|
@@ -0,0 +1,268 @@
|
|
|
+#!/usr/bin/env python
|
|
|
+# -*- coding: utf-8 -*-
|
|
|
+############################################################################
|
|
|
+#
|
|
|
+# MODULE: t.rast.neighbors
|
|
|
+# AUTHOR(S): Soeren Gebbert
|
|
|
+#
|
|
|
+# PURPOSE: Performs a neighborhood analysis for each map in a space time raster dataset.
|
|
|
+# COPYRIGHT: (C) 2013 by the GRASS Development Team
|
|
|
+#
|
|
|
+# This program is free software under the GNU General Public
|
|
|
+# License (version 2). Read the file COPYING that comes with GRASS
|
|
|
+# for details.
|
|
|
+#
|
|
|
+#############################################################################
|
|
|
+
|
|
|
+#%module
|
|
|
+#% description: Performs a neighborhood analysis for each map in a space time raster dataset.
|
|
|
+#% keywords: temporal
|
|
|
+#% keywords: aggregation
|
|
|
+#%end
|
|
|
+
|
|
|
+#%option G_OPT_STRDS_INPUT
|
|
|
+#%end
|
|
|
+
|
|
|
+#%option G_OPT_T_WHERE
|
|
|
+#%end
|
|
|
+
|
|
|
+#%option
|
|
|
+#% key: size
|
|
|
+#% type: integer
|
|
|
+#% description: Neighborhood size
|
|
|
+#% required: no
|
|
|
+#% multiple: no
|
|
|
+#% answer: 3
|
|
|
+#%end
|
|
|
+
|
|
|
+#%option
|
|
|
+#% key: output
|
|
|
+#% type: string
|
|
|
+#% description: Name of the output space time raster dataset
|
|
|
+#% required: yes
|
|
|
+#% multiple: no
|
|
|
+#%end
|
|
|
+
|
|
|
+#%option
|
|
|
+#% key: method
|
|
|
+#% type: string
|
|
|
+#% description: Aggregate operation to be performed on the raster maps
|
|
|
+#% required: yes
|
|
|
+#% multiple: no
|
|
|
+#% options: average,median,mode,minimum,maximum,range,stddev,sum,count,variance,diversity,interspersion,quart1,quart3,perc90,quantile
|
|
|
+#% answer: average
|
|
|
+#%end
|
|
|
+
|
|
|
+
|
|
|
+#%option G_OPT_R_BASE
|
|
|
+#%end
|
|
|
+
|
|
|
+#%option
|
|
|
+#% key: nprocs
|
|
|
+#% type: integer
|
|
|
+#% description: Number of r.neighbor processes to run in parallel
|
|
|
+#% required: no
|
|
|
+#% multiple: no
|
|
|
+#% answer: 1
|
|
|
+#%end
|
|
|
+
|
|
|
+#%flag
|
|
|
+#% key: n
|
|
|
+#% description: Register Null maps
|
|
|
+#%end
|
|
|
+
|
|
|
+from multiprocessing import Process
|
|
|
+import grass.script as grass
|
|
|
+import grass.temporal as tgis
|
|
|
+
|
|
|
+############################################################################
|
|
|
+
|
|
|
+
|
|
|
+def main():
|
|
|
+
|
|
|
+ # Get the options
|
|
|
+ input = options["input"]
|
|
|
+ output = options["output"]
|
|
|
+ where = options["where"]
|
|
|
+ size = options["size"]
|
|
|
+ base = options["base"]
|
|
|
+ register_null = flags["n"]
|
|
|
+ method = options["method"]
|
|
|
+ nprocs = options["nprocs"]
|
|
|
+
|
|
|
+ # Make sure the temporal database exists
