/*############################################################################## HPCC SYSTEMS software Copyright (C) 2012 HPCC Systems. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ############################################################################## */ #include "platform.h" #include #include #include #include #include #include #include #include #ifndef WIN32 #include #define LARGEMEM_USE_MMAP_SIZE 0x10000 // in largemem use mmap for chunks bigger than 64K #endif #include "jbuff.hpp" #include "jexcept.hpp" #include "jmisc.hpp" #include "jutil.hpp" #include "jvmem.hpp" #ifdef _DEBUG #define KILL_CLEARS_MEMORY //#define TRACE_LARGEMEM //#define TRACE_LARGEMEM_ALLOC #define TRACE_LARGEMEM_OOM #endif #if 1 #define ChunkSize 0x10000 #define DOUBLE_LIMIT 0x7fffffff // avoid doubling hitting 0 and infinite loop #else #define ChunkSize 2048 #define DOUBLE_LIMIT 4096 #endif #define FIRST_CHUNK_SIZE 8 #define DETACH_GRANULARITY 16 #ifdef _DEBUG #define CHECKREADPOS(len) assertex(readPos+(len)<=length()) #else #define CHECKREADPOS(len) #endif //----------------------------------------------------------------------- jlib_decl void *checked_realloc(void *orig, size_t newlen, size_t origlen,int errcode) { if (newlen==0) { free(orig); return NULL; } if (orig==NULL) return checked_malloc(newlen,errcode); void *ret = realloc(orig, newlen); if (!ret) RaiseOutOfMemException(errcode, newlen, origlen); return ret; } class jlib_thrown_decl COutOfMemException: public CInterface, implements IOutOfMemException { int errcode; size_t wanted; size_t got; static int recursion; bool expected; public: IMPLEMENT_IINTERFACE; COutOfMemException(int _errcode,size_t _wanted,size_t _got,bool _expected) { errcode = _errcode; wanted = _wanted; expected = _expected; got = _got; // DebugBreak(); if ((recursion++==0)&&!expected) { // Bit risky if *very* out of memory so protect against recursion and catch exceptions try { // try to log PROGLOG("Jbuff: Out of Memory (%d,%"I64F"d,%"I64F"dk)",_errcode,(unsigned __int64)wanted,(unsigned __int64) (got/1024)); PrintStackReport(); PrintMemoryReport(); } catch (...) { } } recursion--; }; int errorCode() const { return errcode; } StringBuffer & errorMessage(StringBuffer &str) const { str.append("Jbuff: Out of Memory (").append((unsigned __int64)wanted); if (got) str.append(',').append((unsigned __int64)(got/1024)); return str.append("k)"); } MessageAudience errorAudience() const { return MSGAUD_user; } }; int COutOfMemException::recursion=0; IOutOfMemException *createOutOfMemException(int errcode,size_t wanted,size_t got,bool expected) { return new COutOfMemException(errcode,wanted,got,expected); } void RaiseOutOfMemException(int errcode, size_t wanted, size_t got,bool expected) { throw createOutOfMemException(errcode, wanted, got,expected); } MemoryAttr::MemoryAttr(size32_t _len) { ptr = checked_malloc(_len,-1); len = _len; } MemoryAttr::MemoryAttr(size32_t _len, const void * _ptr) { len = 0; ptr = NULL; set(_len, _ptr); } MemoryAttr::MemoryAttr(const MemoryAttr & src) { len = 0; ptr = NULL; set(src.length(), src.get()); } void MemoryAttr::set(size32_t _len, const void * _ptr) { memcpy(allocate(_len), _ptr, _len); } void MemoryAttr::setOwn(size32_t _len, void * _ptr) { free(ptr); len = _len; ptr = _ptr; } void MemoryAttr::clear() { free(ptr); ptr = NULL; len = 0; } int MemoryAttr::compare(const MemoryAttr & m1, const MemoryAttr & m2) { size32_t len1 = m1.length(); size32_t len2 = m2.length(); size32_t len = len1; if (len1 > len2) len = len2; int compare = memcmp(m1.get(), m2.get(), len); if (compare == 0) compare = (len1 > len2) ? +1 : (len1 < len2) ? -1 : 0; return compare; } void * MemoryAttr::allocate(size32_t _len) { if (_len==len) return ptr; clear(); ptr = checked_malloc(_len,-2); len = _len; return ptr; } void * MemoryAttr::reallocate(size32_t _len) { if (_len==len) return ptr; ptr = checked_realloc(ptr, _len, len, -9); len = _len; return ptr; } //=========================================================================== void MemoryBuffer::_realloc(size32_t newLen) { if (newLen > maxLen) { assertex(ownBuffer); size32_t newMax = maxLen; //double up to a certain size, otherwise go up in chunks. if (newLen < DOUBLE_LIMIT) { if (newMax == 0) newMax = FIRST_CHUNK_SIZE; while (newLen > newMax) { newMax += newMax; } } else /*** ((Size + 1) + (ChunkSize - 1)) & ~(ChunkSize-1) ***/ newMax = (newLen + ChunkSize) & ~(ChunkSize-1); buffer =(char *)checked_realloc(buffer, newMax, maxLen, -7); maxLen = newMax; } } void MemoryBuffer::_reallocExact(size32_t newLen) { if (newLen > maxLen) { assertex(ownBuffer); buffer =(char *)checked_realloc(buffer, newLen, maxLen, -8); maxLen = newLen; } } void MemoryBuffer::init() { buffer = NULL; curLen = 0; maxLen = 0; ownBuffer = true; readPos = 0; swapEndian = false; } void *MemoryBuffer::insertDirect(unsigned offset, size32_t insertLen) { assertex(offset<=curLen); unsigned newLen = insertLen + curLen; _realloc(newLen); memmove(buffer + offset + insertLen, buffer + offset, curLen - offset); curLen += insertLen; return buffer+offset; } void MemoryBuffer::ensureCapacity(unsigned max) { if (maxLen - curLen < max) _realloc(curLen + max); } void MemoryBuffer::kill() { if (ownBuffer) free(buffer); } MemoryBuffer & MemoryBuffer::_remove(unsigned start, unsigned len) { if (start > curLen) start = curLen; if (start + len > curLen) len = curLen - start; unsigned start2 = start + len; memmove(buffer + start, buffer + start2, curLen - start2); setLength(curLen - len); return *this; } void * MemoryBuffer::reserve(unsigned size) { _realloc(curLen + size); void * ret = buffer + curLen; curLen += size; return ret; } void * MemoryBuffer::reserveTruncate(unsigned size) { curLen += size; _reallocExact(curLen); truncate(); return buffer + curLen - size; } void MemoryBuffer::truncate() { if (maxLen>curLen) { if (curLen==0) { free(buffer); buffer = NULL; } else buffer = (char *)realloc(buffer, curLen); maxLen = curLen; } } void MemoryBuffer::resetBuffer() { kill(); init(); } MemoryBuffer & MemoryBuffer::_reverse() { unsigned max = curLen/2; char * end = buffer + curLen; unsigned idx; for (idx = 0; idx < max; idx++) { char temp = buffer[idx]; end--; buffer[idx] = *end; *end = temp; } return *this; } void MemoryBuffer::setBuffer(size32_t len, void * _buffer, bool takeOwnership) { kill(); buffer = (char *) _buffer; if (len) assertex(buffer); curLen = maxLen = len; ownBuffer = takeOwnership; readPos = 0; } void *MemoryBuffer::detach() { void *ret; if (ownBuffer) { if (maxLen>curLen+DETACH_GRANULARITY) buffer = (char *)realloc(buffer,curLen); ret = buffer; } else { ret = memcpy(checked_malloc(curLen,-3), buffer, curLen); } init(); return ret; } void *MemoryBuffer::detachOwn() { assertex(ownBuffer); void *ret = buffer; init(); return ret; } void MemoryBuffer::setLength(unsigned len) { if (len > curLen) { _realloc(len); memset(buffer + curLen, 0, len-curLen); } else { #ifdef KILL_CLEARS_MEMORY if (curLen) memset(buffer + len, 'x', curLen-len); #endif } curLen = len; } void