_paf_score > maxScore:
- max_j = j
- maxScore = avg_paf_score
- found = 1
- # Append the connection to the list
- if found:
- valid_pair = np.append(valid_pair, [[candA[i][3], candB[max_j][3], maxScore]], axis=0)
- # Append the detected connections to the global list
- valid_pairs.append(valid_pair)
- else: # If no keypoints are detected
- print("No Connection : k = {}".format(k))
- invalid_pairs.append(k)
- valid_pairs.append([])
- return valid_pairs, invalid_pairs
- # This function creates a list of keypoints belonging to each person
- # For each detected valid pair, it assigns the joint(s) to a person
- def getPersonwiseKeypoints(valid_pairs, invalid_pairs):
- # the last number in each row is the overall score
- personwiseKeypoints = -1 * np.ones((0, 19))
- for k in range(len(mapIdx)):
- if k not in invalid_pairs:
- partAs = valid_pairs[k][:,0]
- partBs = valid_pairs[k][:,1]
- indexA, indexB = np.array(POSE_PAIRS[k])
- for i in range(len(valid_pairs[k])):
- found = 0
- person_idx = -1
- for j in range(len(personwiseKeypoints)):
- if personwiseKeypoints[j][indexA] == partAs[i]:
- person_idx = j
- found = 1
- break
- if found:
- personwiseKeypoints[person_idx][indexB] = partBs[i]
- personwiseKeypoints[person_idx][-1] += keypoints_list[partBs[i].astype(int), 2] + valid_pairs[k][i][2]
- # if find no partA in the subset, create a new subset
- elif not found and k < 17:
- row = -1 * np.ones(19)
- row[indexA] = partAs[i]
- row[indexB] = partBs[i]
- # add the keypoint_scores for the two keypoints and the paf_score
- row[-1] = sum(keypoints_list[valid_pairs[k][i,:2].astype(int), 2]) + valid_pairs[k][i][2]
- personwiseKeypoints = np.vstack([personwiseKeypoints, row])
- return personwiseKeypoints
- frameWidth = image1.shape[1]
- frameHeight = image1.shape[0]
- t = time.time()
- net = cv2.dnn.readNetFromCaffe(protoFile, weightsFile)
- if args.device == "cpu":
- net.setPreferableBackend(cv2.dnn.DNN_TARGET_CPU)
- print("Using CPU device")
- elif args.device == "gpu":
- net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
- net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
- print("Using GPU device")
- # Fix the input Height and get the width according to the Aspect Ratio
- inHeight = 368
- inWidth = int((inHeight/frameHeight)*frameWidth)
- inpBlob = cv2.dnn.blobFromImage(image1, 1.0 / 255, (inWidth, inHeight),
- (0, 0, 0), swapRB=False, crop=False)
- net.setInput(inpBlob)
- output = net.forward()
- print("Time Taken in forward pass = {}".format(time.time() - t))
- detected_keypoints = []
- keypoints_list = np.zeros((0,3))
- keypoint_id = 0
- threshold = 0.1
- for part in range(nPoints):
- probMap = output[0,part,:,:]
- probMap = cv2.resize(probMap, (image1.shape[1], image1.shape[0]))
- keypoints = getKeypoints(probMap, threshold)
- print("Keypoints - {} : {}".format(keypointsMapping[part], keypoints))
- keypoints_with_id = []
- for i in range(len(keypoints)):
- keypoints_with_id.append(keypoints[i] + (keypoint_id,))
- keypoints_list = np.vstack([keypoints_list, keypoints[i]])
- keypoint_id += 1
- detected_keypoints.append(keypoints_with_id)
- frameClone = image1.copy()
- for i in range(nPoints):
- for j in range(len(detected_keypoints[i])):
- cv2.circle(frameClone, detected_keypoints[i][j][0:2], 5, colors[i], -1, cv2.LINE_AA)
- cv2.imshow("Keypoints",frameClone)
- valid_pairs, invalid_pairs = getValidPairs(output)
- personwiseKeypoints = getPersonwiseKeypoints(valid_pairs, invalid_pairs)
- for i in range(17):
- for n in range(len(personwiseKeypoints)):
- index = personwiseKeypoints[n][np.array(POSE_PAIRS[i])]
- if -1 in index:
- continue
- B = np.int32(keypoints_list[index.astype(int), 0])
- A = np.int32(keypoints_list[index.astype(int), 1])
- cv2.line(frameClone, (B[0], A[0]), (B[1], A[1]), colors[i], 3, cv2.LINE_AA)
- cv2.imshow("Detected Pose" , frameClone)
- cv2.waitKey(0)
|