|
|
|
+ tgis.init()
|
|
|
+ # We need a database interface
|
|
|
+ dbif = tgis.SQLDatabaseInterfaceConnection()
|
|
|
+ dbif.connect()
|
|
|
+
|
|
|
+ mapset = grass.gisenv()["MAPSET"]
|
|
|
+
|
|
|
+ if input.find("@") >= 0:
|
|
|
+ id = input
|
|
|
+ else:
|
|
|
+ id = input + "@" + mapset
|
|
|
+
|
|
|
+ sp = tgis.SpaceTimeRasterDataset(id)
|
|
|
+
|
|
|
+ if sp.is_in_db() == False:
|
|
|
+ dbif.close()
|
|
|
+ grass.fatal(_("Space time %s dataset <%s> not found") % (
|
|
|
+ sp.get_new_map_instance(None).get_type(), id))
|
|
|
+
|
|
|
+ sp.select(dbif)
|
|
|
+ dummy = sp.get_new_map_instance(None)
|
|
|
+
|
|
|
+ if output.find("@") >= 0:
|
|
|
+ out_id = output
|
|
|
+ else:
|
|
|
+ out_id = output + "@" + mapset
|
|
|
+
|
|
|
+ # The new space time raster dataset
|
|
|
+ new_sp = tgis.SpaceTimeRasterDataset(out_id)
|
|
|
+ if new_sp.is_in_db(dbif):
|
|
|
+ if not grass.overwrite():
|
|
|
+ dbif.close()
|
|
|
+ grass.fatal(_("Space time raster dataset <%s> is already in the "
|
|
|
+ "database, use overwrite flag to overwrite") % out_id)
|
|
|
+
|
|
|
+ rows = sp.get_registered_maps("id,start_time", where, "start_time", dbif)
|
|
|
+
|
|
|
+ if not rows:
|
|
|
+ dbif.close()
|
|
|
+ grass.fatal(_("Space time raster dataset <%s> is empty") % out_id)
|
|
|
+
|
|
|
+ count = 0
|
|
|
+ proc_count = 0
|
|
|
+ proc_list = []
|
|
|
+
|
|
|
+ num_rows = len(rows)
|
|
|
+ new_maps = {}
|
|
|
+
|
|
|
+ for row in rows:
|
|
|
+ count += 1
|
|
|
+
|
|
|
+ grass.percent(count, num_rows, 1)
|
|
|
+
|
|
|
+ map_name = "%s_%i" % (base, count)
|
|
|
+ map_id = dummy.build_id(map_name, mapset)
|
|
|
+
|
|
|
+ new_map = sp.get_new_map_instance(map_id)
|
|
|
+
|
|
|
+ # Check if new map is in the temporal database
|
|
|
+ if new_map.is_in_db(dbif):
|
|
|
+ if grass.overwrite():
|
|
|
+ # Remove the existing temporal database entry
|
|
|
+ new_map.delete(dbif)
|
|
|
+ new_map = sp.get_new_map_instance(map_id)
|
|
|
+ else:
|
|
|
+ grass.error(_("Map <%s> is already in temporal database,"
|
|
|
+ " use overwrite flag to overwrite") %
|
|
|
+ (new_map.get_map_id()))
|
|
|
+ continue
|
|
|
+
|
|
|
+ proc_list.append(Process(target=run_neighbors,
|
|
|
+ args=(row["id"],map_name,method,size)))
|
|
|
+
|
|
|
+ proc_list[proc_count].start()
|
|
|
+ proc_count += 1
|
|
|
+
|
|
|
+ # Join processes if the maximum number of processes are
|
|
|
+ # reached or the end of the loop is reached
|
|
|
+ if proc_count == nprocs or proc_count == num_rows:
|
|
|
+ proc_count = 0
|
|
|
+ exitcodes = 0
|
|
|
+ for proc in proc_list:
|
|
|
+ proc.join()
|
|
|
+ exitcodes += proc.exitcode
|
|
|
+
|
|
|
+ if exitcodes != 0:
|
|
|
+ dbif.close()
|
|
|
+ grass.fatal(_("Error while computation"))