MemoryBuffer::setWritePos(unsigned len) { if (len > curLen) _realloc(len); curLen = len; } #define SWAP(x, y, t) { t t_##x = x; x = y; y = t_##x; } void MemoryBuffer::swapWith(MemoryBuffer & other) { //swap two string buffers. Used for efficiently moving a string on in a pipeline etc. SWAP(buffer, other.buffer, char *); SWAP(curLen, other.curLen, size32_t); SWAP(maxLen, other.maxLen, size32_t); SWAP(readPos, other.readPos, size32_t); SWAP(swapEndian, other.swapEndian, bool); } //----------------------------------------------------------------------- MemoryBuffer::MemoryBuffer(size32_t initial) { init(); _realloc(initial); } MemoryBuffer::MemoryBuffer(MemoryBuffer & value) { assertex(!"This should never be used"); } MemoryBuffer::MemoryBuffer(size32_t len, const void * newBuffer) { init(); append(len, newBuffer); } MemoryBuffer & MemoryBuffer::append(char value) { _realloc(curLen + 1); buffer[curLen] = value; ++curLen; return *this; } MemoryBuffer & MemoryBuffer::append(unsigned char value) { _realloc(curLen + 1); buffer[curLen] = value; ++curLen; return *this; } MemoryBuffer & MemoryBuffer::append(bool value) { _realloc(curLen + 1); buffer[curLen] = (value==0)?0:1; ++curLen; return *this; } MemoryBuffer & MemoryBuffer::append(const char * value) { if (value) return append((size32_t)strlen(value)+1,value); else return append((char)0); } MemoryBuffer & MemoryBuffer::append(const unsigned char * value) { return append((const char *) value); } MemoryBuffer & MemoryBuffer::append(unsigned len, const void * value) { _realloc(curLen + len); memcpy(buffer + curLen, value, len); curLen += len; return *this; } MemoryBuffer & MemoryBuffer::append(double value) { return appendEndian(sizeof(value), &value); } MemoryBuffer & MemoryBuffer::append(float value) { return appendEndian(sizeof(value), &value); } MemoryBuffer & MemoryBuffer::append(short value) { return appendEndian(sizeof(value), &value); } MemoryBuffer & MemoryBuffer::append(unsigned short value) { return appendEndian(sizeof(value), &value); } MemoryBuffer & MemoryBuffer::append(int value) { return appendEndian(sizeof(value), &value); } MemoryBuffer & MemoryBuffer::append(unsigned value) { return appendEndian(sizeof(value), &value); } #if 0 MemoryBuffer & MemoryBuffer::append(long value) { return appendEndian(sizeof(value), &value); } MemoryBuffer & MemoryBuffer::append(unsigned long value) { return appendEndian(sizeof(value), &value); } #endif MemoryBuffer & MemoryBuffer::append(__int64 value) { return appendEndian(sizeof(value), &value); } MemoryBuffer & MemoryBuffer::append(unsigned __int64 value) { return appendEndian(sizeof(value), &value); } MemoryBuffer & MemoryBuffer::append(const MemoryBuffer & value) { size32_t SourceLen = value.length(); _realloc(curLen + SourceLen); memcpy(buffer + curLen, value.toByteArray(), SourceLen); curLen += SourceLen; return *this; } MemoryBuffer & MemoryBuffer::appendBytes(unsigned char value, unsigned count) { _realloc(curLen + count); memset(buffer+curLen, value, count); curLen+=count; return *this; } MemoryBuffer & MemoryBuffer::appendEndian(size32_t len, const void * value) { _realloc(curLen + len); if (swapEndian) _cpyrevn(buffer + curLen, value, len); else memcpy(buffer + curLen, value, len); curLen += len; return *this; } MemoryBuffer & MemoryBuffer::appendSwap(size32_t len, const void * value) { _realloc(curLen + len); _cpyrevn(buffer + curLen, value, len); curLen += len; return *this; } MemoryBuffer &MemoryBuffer::appendFile(const char *fileName) { char