123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- import torch
- import torch.nn as nn
- from torchvision import models
- from torch.hub import load_state_dict_from_url
- from PIL import Image
- import cv2
- import numpy as np
- from matplotlib import pyplot as plt
- from torchvision import transforms
- from torchsummary import summary
- # Define the architecture by modifying resnet.
- # Original code is here
- # https://github.com/pytorch/vision/blob/b2e95657cd5f389e3973212ba7ddbdcc751a7878/torchvision/models/resnet.py
- class FullyConvolutionalResnet18(models.ResNet):
- def __init__(self, num_classes=1000, pretrained=False, **kwargs):
- # Start with standard resnet18 defined here
- # https://github.com/pytorch/vision/blob/b2e95657cd5f389e3973212ba7ddbdcc751a7878/torchvision/models/resnet.py
- super().__init__(block=models.resnet.BasicBlock, layers=[2, 2, 2, 2], num_classes=num_classes, **kwargs)
- if pretrained:
- state_dict = load_state_dict_from_url(models.resnet.model_urls["resnet18"], progress=True)
- self.load_state_dict(state_dict)
- # Replace AdaptiveAvgPool2d with standard AvgPool2d
- # https://github.com/pytorch/vision/blob/b2e95657cd5f389e3973212ba7ddbdcc751a7878/torchvision/models/resnet.py#L153-L154
- self.avgpool = nn.AvgPool2d((7, 7))
- # Add final Convolution Layer.
- self.last_conv = torch.nn.Conv2d(in_channels=self.fc.in_features, out_channels=num_classes, kernel_size=1)
- self.last_conv.weight.data.copy_(self.fc.weight.data.view(*self.fc.weight.data.shape, 1, 1))
- self.last_conv.bias.data.copy_(self.fc.bias.data)
- # Reimplementing forward pass.
- # Replacing the following code
- # https://github.com/pytorch/vision/blob/b2e95657cd5f389e3973212ba7ddbdcc751a7878/torchvision/models/resnet.py#L197-L213
- def _forward_impl(self, x):
- # Standard forward for resnet18
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- x = self.maxpool(x)
- x = self.layer1(x)
- x = self.layer2(x)
- x = self.layer3(x)
- x = self.layer4(x)
- x = self.avgpool(x)
- # Notice, there is no forward pass
- # through the original fully connected layer.
- # Instead, we forward pass through the last conv layer
- x = self.last_conv(x)
- return x
- if __name__ == "__main__":
-
- # Read ImageNet class id to name mapping
- with open('imagenet_classes.txt') as f:
- labels = [line.strip() for line in f.readlines()]
- # Read image
- original_image = cv2.imread('camel.jpg')
- # Convert original image to RGB format
- image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
-
- # Transform input image
- # 1. Convert to Tensor
- # 2. Subtract mean
- # 3. Divide by standard deviation
- transform = transforms.Compose([
- transforms.ToTensor(), #Convert image to tensor.
- transforms.Normalize(
- mean=[0.485, 0.456, 0.406], # Subtract mean
- std=[0.229, 0.224, 0.225] # Divide by standard deviation
- )])
- image = transform(image)
- image = image.unsqueeze(0)
- # Load modified resnet18 model with pretrained ImageNet weights
- model = FullyConvolutionalResnet18(pretrained=True).eval()
-
-
- with torch.no_grad():
- # Perform inference.
- # Instead of a 1x1000 vector, we will get a
- # 1x1000xnxm output ( i.e. a probabibility map
- # of size n x m for each 1000 class,
- # where n and m depend on the size of the image.)
- preds = model(image)
- preds = torch.softmax(preds, dim=1)
-
- print('Response map shape : ', preds.shape)
- # Find the class with the maximum score in the n x m output map
- pred, class_idx = torch.max(preds, dim=1)
- print(class_idx)
- row_max, row_idx = torch.max(pred, dim=1)
- col_max, col_idx = torch.max(row_max, dim=1)
- predicted_class = class_idx[0, row_idx[0, col_idx], col_idx]
-
- # Print top predicted class
- print('Predicted Class : ', labels[predicted_class], predicted_class)
- # Find the n x m score map for the predicted class
- score_map = preds[0, predicted_class, :, :].cpu().numpy()
- score_map = score_map[0]
-
- # Resize score map to the original image size
- score_map = cv2.resize(score_map, (original_image.shape[1], original_image.shape[0]))
- # Binarize score map
- _, score_map_for_contours = cv2.threshold(score_map, 0.25, 1, type=cv2.THRESH_BINARY)
- score_map_for_contours = score_map_for_contours.astype(np.uint8).copy()
- # Find the countour of the binary blob
- contours, _ = cv2.findContours(score_map_for_contours, mode=cv2.RETR_EXTERNAL, method=cv2.CHAIN_APPROX_SIMPLE)
-
- # Find bounding box around the object.
- rect = cv2.boundingRect(contours[0])
- # Apply score map as a mask to original image
- score_map = score_map - np.min(score_map[:])
- score_map = score_map / np.max(score_map[:])
- score_map = cv2.cvtColor(score_map, cv2.COLOR_GRAY2BGR)
- masked_image = (original_image * score_map).astype(np.uint8)
- # Display bounding box
- cv2.rectangle(masked_image, rect[:2], (rect[0] + rect[2], rect[1] + rect[3]), (0, 0, 255), 2)
-
- # Display images
- cv2.imshow("Original Image", original_image)
- cv2.imshow("scaled_score_map", score_map)
- cv2.imshow("activations_and_bbox", masked_image)
- cv2.waitKey(0)
|