|
|
|
+
|
|
|
+ # Empty process list
|
|
|
+ proc_list = []
|
|
|
+
|
|
|
+ # Store the new maps
|
|
|
+ new_maps[row["id"]] = new_map
|
|
|
+
|
|
|
+ grass.percent(0, num_rows, 1)
|
|
|
+
|
|
|
+ # Insert the new space time dataset
|
|
|
+ if new_sp.is_in_db(dbif):
|
|
|
+ if grass.overwrite():
|
|
|
+ new_sp.delete(dbif)
|
|
|
+ new_sp = sp.get_new_instance(out_id)
|
|
|
+
|
|
|
+ temporal_type, semantic_type, title, description = sp.get_initial_values()
|
|
|
+ new_sp.set_initial_values(
|
|
|
+ temporal_type, semantic_type, title, description)
|
|
|
+ new_sp.insert(dbif)
|
|
|
+
|
|
|
+ # collect empty maps to remove them
|
|
|
+ empty_maps = []
|
|
|
+
|
|
|
+ # Register the maps in the database
|
|
|
+ count = 0
|
|
|
+ for row in rows:
|
|
|
+ count += 1
|
|
|
+
|
|
|
+ grass.percent(count, num_rows, 1)
|
|
|
+ # Register the new maps
|
|
|
+ if row["id"] in new_maps:
|
|
|
+ new_map = new_maps[row["id"]]
|
|
|
+ # Read the raster map data
|
|
|
+ new_map.load()
|
|
|
+
|
|
|
+ # In case of a empty map continue, do not register empty maps
|
|
|
+ if new_map.metadata.get_min() is None and \
|
|
|
+ new_map.metadata.get_max() is None:
|
|
|
+ if not register_null:
|
|
|
+ empty_maps.append(new_map)
|
|
|
+ continue
|
|
|
+
|
|
|
+ old_map = sp.get_new_map_instance(row["id"])
|
|
|
+ old_map.select(dbif)
|
|
|
+
|
|
|
+ # Set the time stamp
|
|
|
+ if old_map.is_time_absolute():
|
|
|
+ start, end, tz = old_map.get_absolute_time()
|
|
|
+ new_map.set_absolute_time(start, end, tz)
|
|
|
+ else:
|
|
|
+ start, end, unit = old_map.get_relative_time()
|
|
|
+ new_map.set_relative_time(start, end, unit)
|
|
|
+
|
|
|
+ # Insert map in temporal database
|
|
|
+ new_map.insert(dbif)
|
|
|
+ new_sp.register_map(new_map, dbif)
|
|
|
+
|
|
|
+ # Update the spatio-temporal extent and the metadata table entries
|
|
|
+ new_sp.update_from_registered_maps(dbif)
|
|
|
+ grass.percent(num_rows, num_rows, 1)
|
|
|
+
|
|
|
+ # Remove empty maps
|
|
|
+ if len(empty_maps) > 0:
|
|
|
+ names = ""
|
|
|
+ count = 0
|
|
|
+ for map in empty_maps:
|
|
|
+ if count == 0:
|
|
|
+ names += "%s" % (map.get_name())
|
|
|
+ else:
|
|
|
+ names += ",%s" % (map.get_name())
|
|
|
+ count += 1
|
|
|
+
|
|
|
+ grass.run_command("g.remove", rast=names, quiet=True)
|
|
|
+
|
|
|
+
|
|
|
+ dbif.close()
|
|
|
+
|
|
|
+def run_neighbors(input, output, method, size):
|
|
|
+ """Helper function to run r.neighbors in parallel"""
|
|
|
+ return grass.run_command("r.neighbors", input=input, output=output,
|
|
|
+ method=method, size=size, overwrite=grass.overwrite(),
|
|
|
+ quiet=True)
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ options, flags = grass.parser()
|
|
|
+ main()
|