buf[1024]; int h = _open(fileName, _O_BINARY | _O_RDONLY | _O_SEQUENTIAL); if (h == HFILE_ERROR) throw MakeStringException(0, "MemoryBuffer: Error reading file : %s", fileName); append(fileName); unsigned fileSize = _lseek(h, 0, FILE_END); _lseek(h, 0, FILE_BEGIN); append(fileSize); int r; while ((r = _read(h, buf, 1024)) != 0) { if (-1==r) throw MakeErrnoException("MemoryBuffer::appendFile"); append(r, buf); } _close(h); return *this; } MemoryBuffer & MemoryBuffer::read(char & value) { CHECKREADPOS(sizeof(value)); value = buffer[readPos++]; return *this; } MemoryBuffer & MemoryBuffer::read(unsigned char & value) { CHECKREADPOS(sizeof(value)); value = buffer[readPos++]; return *this; } MemoryBuffer & MemoryBuffer::read(bool & value) { CHECKREADPOS(sizeof(value)); char _value = buffer[readPos++]; value = (_value==0 ? false : true); return *this; } MemoryBuffer & MemoryBuffer::read(StringAttr & value) { char * src = buffer + readPos; size32_t len = (size32_t)strlen(src); CHECKREADPOS(len+1); value.set(src, len); readPos += (len+1); return *this; } MemoryBuffer & MemoryBuffer::read(StringBuffer & value) { char * src = buffer + readPos; size32_t len = (size32_t)strlen(src); CHECKREADPOS(len+1); value.append(len, src); readPos += (len+1); return *this; } MemoryBuffer & MemoryBuffer::read(const char * &value) { value = buffer+readPos; size32_t len = (size32_t)strlen(value); CHECKREADPOS(len+1); readPos += (len+1); return *this; } MemoryBuffer & MemoryBuffer::read(size32_t len, void * value) { CHECKREADPOS(len); memcpy(value, buffer + readPos, len); readPos += len; return *this; } MemoryBuffer & MemoryBuffer::read(double & value) { return readEndian(sizeof(value), &value); } MemoryBuffer & MemoryBuffer::read(float & value) { return readEndian(sizeof(value), &value); } MemoryBuffer & MemoryBuffer::read(short & value) { return readEndian(sizeof(value), &value); } MemoryBuffer & MemoryBuffer::read(unsigned short & value) { return readEndian(sizeof(value), &value); } MemoryBuffer & MemoryBuffer::read(int & value) { return readEndian(sizeof(value), &value); } MemoryBuffer & MemoryBuffer::read(unsigned & value) { return readEndian(sizeof(value), &value); } #if 0 MemoryBuffer & MemoryBuffer::read(unsigned long & value) { return readEndian(sizeof(value), &value); } MemoryBuffer & MemoryBuffer::read(long & value) { return readEndian(sizeof(value), &value); } #endif MemoryBuffer & MemoryBuffer::read(unsigned __int64 & value) { return readEndian(sizeof(value), &value); } MemoryBuffer & MemoryBuffer::read(__int64 & value) { return readEndian(sizeof(value), &value); } const byte * MemoryBuffer::readDirect(size32_t len) { CHECKREADPOS(len); const byte * ret = (const byte *)buffer + readPos; readPos += len; return ret; } MemoryBuffer & MemoryBuffer::skip(unsigned len) { CHECKREADPOS(len); readPos += len; return *this; } void MemoryBuffer::writeDirect(size32_t pos,size32_t len,const void *buf) { assertex(pos+len<=curLen); // does not extend memcpy(buffer+pos,buf,len); } void MemoryBuffer::writeEndianDirect(size32_t pos,size32_t len,const void *buf) { assertex(pos+len<=curLen); // does not extend if (swapEndian) _cpyrevn(buffer+pos,buf,len); else memcpy(buffer+pos,buf,len); } MemoryBuffer & MemoryBuffer::readEndian(size32_t len, void * value) { CHECKREADPOS(len); if (swapEndian) _cpyrevn(value, buffer + readPos, len); else memcpy(value, buffer + readPos, len); readPos += len; return *this; } MemoryBuffer & MemoryBuffer::readSwap(size32_t len, void * value) { CHECKREADPOS(len); _cpyrevn(value, buffer + readPos, len); readPos += len; return *this; } MemoryBuffer &MemoryBuffer::readFile(StringAttr &fileName) { read(fileName); unsigned fileSize; read(fileSize); int h = _open(fileName.get(), _O_WRONLY|_O_CREAT|_O_TRUNC|_O_BINARY|_O_SEQUENTIAL, _S_IREAD | _S_IWRITE); if (h == HFILE_ERROR) throw MakeStringException(0, "MemoryBuffer: Unable to create file : %s, error=%d", fileName.get(), GetLastError()); CHECKREADPOS(fileSize); int w; while (fileSize) { w = _write(h, buffer+readPos, fileSize); if (w == 0) { _close(h); throw MakeStringException(0, "MemoryBuffer: Disk full writing %d to file : %s", fileSize, fileName.get()); } if (w == -1) { _close(h); throw MakeStringException(0, "MemoryBuffer: Error writing to file : %s, error=%d", fileName.get(), GetLastError()); } readPos += (size32_t)w; fileSize -= (size32_t)w; } _close(h); return *this; } MemoryBuffer & MemoryBuffer::rewrite(size32_t pos) { assertex(pos<=maxLen); curLen = pos; if (readPos>pos) readPos = pos; return *this; } MemoryBuffer & MemoryBuffer::reset(size32_t pos) { CHECKREADPOS(pos-readPos); readPos = pos; return *this; } #if 0 void MemoryBuffer::getBytes(int srcBegin, int srcEnd, char * target) { memcpy(target, buffer + srcBegin, srcEnd - srcBegin); } MemoryBuffer & MemoryBuffer::remove(unsigned start, unsigned len) { return (MemoryBuffer &)_remove(start, len); } #endif int MemoryBuffer::setEndian(int endian) { assertex((endian == __LITTLE_ENDIAN) || (endian == __BIG_ENDIAN)); bool wasSwapped = setSwapEndian(endian != __BYTE_ORDER); return wasSwapped ? (__BYTE_ORDER ^ __LITTLE_ENDIAN ^ __BIG_ENDIAN) : __BYTE_ORDER; } bool MemoryBuffer::setSwapEndian(bool swap) { bool saved = swapEndian; swapEndian = swap; return saved; } MemoryBuffer & serialize(MemoryBuffer & buffer, const MemoryAttr & value) { unsigned length = value.length(); buffer.append(length).append(length, value.get()); return buffer; } MemoryBuffer & deserialize(MemoryBuffer & buffer, MemoryAttr & value) { unsigned length; buffer.read(length); void * target = value.allocate(length); buffer.read(length, target); return buffer; } MemoryBuffer & serialize(MemoryBuffer & buffer, const char * value) { if (value) { unsigned length = (size32_t)strlen(value); buffer.append(length).append(length, value); } else buffer.append((unsigned)-1); return buffer; } MemoryBuffer & deserialize(MemoryBuffer & buffer, StringAttr & value) { unsigned length; buffer.read(length); if (length == (unsigned)-1) value.clear(); else { char * target = (char *)checked_malloc(length+1,-4); buffer.read(length, target); target[length] = 0; value.setown(target); } return buffer; } // ===================================================================================================== const char * MemoryAttr2IStringVal::str() const { UNIMPLEMENTED; } // ===================================================================================================== static memsize_t LMsemlimit=0; static memsize_t LMtotal=0; static CriticalSection LMsemsect; static Owned LMnotify; static bool LMlocked = false; void setLargeMemLimitNotify(memsize_t size,ILargeMemLimitNotify *notify) { CriticalBlock block(LMsemsect); LMsemlimit = size; LMnotify.set(notify); if (LMlocked&&(LMtotal=LMsemlimit)) { LMlocked = true; DBGLOG("LargeMemTotal limit exceeded: %"I64F"d",(offset_t)LMtotal); if (!LMnotify->take(LMtotal)) { LMtotal -= sz; LMlocked = false; throw createOutOfMemException(-9,sz, LMtotal); } DBGLOG("LargeMem taken"); } } } inline void decLargeMemTotal(memsize_t sz) { if (sz) { CriticalBlock block(LMsemsect); LMtotal -= sz; #ifdef TRACE_LARGEMEM if ((LMtotal/0x100000)!