|
@@ -1,280 +0,0 @@
|
|
|
-
|
|
|
-/**
|
|
|
- * \file transform.c
|
|
|
- *
|
|
|
- * \brief This file contains routines which perform (affine?)
|
|
|
- * transformations from one coordinate system into another.
|
|
|
- *
|
|
|
- * The second system may be translated, stretched, and rotated relative
|
|
|
- * to the first. The input system is system <em>a</em> and the output
|
|
|
- * system is <em>b</em>.
|
|
|
- *
|
|
|
- * This program is free software under the GNU General Public License
|
|
|
- * (>=v2). Read the file COPYING that comes with GRASS for details.
|
|
|
- *
|
|
|
- * \author GRASS GIS Development Team
|
|
|
- *
|
|
|
- * \date 1987-2007
|
|
|
- */
|
|
|
-
|
|
|
-/****************************************************************
|
|
|
-note: uses sqrt() from math library
|
|
|
-*****************************************************************
|
|
|
-Points from one system may be converted into the second by
|
|
|
-use of one of the two equation routines.
|
|
|
-
|
|
|
-transform_a_into_b (ax,ay,bx,by)
|
|
|
-
|
|
|
- double ax,ay; input point from system a
|
|
|
- double *bx,*by; resultant point in system b
|
|
|
-
|
|
|
-transform_b_into_a (bx,by,ax,ay)
|
|
|
-
|
|
|
- double bx,by; input point from system b
|
|
|
- double *ax,*ay; resultant point in system a
|
|
|
-*****************************************************************
|
|
|
-Residual analysis on the equation can be run to test how well
|
|
|
-the equations work. Either test how well b is predicted by a
|
|
|
-or vice versa.
|
|
|
-
|
|
|
-residuals_a_predicts_b (ax,ay,bx,by,use,n,residuals,rms)
|
|
|
-residuals_b_predicts_a (ax,ay,bx,by,use,n,residuals,rms)
|
|
|
-
|
|
|
- double ax[], ay[]; coordinate from system a
|
|
|
- double bx[], by[]; coordinate from system b
|
|
|
- char use[]; use point flags
|
|
|
- int n; number of points in ax,ay,bx,by
|
|
|
- double residual[] residual error for each point
|
|
|
- double *rms; overall root mean square error
|
|
|
-****************************************************************/
|
|
|
-
|
|
|
-#include <stdio.h>
|
|
|
-#include <math.h>
|
|
|
-#include <grass/transform.h>
|
|
|
-
|
|
|
-/* the coefficients */
|
|
|
-static double A0, A1, A2, A3, A4, A5;
|
|
|
-static double B0, B1, B2, B3, B4, B5;
|
|
|
-
|
|
|
-/* function prototypes */
|
|
|
-static int resid(double *, double *, double *, double *, int *, int, double *,
|
|
|
- double *, int);
|
|
|
-
|
|
|
-
|
|
|
-/**
|
|
|
- * \fn int compute_transformation_coef (double ax[], double ay[], double bx[], double by[], char *use, int n)
|
|
|
- *
|
|
|
- * \brief The first step is to compute coefficients for a set of equations
|
|
|
- * which are then used to convert from the one system to the other.
|
|
|
- *
|
|
|
- * A set of x,y points from both systems is input into the equation
|
|
|
- * generator which determines the equation coefficients which most
|
|
|
- * nearly represent the original points. These coefficients are kept
|
|
|
- * in a static variables internal to this file.
|
|
|
- *
|
|
|
- * NOTE: use[i] must be true for ax[i],ay[i],bx[i],by[i] to be used
|
|
|
- * in the equation. Also, the total number of used points must be
|
|
|
- * 4 or larger.
|
|
|
- *
|
|
|
- * \param[in] ax coordinate from system a
|
|
|
- * \param[in] ay coordinate from system a
|
|
|
- * \param[in] bx coordinate from system b
|
|
|
- * \param[in] by coordinate from system b
|
|
|
- * \param[in] use use point flags
|
|
|
- * \param[in] n number of points in ax, ay, bx, by
|
|
|
- * \return int 1 if successful
|
|
|
- * \return int -1 if could not solve equation. Points probably colinear.
