| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 | Bootstrap: localimageFrom: ompi4-cu11-mlnx.sif%files# -----------------------------------------------------------------------------------    sciml-bench/requirements.txt /sciml-benchmarks/requirements.txt    sciml-bench/MANIFEST.in /sciml-benchmarks/MANIFEST.in    sciml-bench/setup.py /sciml-benchmarks/setup.py    sciml-bench/doc /sciml-benchmarks/doc    sciml-bench/sciml_bench /sciml-benchmarks/sciml_bench%environment# -----------------------------------------------------------------------------------    export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH    export LC_ALL=C    export HOROVOD_GPU_ALLREDUCE=NCCL    export HOROVOD_GPU_ALLGATHER=MPI    export HOROVOD_GPU_BROADCAST=MPI    #export HOROVOD_NCCL_HOME=/usr/local/cuda/nccl    #export HOROVOD_NCCL_INCLUDE=/usr/local/cuda/nccl/include    #export HOROVOD_NCCL_LIB=/usr/local/cuda/nccl/lib     export PYTHON_VERSION=3.8    export TENSORFLOW_VERSION=2.3.0    export PYTORCH_VERSION=1.10.0+cu113%post# -----------------------------------------------------------------------------------# this will install all necessary packages and prepare the container# TensorFlow version is tightly coupled to CUDA and cuDNN so it should be selected carefully# Python 2.7 or 3.5 is supported by Ubuntu Xenial out of the box    export PYTHON_VERSION=3.8    export TENSORFLOW_VERSION=2.3.0    export PYTORCH_VERSION=1.10.0+cu113    echo "deb https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64 /" > /etc/apt/sources.list.d/nvidia-ml.list    apt-get -y update && apt-get install -y --allow-downgrades --allow-change-held-packages --no-install-recommends \        build-essential \        cmake \        git \        curl \        vim \        wget \        ca-certificates \        libjpeg-dev \        libpng-dev \        python${PYTHON_VERSION} \        python${PYTHON_VERSION}-dev    ln -sf /usr/bin/python${PYTHON_VERSION} /usr/bin/python    curl -O https://bootstrap.pypa.io/get-pip.py && \    python get-pip.py && \    rm get-pip.py# Install TensorFlow, Keras and PyTorch    pip install torch==${PYTORCH_VERSION} torchvision==0.11.1+cu113 torchaudio==0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html    pip install mxnet-cu112 tensorflow-gpu==${TENSORFLOW_VERSION} keras h5py filelock matplotlib scikit-learn        export PATH="/usr/local/cuda-11.5/bin:$PATH"# Install Horovod, temporarily using CUDA stubs    ldconfig /usr/local/cuda-11.4/targets/x86_64-linux/lib/stubs && \    HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_WITH_MXNET=1 HOROVOD_WITH_TENSORFLOW=1 HOROVOD_WITH_PYTORCH=1 pip install --no-cache-dir horovod && \    ldconfig# Set default NCCL parameters    echo NCCL_DEBUG=INFO >> /etc/nccl.conf && \    echo NCCL_SOCKET_IFNAME=^docker0 >> /etc/nccl.conf# Download examples    cd / && \    apt-get install -y --no-install-recommends subversion && \    svn checkout https://github.com/uber/horovod/trunk/examples && \    rm -rf /examples/.svn# Install sciml-bench    cd /sciml-benchmarks && pip install .%runscript    sciml-bench $@
 |