=((LMtotal+sz)/0x100000)) PROGLOG("LARGEMEM(-): %"I64F"d",(offset_t)LMtotal); #endif if (LMlocked) { if (LMtotalgive(LMtotal); } } } } void CLargeMemoryAllocator::allocchunkmem() { #ifdef LARGEMEM_USE_MMAP_SIZE size32_t masize = VMPAGEROUND(chunk.max); if (masize>=LARGEMEM_USE_MMAP_SIZE) { // use mmap chunk.base = (byte *) mmap(NULL,masize,PROT_READ|PROT_WRITE,MAP_PRIVATE|MAP_NORESERVE|MAP_ANONYMOUS,-1,0); if (chunk.base == (byte *)MAP_FAILED) chunk.base = NULL; #ifdef TRACE_LARGEMEM_ALLOC PROGLOG("CLargeMemoryAllocator::allocchunkmem mmaped %d at %p",masize,chunk.base); #endif return; } #endif chunk.base = (byte *)malloc(chunk.max); #ifdef TRACE_LARGEMEM_ALLOC PROGLOG("CLargeMemoryAllocator::allocchunkmem malloced %d at %p",chunk.max,chunk.base); #endif } void CLargeMemoryAllocator::disposechunkmem() { #ifdef LARGEMEM_USE_MMAP_SIZE size32_t masize = VMPAGEROUND(chunk.max); if (masize>=LARGEMEM_USE_MMAP_SIZE) { // use mmap munmap(chunk.base,masize); return; } #endif free(chunk.base); } bool CLargeMemoryAllocator::newchunk(size32_t sz,size32_t extra,bool exceptionwanted) { size32_t newchunksz = (sz>chunkmin)?sz:chunkmin; if (maxallocated()+newchunksz+extra>totalmax) { #ifdef TRACE_LARGEMEM_OOM PrintStackReport(); PROGLOG("OOM.1 wanted sz=%d, extra = %d, maxallocated=%"I64F"d, newchunksz=%u, totalmax=%"I64F"d",sz,extra,(offset_t)maxallocated(),newchunksz,(offset_t)totalmax); #endif if (exceptionwanted) { throw createOutOfMemException(-5,sz, maxallocated(),true); } return false; } if (chunk.size) { Chunk *p = new Chunk; *p = chunk; chunk.prev = p; atot += chunk.size; } else if (chunk.max) { decLargeMemTotal(chunk.max); amax -= chunk.max; disposechunkmem(); } chunk.max = newchunksz; allocchunkmem(); chunk.size = 0; if (!chunk.base) { // restore prev if (chunk.prev) { Chunk *p = chunk.prev; chunk = *p; atot -= chunk.size; delete p; } else chunk.max = 0; #ifdef TRACE_LARGEMEM_OOM PrintStackReport(); PROGLOG("OOM.2 wanted sz=%d, extra = %d, maxallocated=%"I64F"d, newchunksz=%u, totalmax=%"I64F"d",sz,extra,(offset_t)maxallocated(),newchunksz,(offset_t)totalmax); #endif if (throwexception) { throw createOutOfMemException(-6,sz, maxallocated(),true); } return false; } amax += chunk.max; incLargeMemTotal(newchunksz); return true; } void CLargeMemoryAllocator::reset() { decLargeMemTotal(maxallocated()); disposechunkmem(); while (chunk.prev) { Chunk *p = chunk.prev; chunk = *chunk.prev; delete p; disposechunkmem(); } chunk.max = 0; chunk.base = NULL; chunk.size = 0; atot = 0; amax = 0; } void CLargeMemoryAllocator::reduceSize(memsize_t amount) { if (amount<=chunk.size) { chunk.size-=amount; return; } memsize_t reduced = 0; do { amount -= chunk.size; reduced += chunk.max; disposechunkmem(); amax -= chunk.max; Chunk *p = chunk.prev; chunk = *p; atot -= chunk.size; delete p; } while (amount>chunk.size); chunk.size-=amount; decLargeMemTotal(reduced); } void CLargeMemoryAllocator::setSize(memsize_t pos) { memsize_t sz = allocated(); assertex(sz>=pos); reduceSize(sz-pos); } byte *CLargeMemoryAllocator::next(memsize_t pos,size32_t &size) // this should not be used for small jumps as it is slow { memsize_t sz = allocated(); if (sz<=pos) { size = 0; return NULL; } memsize_t dif = sz-pos; // how much to go back Chunk *p = &chunk; while (dif>p->size) { dif -= p->size; p = p->prev; } size = (size32_t)dif; // must be smaller than chunk return