|
|
|
- * \return int -2 if less than 4 points used
|
|
|
- */
|
|
|
-
|
|
|
-int compute_transformation_coef(double ax[], double ay[], double bx[],
|
|
|
- double by[], int *use, int n)
|
|
|
-{
|
|
|
- int i;
|
|
|
- int j;
|
|
|
- int count;
|
|
|
- double aa[3];
|
|
|
- double aar[3];
|
|
|
- double bb[3];
|
|
|
- double bbr[3];
|
|
|
-
|
|
|
- double cc[3][3];
|
|
|
- double x;
|
|
|
-
|
|
|
- count = 0;
|
|
|
- for (i = 0; i < n; i++)
|
|
|
- if (use[i])
|
|
|
- count++;
|
|
|
- if (count < 4)
|
|
|
- return -2; /* must have at least 4 points */
|
|
|
-
|
|
|
- for (i = 0; i < 3; i++) {
|
|
|
- aa[i] = bb[i] = 0.0;
|
|
|
-
|
|
|
- for (j = 0; j < 3; j++)
|
|
|
- cc[i][j] = 0.0;
|
|
|
- }
|
|
|
-
|
|
|
- for (i = 0; i < n; i++) {
|
|
|
- if (!use[i])
|
|
|
- continue; /* skip this point */
|
|
|
- cc[0][0] += 1;
|
|
|
- cc[0][1] += bx[i];
|
|
|
- cc[0][2] += by[i];
|
|
|
-
|
|
|
- cc[1][1] += bx[i] * bx[i];
|
|
|
- cc[1][2] += bx[i] * by[i];
|
|
|
- cc[2][2] += by[i] * by[i];
|
|
|
-
|
|
|
- aa[0] += ay[i];
|
|
|
- aa[1] += ay[i] * bx[i];
|
|
|
- aa[2] += ay[i] * by[i];
|
|
|
-
|
|
|
- bb[0] += ax[i];
|
|
|
- bb[1] += ax[i] * bx[i];
|
|
|
- bb[2] += ax[i] * by[i];
|
|
|
- }
|
|
|
-
|
|
|
- cc[1][0] = cc[0][1];
|
|
|
- cc[2][0] = cc[0][2];
|
|
|
- cc[2][1] = cc[1][2];
|
|
|
-
|
|
|
- /* aa and bb are solved */
|
|
|
- if (inverse(cc) < 0)
|
|
|
- return (-1);
|
|
|
- if (m_mult(cc, aa, aar) < 0 || m_mult(cc, bb, bbr) < 0)
|
|
|
- return (-1);
|
|
|
-
|
|
|
- /* the equation coefficients */
|
|
|
- B0 = aar[0];
|
|
|
- B1 = aar[1];
|
|
|
- B2 = aar[2];
|
|
|
-
|
|
|
- B3 = bbr[0];
|
|
|
- B4 = bbr[1];
|
|
|
- B5 = bbr[2];
|
|
|
-
|
|
|
- /* the inverse equation */
|
|
|
- x = B2 * B4 - B1 * B5;
|
|
|
-
|
|
|
- if (!x)
|
|
|
- return (-1);
|
|
|
-
|
|
|
- A0 = (B1 * B3 - B0 * B4) / x;
|
|
|
- A1 = -B1 / x;
|
|
|
- A2 = B4 / x;
|
|
|
- A3 = (B0 * B5 - B2 * B3) / x;
|
|
|
- A4 = B2 / x;
|
|
|
- A5 = -B5 / x;
|
|
|
-
|
|
|
- return 1;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-int transform_a_into_b(double ax, double ay, double *bx, double *by)
|
|
|
-{
|
|
|
- *by = A0 + A1 * ax + A2 * ay;
|
|
|
- *bx = A3 + A4 * ax + A5 * ay;
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-int transform_b_into_a(double bx, double by, double *ax, double *ay)
|
|
|
-{
|
|
|
- *ay = B0 + B1 * bx + B2 * by;
|
|
|
- *ax = B3 + B4 * bx + B5 * by;
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/**************************************************************
|
|
|
-These routines are internal to this source code
|
|
|
-
|
|
|
-solve (a, b)
|
|
|
- double a[3][3]
|
|
|
- double b[3]
|
|
|
-
|
|
|
- equation solver used by compute_transformation_coef()
|
|
|
-**************************************************************/
|
|
|
-
|
|
|
-/* #define abs(xx) (xx >= 0 ? xx : -xx) */
|
|
|
-/* #define N 3 */
|
|
|
-
|
|
|
-
|
|
|
-int residuals_a_predicts_b(double ax[], double ay[], double bx[], double by[],
|
|
|
- int use[], int n, double residuals[], double *rms)
|
|
|
-{
|
|
|
- resid(ax, ay, bx, by, use, n, residuals, rms, 1);
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-int residuals_b_predicts_a(double ax[], double ay[], double bx[], double by[],
|
|
|
- int use[], int n, double residuals[], double *rms)
|
|
|
-{
|
|
|
- resid(ax, ay, bx, by, use, n, residuals, rms, 0);
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-/**
|
|
|
- * \fn int print_transform_matrix (void)
|
|
|
- *
|
|
|
- * \brief Prints matrix to stdout in human readable format.
|
|
|
- *
|
|
|
- * \return int 1
|
|
|
- */
|
|
|
-
|
|
|
-int print_transform_matrix(void)
|
|
|
-{
|
|
|
- fprintf(stdout, "\nTransformation Matrix\n");
|
|
|
- fprintf(stdout, "| xoff a b |\n");
|
|
|
- fprintf(stdout, "| yoff d e |\n");
|
|
|
- fprintf(stdout, "-------------------------------------------\n");
|
|
|
- fprintf(stdout, "%f %f %f \n", -B3, B2, -B5);
|
|
|
- fprintf(stdout, "%f %f %f \n", -B0, -B1, B4);
|
|
|
- fprintf(stdout, "-------------------------------------------\n");
|
|
|
-
|
|
|
- return 1;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-static int resid(double ax[], double ay[], double bx[], double by[],
|
|
|
- int use[], int n, double residuals[], double *rms, int atob)
|
|
|
-{
|
|
|
- double x, y;
|
|
|
- int i;
|
|
|
- int count;
|
|
|
- double sum;
|
|
|
- double delta;
|
|
|
- double dx, dy;
|
|
|
-
|
|
|
- count = 0;
|
|
|
- sum = 0.0;
|
|
|
- for (i = 0; i < n; i++) {
|
|
|
- if (!use[i])
|
|
|
- continue;
|
|
|
-
|
|
|
- count++;
|
|
|
- if (atob) {
|
|
|
- transform_a_into_b(ax[i], ay[i], &x, &y);
|
|
|
- dx = x - bx[i];
|
|
|
- dy = y - by[i];
|
|
|
- }
|
|
|
- else {
|
|
|
- transform_b_into_a(bx[i], by[i], &x, &y);
|
|
|
- dx = x - ax[i];
|
|
|
- dy = y - ay[i];
|
|
|
- }
|
|
|
-
|
|
|
- delta = dx * dx + dy * dy;
|
|
|
- residuals[i] = sqrt(delta);
|
|
|
- sum += delta;
|
|
|
- }
|
|
|
- *rms = sqrt(sum / count);
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|