Clone the repo
git clone https://github.com/NVIDIA/tensorrt-inference-server.git
Download models
cd tensorrt-inference-server/docs/examples/
./fetch_models.sh
Copy models to shared NFS location
cp -rp model_repository ensemble_model_repository /home/k8sSHARE
Prometheus collects metrics for viewing in Grafana. Install the prometheus-operator for these components. The serviceMonitorSelectorNilUsesHelmValues flag is needed so that Prometheus can find the inference server metrics in the example release deployed below:
helm install --name example-metrics --set prometheus.prometheusSpec.serviceMonitorSelectorNilUsesHelmValues=false stable/prometheus-operator
Setup port-forward to the Grafana service for local access
kubectl port-forward service/example-metrics-grafana 8080:80
Navigate in your browser to localhost:8080 for the Grafana login page.
username=admin password=prom-operator
Change to helm chart directory
cd ~/tensorrt-inference-server/deploy/single_server/
'
Modify values.yaml
changing modelRepositoryPath
image: imageName: nvcr.io/nvidia/tensorrtserver:20.01-py3 pullPolicy: IfNotPresent #modelRepositoryPath: gs://tensorrt-inference-server-repository/model_repository modelRepositoryPath: /data/model_repository numGpus: 1
Modify templates/deployment.yaml
in bold to add the local NFS mount:
apiVersion: apps/v1
kind: Deployment
metadata:
name: {{ template "tensorrt-inference-server.fullname" . }}
namespace: {{ .Release.Namespace }}
labels:
app: {{ template "tensorrt-inference-server.name" . }}
chart: {{ template "tensorrt-inference-server.chart" . }}
release: {{ .Release.Name }}
heritage: {{ .Release.Service }}
spec:
replicas: {{ .Values.replicaCount }}
selector:
matchLabels:
app: {{ template "tensorrt-inference-server.name" . }}
release: {{ .Release.Name }}
template:
metadata:
labels:
app: {{ template "tensorrt-inference-server.name" . }}
release: {{ .Release.Name }}
spec:
containers:
- name: {{ .Chart.Name }}
image: "{{ .Values.image.imageName }}"
imagePullPolicy: {{ .Values.image.pullPolicy }}
<b style='background-color:yellow'> volumeMounts:
- mountPath: /data/
name: work-volume</b>
resources:
limits:
nvidia.com/gpu: {{ .Values.image.numGpus }}
args: ["trtserver", "--model-store={{ .Values.image.modelRepositoryPath }}"]
ports:
- containerPort: 8000
name: http
- containerPort: 8001
name: grpc
- containerPort: 8002
name: metrics
livenessProbe:
httpGet:
path: /api/health/live
port: http
readinessProbe:
initialDelaySeconds: 5
periodSeconds: 5
httpGet:
path: /api/health/ready
port: http
securityContext:
runAsUser: 1000
fsGroup: 1000
volumes:
- name: work-volume
hostPath:
# directory locally mounted on host
path: /home/k8sSHARE
type: Directory
cd ~/tensorrt-inference-server/deploy/single_server/
$ helm install --name example .