|
преди 2 години | |
---|---|---|
.. | ||
README.md | преди 2 години | |
object_detection_demo_coco.py | преди 3 години | |
pycocoEvalDemo.ipynb | преди 3 години | |
yolo_to_ssd_classes.py | преди 3 години |
This repository contains code for Post Training Quantization with OpenVino Toolkit blogpost.
This repository has the following as well,
To get the results JSON file for COCO validation set:
Execute object_detection_demo_coco.py
by providing the correct path to the MS COCO validation dataset by editing the Python file.
Execute using the following commands:
python object_detection_demo_coco.py --model tiny_yolov4_fp32/frozen_darknet_tiny_yolov4_model.xml -at yolo -i mscoco/val2017 --loop -t 0.2 --no_show -r -nireq 4
python object_detection_demo_coco.py --model int8/optimized/yolo-v4-tiny.xml -at yolo -i mscoco/val2017 --loop -t 0.2 --no_show -r -nireq 4
Put the pycocoEvalDemo.ipynb
in the cocoapi/PythonAPI
.
Run the pycocoEvalDemo.ipynb
Notebook by providing the correct path the results.json
Once for the FP32 results.
And once for INT8 results.
The correct path to the MS COCO evaluation JSON file also needs to be provided. Please check the path according to your directory structure of the MS COCO dataset.
Want to become an expert in AI? AI Courses by OpenCV is a great place to start.