p->base+p->size-dif; } CLargeMemoryAllocator::CLargeMemoryAllocator() { // values overwritten by init throwexception = true; totalmax = 0; chunkmin = 0x1000; chunk.prev = NULL; chunk.max = 0; chunk.base = NULL; chunk.size = 0; atot = 0; amax = 0; } void CLargeMemoryAllocator::init(memsize_t _totalmax,size32_t _chunkmin,bool _throwexception) { throwexception = _throwexception; totalmax = _totalmax; chunkmin = _chunkmin; chunk.prev = NULL; chunk.max = 0; chunk.base = NULL; chunk.size = 0; atot = 0; amax = 0; } MemoryBuffer &CLargeMemoryAllocator::serialize(MemoryBuffer &mb) { memsize_t al = allocated(); size32_t sz = (size32_t)al; if (sz!=al) throw MakeStringException(-1,"CLargeMemoryAllocator::serialize overflow"); byte *d = (byte *)mb.reserveTruncate(sz)+sz; Chunk *p = &chunk; while (sz&&p) { size32_t s = p->size; d -= s; memcpy(d,p->base,s); p = p->prev; sz -= s; } return mb; } MemoryBuffer &CLargeMemoryAllocator::deserialize(MemoryBuffer &mb,size32_t sz, size32_t extra) { mb.read(sz,alloc(sz,extra)); return mb; } void *CLargeMemoryAllocator::nextBuffer(void *prev,size32_t &sz) { // not fast Chunk *p = NULL; Chunk *n = &chunk; while (n&&(n->base!=prev)) { p = n; n = n->prev; } if (!p) { sz = 0; return NULL; } sz = p->size; return p->base; } void CJMallocLargeMemoryAllocator::allocchunkmem() { chunk.base = (byte *)allocator->allocMem(chunk.max); #ifdef TRACE_LARGEMEM_ALLOC PROGLOG("CJMallocLargeMemoryAllocator::allocchunkmem malloced %d at %p",chunk.max,chunk.base); #endif } void CJMallocLargeMemoryAllocator::disposechunkmem() { allocator->freeMem(chunk.base); } CFixedSizeAllocator::CFixedSizeAllocator() { chunklist = NULL; } CFixedSizeAllocator::CFixedSizeAllocator(size32_t _allocsize,size32_t _chunksize) { chunklist = NULL; init(_allocsize,_chunksize); } void CFixedSizeAllocator::init(size32_t _allocsize,size32_t _chunksize) { kill(); allocsize = _allocsize; assertex(allocsize); if (allocsizetotalmax)) { outOfMem(sz); return false; } if (tot>mapped) { void * a = base+mapped; size32_t tomap = VMPAGEROUND(chunkmin); #ifdef WIN32 if (VirtualAlloc(a,tomap,MEM_COMMIT,PAGE_READWRITE)!=a) { outOfMem(sz); return false; } #else if (mprotect(a,tomap,PROT_READ|PROT_WRITE)<0) { int err = errno; if ((err==ENOMEM)||(err==EFAULT)) { outOfMem(sz); return false; } WARNLOG("CContiguousLargeMemoryAllocator:map madvise err=%d",err); } #endif mapped = mapped+tomap; } return true; } void CContiguousLargeMemoryAllocator::unmap() { // ensures above ofs is unmapped size32_t ch = VMPAGEROUND(chunkmin); size32_t newmapped = ((ofs+ch-1)/ch)*ch; if (newmapped=pos); reduceSize(ofs-pos); } void CContiguousLargeMemoryAllocator::reduceSize(size32_t amount) { assertex(ofs>=amount); ofs-=amount; unmap(); } void *CContiguousLargeMemoryAllocator::nextBuffer(void *prev,size32_t &sz) { // have to be careful as approaches 4GB byte *p = prev?((byte *)prev):base; size32_t o = p-base; size32_t r = (ochunkmin) sz = chunkmin; return p+chunkmin; } byte *CContiguousLargeMemoryAllocator::next(size32_t pos,size32_t &size) { if (ofs<=pos) { size = 0; return NULL; } size = ofs-pos; return base+pos; } MemoryBuffer &CContiguousLargeMemoryAllocator::serialize(MemoryBuffer &mb) { memcpy(mb.reserveTruncate(ofs),base,ofs); return mb; } MemoryBuffer &CContiguousLargeMemoryAllocator::deserialize(MemoryBuffer &mb,size32_t sz, size32_t extra) { mb.read(sz,alloc(sz,extra)); return mb; } void CContiguousLargeMemoryAllocator::outOfMem(size32_t sz) { if (throwexception) { throw createOutOfMemException(-6,sz, ofs,true); } }